

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Introduction to Answer Set Programming Fran¸cois Gagnon Ph.D. Student Network Management and Artificial Intelligence Laboratory www.sce.carleton.ca/netmanage Carleton University

Answer Set Programming

F. Gagnon 08

1 / 54

Outline ë Logic Programming ë Prolog ë Stable Model Semantics ë Answer Set Programming (ASP) ë Using ASP for problem solving

Answer Set Programming

F. Gagnon 08

2 / 54

Logic Programming

Algorithm = Logic + Control • In C++ and Java, both logic and control have to be specified: – Logic is usually the hard (and important) part. – Control is usually the tedious part. • In LP, the control part is fixed. – So we can concentrate on the important part. – We say they have a declarative semantics.

Answer Set Programming

F. Gagnon 08

3 / 54

A Spectrum of Logic Programs

Extended Disjunctive Logic Program

Extended Logic Program

HC+NAF +CN

HC+NAF +DIS

Normal Logic Program

HC+NAF

HC+DIS

Horn Logic Program

Answer Set Programming

HC+NAF +CN+DIS

HC

F. Gagnon 08

4 / 54

Outline ë Logic Programming ë Prolog - SWI Prolog 5.6.47 ë Stable Model Semantics ë Answer Set Programming (ASP) ë Using ASP for problem solving

Answer Set Programming

F. Gagnon 08

5 / 54

Prolog with HC

• Prolog was initially designed to handle horn clauses only. • A horn clause is a rule of the form: A ← A1 ∧ . . . ∧ An

(1)

where Ai are atoms. • Even with HC, Prolog does not embrace a declarative semantics.

Answer Set Programming

F. Gagnon 08

6 / 54

Prolog “Semantics” for HC To prove a (positive) atom A0 , push it into an empty stack: 1. Pop an atom A0 from the stack. 2. Find the first (next) rule (1) r such that A0 and A unify: 2.1 Let θ be the mgu of A0 and A. 2.2 Push θ(An), then θ(An−1), . . . , and finally θ(A1) into the stack. 2.3 Go to 1. 3. If there is no such rule, backtrack to the last selection point and choose another. 4. If the stack is empty, then A0 is true. 5. If there is no more choice to make and the stack is not empty, then A0 is false. Thus a “Prolog model” of a horn program is the set of atoms that are true; everything else is (assumed) false. Answer Set Programming

F. Gagnon 08

7 / 54

Example 1a p(X, Z) ← q(X, Y) ∧ p(Y, Z)

p(X, Z) ← p(Y, Z) ∧ q(X, Y)

p(b, b) ←

p(b, b) ←

q(a, b) ←

q(a, b) ←

p(X, b)?

p(X, b)?

yes (X=a, X=b)

Conjunction is not commutative.

Answer Set Programming

F. Gagnon 08

8 / 54

Example 1a p(V,X) ← q(V,W) ∧ p(W,X) p(U,b)

q(a,b) ←

p(b,b) ←

UV Xb

Va Wb

q(V,W) p(W,b)

p(b,b)

Vb Xb

p(b,b)

q(b,W) p(W,b)

Answer Set Programming

F. Gagnon 08

9 / 54

Example 1a p(X, Z) ← q(X, Y) ∧ p(Y, Z)

p(X, Z) ← p(Y, Z) ∧ q(X, Y)

p(b, b) ←

p(b, b) ←

q(a, b) ←

q(a, b) ←

p(X, b)?

p(X, b)?

yes (X=a, X=b)

Out of Memory!!!

• Conjunction is not commutative.

Answer Set Programming

F. Gagnon 08

10 / 54

Example 1a

p(V,X) ← p(W,X) ∧ q(V,W)

q(a,b) ←

p(b,b) ←

p(U,b)

p(W’,b) q(U,W’)

VU Xb

V W’ Xb

p(W’’,b) q(W’,W’’) q(U,W’)

…

Answer Set Programming

F. Gagnon 08

11 / 54

Prolog and Negative Knowledge Consider three types of knowledge: 1) Query-answering knowledge. 2) Descriptive knowledge. 3) Reasoning knowledge.

Where can Prolog handle negative knowledge?

Answer Set Programming

F. Gagnon 08

12 / 54

Prolog and Negative Q/A Knowledge q(1) ←

q(1) ←

q(1)?

q(2)?

yes

no

• Prolog can handle negative Q/A knowledge. • We have a two-valued KR formalism. • Fortunately, otherwise it would be useless.

Answer Set Programming

F. Gagnon 08

13 / 54

Prolog and Negative Descriptive Knowledge

• How do you say q(2) is false ? • By not saying q(2) is true (CWA) ? q(1) ←

q(1) ←

p(X) ← q(X)

p(X) ← q(X) q(Y) ← p(X)

q(2)?

q(2)?

no

yes

Good !

Not so good !

So not saying q(2) is true does not make it false. Thus, Prolog cannot handle truly negative descriptive knowledge and cannot have inconsistencies. Answer Set Programming

F. Gagnon 08

14 / 54

Prolog and Negative Descriptive Knowledge

• How do you say q(2) is false ? • By not saying q(2) is true (CWA) ? q(1) ←

q(1) ←

p(X) ← q(X)

p(X) ← q(X) q(Y) ← p(X)

q(2)?

q(2)?

no

yes

Good !

Not so good !

• So not saying q(2) is true does not make it false. • Thus, Prolog cannot handle truly negative descriptive knowledge and cannot have inconsistencies. Answer Set Programming

F. Gagnon 08

14 / 54

Prolog and Negative Reasoning Knowledge

• We cannot describe with negation, but we can reason with it? • Yes, but only “weakly”. • Rules are now horn clauses augmented with negation as failure (NAF): A ← N1 ∧ . . . ∧ Nn

(2)

where each Ni is an atom or the weak negation (not) of an atom. • Unfortunately, the “semantics” becomes worse.

Answer Set Programming

F. Gagnon 08

15 / 54

Prolog “Semantics” for NAF To prove not t: • Try proving t. • If it succeeds, then not t is false. • If it finitelya fails, then not t is true (hence NAF).

If we get into an infinite loop, then we won’t conclude anything. a The

search space is completely, exhaustively, and finitely explored, and no success is reached.

Answer Set Programming

F. Gagnon 08

16 / 54

Example p ← not q

p ← not q q←

Answer Set Programming

p?

p?

yes

no

F. Gagnon 08

17 / 54

Example p ← not q

p ← not q q←

Answer Set Programming

p?

p?

yes

no

F. Gagnon 08

17 / 54

Example 2a p ← not q q ← not p

Answer Set Programming

p?

q?

Out of Memory!!!

Out of Memory!!!

F. Gagnon 08

18 / 54

Example 2a p ← not q q ← not p

Answer Set Programming

p?

q?

Out of Memory!!!

Out of Memory!!!

F. Gagnon 08

18 / 54

Example 3a Free variables and NAF do not like each other. p(a) ←

p(a) ←

p(a) ←

p(a) ←

p(b) ←

p(b) ←

p(b) ←

p(b) ←

s(a) ←

s(a) ←

s(a) ←

s(a) ←

q1 ← s(X)

q2 ← not s(X)

q3 ← p(X) ∧ not s(X)

q4 ← not s(X) ∧ p(X)

q1?

q2?

q3?

q4?

yes

no

yes

no

This is not what we expect from a “logic program” (declarative semantics).

Answer Set Programming

F. Gagnon 08

19 / 54

Example 3a Free variables and NAF do not like each other. p(a) ←

p(a) ←

p(a) ←

p(a) ←

p(b) ←

p(b) ←

p(b) ←

p(b) ←

s(a) ←

s(a) ←

s(a) ←

s(a) ←

q1 ← s(X)

q2 ← not s(X)

q3 ← p(X) ∧ not s(X)

q4 ← not s(X) ∧ p(X)

q1?

q2?

q3?

q4?

yes

no

yes

no

This is not what we expect from a “logic program” (declarative semantics).

Answer Set Programming

F. Gagnon 08

19 / 54

Example 3a Free variables and NAF do not like each other. p(a) ←

p(a) ←

p(a) ←

p(a) ←

p(b) ←

p(b) ←

p(b) ←

p(b) ←

s(a) ←

s(a) ←

s(a) ←

s(a) ←

q1 ← s(X)

q2 ← not s(X)

q3 ← p(X) ∧ not s(X)

q4 ← not s(X) ∧ p(X)

q1?

q2?

q3?

q4?

yes

no

yes

no

This is not what we expect from a “logic program” (declarative semantics).

Answer Set Programming

F. Gagnon 08

19 / 54

Example 3a Free variables and NAF do not like each other. p(a) ←

p(a) ←

p(a) ←

p(a) ←

p(b) ←

p(b) ←

p(b) ←

p(b) ←

s(a) ←

s(a) ←

s(a) ←

s(a) ←

q1 ← s(X)

q2 ← not s(X)

q3 ← p(X) ∧ not s(X)

q4 ← not s(X) ∧ p(X)

q1?

q2?

q3?

q4?

yes

no

yes

no

• This is not what we expect from a “logic program” (declarative semantics).

Answer Set Programming

F. Gagnon 08

19 / 54

Prolog Summary

Prolog

Descriptive

Reasoning

Negation

Negation

Not really (CWA)

Weak (NAF)

Disjunction

Declarative

Expressiveness

Semantics No

No

HC + NAF

But things are not formal here, and it is not purely logic programming.

Answer Set Programming

F. Gagnon 08

20 / 54

Outline ë Logic Programming ë Prolog ë Stable Model Semantics ë Answer Set Programming (ASP) ë Using ASP for problem solving

Answer Set Programming

F. Gagnon 08

21 / 54

Stable Model Semantics for HC

A ← A1 ∧ . . . ∧ An

(3)

H(r) = A and B(r) = {A1 , . . . , An } We consider only propositional logic. • A model for P is the set M of atoms that are true with respect to P . • P has a unique model. • Every literal not in the model is false (CWA). Stable model semantics for P : • The model of P is the fixpoint of applying TP to ∅. TP (M) = {H(r)|r ∈ P ∧ B(r) ⊆ M }

Answer Set Programming

F. Gagnon 08

22 / 54

Example a←b

b←

c←a∧b

d←b∧c

e←f

f ←e

TP (∅) TP ({b}) TP ({b, a})

Answer Set Programming

= {b} = {b, a} = {b, a, c}

TP ({b, a, c})

= {b, a, c, d}

TP ({b, a, c, d})

= {b, a, c, d}

F. Gagnon 08

23 / 54

Example a←b

b←

c←a∧b

d←b∧c

e←f

f ←e

TP (∅) TP ({b}) TP ({b, a})

Answer Set Programming

= {b} = {b, a} = {b, a, c}

TP ({b, a, c})

= {b, a, c, d}

TP ({b, a, c, d})

= {b, a, c, d}

F. Gagnon 08

23 / 54

Example a←b

b←

c←a∧b

d←b∧c

e←f

f ←e

TP (∅) TP ({b}) TP ({b, a})

Answer Set Programming

= {b} = {b, a} = {b, a, c}

TP ({b, a, c})

= {b, a, c, d}

TP ({b, a, c, d})

= {b, a, c, d}

F. Gagnon 08

23 / 54

Example a←b

b←

c←a∧b

d←b∧c

e←f

f ←e

TP (∅) TP ({b}) TP ({b, a})

Answer Set Programming

= {b} = {b, a} = {b, a, c}

TP ({b, a, c})

= {b, a, c, d}

TP ({b, a, c, d})

= {b, a, c, d}

F. Gagnon 08

23 / 54

Example a←b

b←

c←a∧b

d←b∧c

e←f

f ←e

TP (∅) TP ({b}) TP ({b, a})

Answer Set Programming

= {b} = {b, a} = {b, a, c}

TP ({b, a, c})

= {b, a, c, d}

TP ({b, a, c, d})

= {b, a, c, d}

F. Gagnon 08

23 / 54

Example 1b p(X, Z) ← q(X, Y) ∧ p(Y, Z)

p(X, Z) ← p(Y, Z) ∧ q(X, Y)

p(b, b) ←

p(b, b) ←

q(a, b) ←

q(a, b) ←

{q(a, b), p(b, b), p(a, b)}

{q(a, b), p(b, b), p(a, b)}

p(X, b)?

p(X, b)?

yes (as before)

yes (that’s better) p(a, a) ← q(a, a) ∧ p(a, a) p(a, b) ← p(a, b) ∧ q(a, a) p(a, a) ← p(b, a) ∧ q(a, b) p(a, b) ← p(b, b) ∧ q(a, b) p(b, a) ← p(a, a) ∧ q(b, a) p(b, b) ← p(a, b) ∧ q(b, a) p(b, a) ← p(b, a) ∧ q(b, b) p(b, b) ← p(b, b) ∧ q(b, b) p(b, b) ← q(a, b) ←

Answer Set Programming

F. Gagnon 08

24 / 54

Example 1b p(X, Z) ← q(X, Y) ∧ p(Y, Z)

p(X, Z) ← p(Y, Z) ∧ q(X, Y)

p(b, b) ←

p(b, b) ←

q(a, b) ←

q(a, b) ←

{q(a, b), p(b, b), p(a, b)}

{q(a, b), p(b, b), p(a, b)}

p(X, b)?

p(X, b)?

yes (as before)

yes (that’s better) p(a, a) ← q(a, a) ∧ p(a, a) p(a, b) ← p(a, b) ∧ q(a, a) p(a, a) ← p(b, a) ∧ q(a, b) p(a, b) ← p(b, b) ∧ q(a, b) p(b, a) ← p(a, a) ∧ q(b, a) p(b, b) ← p(a, b) ∧ q(b, a) p(b, a) ← p(b, a) ∧ q(b, b) p(b, b) ← p(b, b) ∧ q(b, b) p(b, b) ← q(a, b) ←

Answer Set Programming

F. Gagnon 08

24 / 54

Stable Model Semantics for HC+NAF

A ← A1 ∧ . . . ∧ An ∧ not An+1 ∧ . . . ∧ not Am

(4)

B + (r) = {A1 , . . . , An } and B − (r) = {An+1 , . . . , Am } • A model is the same as before, but it is not unique anymore. • P is “consistent” if it has a unique stable model [3]. Stable model semantics for P : • Let M be a subset of the atoms in P (i.e., a tentative model). • Let P M be the program obtained from P by deleting: 1. each rule r such that B − (r) ∩ M 6= ∅ 2. B − (r) in the body of every remaining rule r • If M = M 0 (the unique model of P M), then M is a “stable” model of P . Answer Set Programming

F. Gagnon 08

25 / 54

Example 2b P

p ← not q q ← not p

M

{}

{p}

{q}

PM

p←

p←

q←

{p}

{q}

{p, q}

q← M0 Q/A

{p, q}

p?

{}

q?

????????????????????????

P has two stable models {p} and {q}. Thus, P is inconsistent (w.r.t. stable model semantics). i.e., the stable model semantics cannot capture the meaning of P . Slightly better than Prolog, but not good enough. Answer Set Programming

F. Gagnon 08

26 / 54

Example 2b P

p ← not q q ← not p

M

{}

{p}

{q}

PM

p←

p←

q←

{p}

{q}

{p, q}

q← M0 Q/A

{p, q}

p?

{}

q?

????????????????????????

P has two stable models {p} and {q}. Thus, P is inconsistent (w.r.t. stable model semantics). i.e., the stable model semantics cannot capture the meaning of P . Slightly better than Prolog, but not good enough. Answer Set Programming

F. Gagnon 08

26 / 54

Example 2b P

p ← not q q ← not p

M

{}

{p}

{q}

PM

p←

p←

q←

{p}

{q}

{p, q}

q← M0 Q/A

{p, q}

p?

{}

q?

????????????????????????

P has two stable models {p} and {q}. Thus, P is inconsistent (w.r.t. stable model semantics). i.e., the stable model semantics cannot capture the meaning of P . Slightly better than Prolog, but not good enough. Answer Set Programming

F. Gagnon 08

26 / 54

Example 2b P

p ← not q q ← not p

M

{}

{p}

{q}

PM

p←

p←

q←

{p}

{q}

{p, q}

q← M0 Q/A

{p, q}

p?

{}

q?

????????????????????????

P has two stable models {p} and {q}. Thus, P is inconsistent (w.r.t. stable model semantics). i.e., the stable model semantics cannot capture the meaning of P . Slightly better than Prolog, but not good enough. Answer Set Programming

F. Gagnon 08

26 / 54

Example 2b P

p ← not q q ← not p

M

{}

{p}

{q}

PM

p←

p←

q←

{p}

{q}

{p, q}

q← M0 Q/A

{p, q}

p?

{}

q?

????????????????????????

• P has two stable models {p} and {q}. • Thus, P is inconsistent (w.r.t. stable model semantics). • i.e., the stable model semantics cannot capture the meaning of P . • Slightly better than Prolog, but not good enough. Answer Set Programming

F. Gagnon 08

26 / 54

Example 3b p(a) ←

p(a) ←

p(a) ←

p(a) ←

p(b) ←

p(b) ←

p(b) ←

p(b) ←

s(a) ←

s(a) ←

s(a) ←

s(a) ←

q1 ← s(X)

q2 ← not s(X)

q3 ← p(X) ∧ not s(X)

q4 ← not s(X) ∧ p(X)

{p(a), p(b), s(a), q1}

Unsafe !

{p(a), p(b), s(a), q3}

{p(a), p(b), s(a), q4}

q1?

q2?

q3?

q4?

yes

Unsafe

yes

yes (That’s better)

• A rule (4) is unsafe when a variable is used only in literals of B − (r) and H(r). • This avoids semantics problems with variable quantification.

Answer Set Programming

F. Gagnon 08

27 / 54

Stable Model Summary Descriptive

Reasoning

Negation

Negation

Prolog

Not really (CWA)

Weak (NAF)

No

No

HC + NAF

Stable Model

Not really (CWA)

Weak (NAF)

No

Yes

HC + NAF

Answer Set Programming

Disjunction

Declarative

Expressiveness

Semantics

F. Gagnon 08

28 / 54

Sometimes we need more • Describing negative knowledge • Reasoning with classical (strong) negation (¬): cross ← not train vs cross ← ¬ train • Disjunction: male(X) ∨ female(X) ← human(X)

Answer Set Programming

F. Gagnon 08

29 / 54

Outline ë Logic Programming ë Prolog ë Stable Model Semantics ë Answer Set Programming (ASP) - DLV 11/11/07 ë Using ASP for problem solving

Answer Set Programming

F. Gagnon 08

30 / 54

Answer Set Semantics for HC + CN

L ← L1 ∧ . . . ∧ Ln

(5)

H(r) = L and B(r) = {L1 , . . . , Ln } and Li are literals (Li = A or Li = ¬A) • The answer set of P is the set of literals that are true in P . • P has a unique answer set. • Every “atom” not in the answer set is unknown (OWA). • If both q and ¬q are in the answer set, then P is inconsistent. Answer Set semantics for P (similar to the fixpoint semantics of stable models): • A state S of P is a subset of the literals of P . • S is closed under P iff ∀r ∈ P, B(r) ⊆ S ⇒ H(r) ∈ S. • The answer set of P is the minimal (w.r.t. ⊆) state closed under P . Answer Set Programming

F. Gagnon 08

31 / 54

Example ¬p ←

q←

s ← ¬p

r←p

t←s∧q

u ← t ∧ ¬r

• {¬p, q, s, t} is the answer set. • ¬p and q belongs to every closed state. • ¬p forces s, to get closure. • s and q forces t, to get closure. • {¬p, q, s, t} is closed and is minimal.

Answer Set Programming

true

false

unknown

{q, s, t}

{p}

{r, u, . . .}

F. Gagnon 08

32 / 54

Answer Set Semantics for HC + CN + NAF

L ← L1 ∧ . . . ∧ Ln ∧ not Ln+1 ∧ not Lm

(6)

• An answer set is as before • P can now have multiple answer sets: – Brave interpretation: L is bravely true if true in one answer set. – Cautious interpretation: L is cautiously true if true in every answer set. Answer set semantics for P (similar to the stable model semantics): • A state S is an answer set of P if it is the unique answer set of P S . We can now decide where to use the CWA: • ¬p(X) ← dom(X) ∧ not p(X) Answer Set Programming

F. Gagnon 08

33 / 54

Example 2c p ← not q q ← not p S

{}

{p}

{q}

PS

p←

p←

q←

{p}

{q}

{p, q}

q← S0 Q/A

{p, q}

p?

{}

q?

Bravely true

• Now that’s better !

Answer Set Programming

F. Gagnon 08

34 / 54

Example r←p r←q p ← not q q ← not p Prolog

ASP {r, p}, {r, q}

Answer Set Programming

r?

r?

Out of Memory !!!

Cautiously true

F. Gagnon 08

35 / 54

Answer Set Semantics for HC + CN + NAF + DIS

L0 ∨ . . . ∨ Lk ← Lk+1 ∧ . . . ∧ Ln ∧ not Ln+1 ∧ not Lm

(7)

H(r) = {L0 , . . . , Lk }, B + (r) = {Lk+1 , . . . , Ln } and B − (r) = {Ln+1 , . . . , Lm } Answer set semantics for P : • S is an answer set of P iff S is an answer set for P S . • S is an answer set of P S if it is a minimal state closed under P S . • S is closed under P S iff ∀r ∈ P S , B(r) ⊆ S ⇒ H(r) ∩ S 6= ∅.

Answer Set Programming

F. Gagnon 08

36 / 54

Example - Diagnosis f lu ∨ migraine ← headache f lu ∨ measles ∨ chickenP ox ← f ever measles ∨ chickenP ox ∨ allergy ← redSpots migraine ← nausea allergy ∨ mumps ← swollenT hroat ¬chickenP ox ← adult headache ←

headache ←

f ever ←

nausea ←

f ever ←

f ever ←

redSpots ←

redSpots ← adult ←

{migraine}

{migraine}

{f lu}

Answer Set Programming

{f lu}

{f lu, allergy}

{f lu, allergy, ¬chickenP ox}

{measles}

{measles}

{measles, ¬chickenP ox}

{chickenP ox}

{chickenP ox}

F. Gagnon 08

37 / 54

Example - Diagnosis f lu ∨ migraine ← headache f lu ∨ measles ∨ chickenP ox ← f ever measles ∨ chickenP ox ∨ allergy ← redSpots migraine ← nausea allergy ∨ mumps ← swollenT hroat ¬chickenP ox ← adult headache ←

headache ←

f ever ←

nausea ←

f ever ←

f ever ←

redSpots ←

redSpots ← adult ←

{migraine}

{migraine}

{f lu}

Answer Set Programming

{f lu}

{f lu, allergy}

{f lu, allergy, ¬chickenP ox}

{measles}

{measles}

{measles, ¬chickenP ox}

{chickenP ox}

{chickenP ox}

F. Gagnon 08

37 / 54

Example - Diagnosis f lu ∨ migraine ← headache f lu ∨ measles ∨ chickenP ox ← f ever measles ∨ chickenP ox ∨ allergy ← redSpots migraine ← nausea allergy ∨ mumps ← swollenT hroat ¬chickenP ox ← adult headache ←

headache ←

f ever ←

nausea ←

f ever ←

f ever ←

redSpots ←

redSpots ← adult ←

{migraine}

{migraine}

{f lu}

Answer Set Programming

{f lu}

{f lu, allergy}

{f lu, allergy, ¬chickenP ox}

{measles}

{measles}

{measles, ¬chickenP ox}

{chickenP ox}

{chickenP ox}

F. Gagnon 08

37 / 54

Example - Diagnosis f lu ∨ migraine ← headache f lu ∨ measles ∨ chickenP ox ← f ever measles ∨ chickenP ox ∨ allergy ← redSpots migraine ← nausea allergy ∨ mumps ← swollenT hroat ¬chickenP ox ← adult headache ←

headache ←

f ever ←

nausea ←

f ever ←

f ever ←

redSpots ←

redSpots ← adult ←

{migraine}

{migraine}

{f lu}

Answer Set Programming

{f lu}

{f lu, allergy}

{f lu, allergy, ¬chickenP ox}

{measles}

{measles}

{measles, ¬chickenP ox}

{chickenP ox}

{chickenP ox}

F. Gagnon 08

37 / 54

Example - Diagnosis f lu ∨ migraine ← headache f lu ∨ measles ∨ chickenP ox ← f ever measles ∨ chickenP ox ∨ allergy ← redSpots migraine ← nausea allergy ∨ mumps ← swollenT hroat ¬chickenP ox ← adult headache ←

headache ←

f ever ←

nausea ←

f ever ←

f ever ←

redSpots ←

redSpots ← adult ←

{migraine}

{migraine}

{f lu}

Answer Set Programming

{f lu}

{f lu, allergy}

{f lu, allergy, ¬chickenP ox}

{measles}

{measles}

{measles, ¬chickenP ox}

{chickenP ox}

{chickenP ox}

F. Gagnon 08

37 / 54

Example - Diagnosis f lu ∨ migraine ← headache f lu ∨ measles ∨ chickenP ox ← f ever measles ∨ chickenP ox ∨ allergy ← redSpots migraine ← nausea allergy ∨ mumps ← swollenT hroat ¬chickenP ox ← adult headache ←

headache ←

f ever ←

nausea ←

f ever ←

f ever ←

redSpots ←

redSpots ← adult ←

{migraine}

{migraine}

{f lu}

Answer Set Programming

{f lu}

{f lu, allergy}

{f lu, allergy, ¬chickenP ox}

{measles}

{measles}

{measles, ¬chickenP ox}

{chickenP ox}

{chickenP ox}

F. Gagnon 08

37 / 54

Answer Set Semantics with Constraints

← Lk+1 ∧ . . . ∧ Ln ∧ not Ln+1 ∧ not Lm

(8)

H(c) = {}, B + (c) = {Lk+1 , . . . , Ln } and B − (c) = {Ln+1 , . . . , Lm } Intuitively: • The right side of a constraint can never be true in an answer set. Formally: • For all answer set S and for all constraint c – ∃b+ ∈ B + (c) s.t. b+ 6∈ S or – ∃b− ∈ B − (c) s.t. b− ∈ S Constraints do not alter answer sets, they invalidate answer sets. Answer Set Programming

F. Gagnon 08

38 / 54

Example r←p

r←p

r←p

r←q

r←q

r←q

p ← not q

p ← not q

p ← not q

q ← not p

q ← not p

q ← not p

←r∧p

¬p ← r

{r, p}

{r, p, ¬q}

{r, p}, {r, q}

Answer Set Programming

F. Gagnon 08

39 / 54

Example r←p

r←p

r←p

r←q

r←q

r←q

p ← not q

p ← not q

p ← not q

q ← not p

q ← not p

q ← not p

←r∧p

¬p ← r

{r, q}

{r, q, ¬p}

{r, p}, {r, q}

Answer Set Programming

F. Gagnon 08

39 / 54

Example r←p

r←p

r←p

r←q

r←q

r←q

p ← not q

p ← not q

p ← not q

q ← not p

q ← not p

q ← not p

←r∧p

¬p ← r

{r, q}

{r, q, ¬p}

{r, p}, {r, q}

Answer Set Programming

F. Gagnon 08

39 / 54

Answer Set Summary Descriptive

Reasoning

Disjunction

Declarative

Expressiveness

Negation

Negation

Prolog

Not really (CWA)

Weak (NAF)

No

No

HC + NAF

Stable Model

Not really (CWA)

Weak (NAF)

No

Yes

HC + NAF

Answer Set

Yes (OWA)

Weak (NAF)

Yes

Yes

HC + NAF

Semantics

Strong (CN)

CN + DIS

All this expressiveness has a cost: Computational complexity [2] • Checking if S is an answer set is co-NP-complete • Checking if L is bravely true is ΣP 2 -complete • Checking if L is cautiously true is ΠP 2 -complete Answer Set Programming

F. Gagnon 08

40 / 54

Outline ë Logic Programming ë Prolog ë Stable Model Semantics ë Answer Set Programming (ASP) ë Using ASP for problem solving

Answer Set Programming

F. Gagnon 08

41 / 54

Problem Solving with ASP

Problem solving: • Describe the problem as an extended disjunctive logic program. • Describe an instance of the problem as a set of facts. • Each answer set is a solution to the given instance. • This is not just query answering... this is problem solving.

Answer Set Programming

F. Gagnon 08

42 / 54

Example - Graph 3 Coloring Problem:

a

• Assign 1 of 3 colors to each node.

d

• Two adjacent nodes cannot have the same color.

e

b

c Graph encoding in ASP (facts):

Answer Set Programming

edge(a, b) ←

edge(a, d) ←

edge(a, e) ←

edge(b, c) ←

edge(b, e) ←

edge(c, d) ←

edge(c, e) ←

edge(d, e) ←

F. Gagnon 08

43 / 54

Example - Graph 3 Coloring Problem:

a

• Assign 1 of 3 colors to each node.

d

• Two adjacent nodes cannot have the same color.

e

b

c Graph encoding in ASP (facts):

Answer Set Programming

edge(a, b) ←

edge(a, d) ←

edge(a, e) ←

edge(b, c) ←

edge(b, e) ←

edge(c, d) ←

edge(c, e) ←

edge(d, e) ←

F. Gagnon 08

43 / 54

Example - Graph 3 Coloring ASP 3-coloring program: %Extract nodes from list of edges node(X) ← edge(X,) node(Y) ← edge(, Y) %Every node must have one of 3 colors color(X, red) ∨ color(X, blue) ∨ color(X, green) ← node(X) %It is not possible for two adjacent nodes to have the same color ← edge(X, Y) ∧ color(X, C) ∧ color(Y, C)

No need to specify that a node cannot have two colors • ← color(X, red) ∧ color(X, blue) • ← color(X, red) ∧ color(X, green) • ... Answer Set Programming

F. Gagnon 08

44 / 54

Example - Graph 3 Coloring 6 answer sets: {color(a, green), color(b, red), color(c, green), color(d, red), color(e, blue)} {color(a, red), color(b, green), color(c, red), color(d, green), color(e, blue)} {color(a, blue), color(b, red), color(c, blue), color(d, red), color(e, green)} {color(a, red), color(b, blue), color(c, red), color(d, blue), color(e, green)} {color(a,blue), color(b,green), color(c,blue), color(d,green), color(e,red)} {color(a, green), color(b, blue), color(c, green), color(d, blue), color(e, red)}

Answer Set Programming

F. Gagnon 08

45 / 54

Example - n Queens Problem [1] Problem: • Place n queens on a n × n chess board. • No queens must be attacked by another. queen(1) ← row(1) ← col(1) ←

...

queen(n) ← row(n) ← col(n) ←

% Each queen is either at or not at any given position at(Q, R, C) ∨ ¬at(Q, R, C) ← queen(Q) ∧ row(R) ∧ col(C) % Each queen is at at most one position ← queen(Q) ∧ row(R) ∧ col(C) ∧ row(R2) ∧ col(C2) ∧ at(Q, R, C) ∧ at(Q, R2, C2) ∧ C 6= C2 % Each queen is at at most one position ← queen(Q) ∧ row(R) ∧ col(C) ∧ row(R2) ∧ col(C2) ∧ at(Q, R, C) ∧ at(Q, R2, C2) ∧ R 6= R2 % Each queen is at at least one position placed(Q) ← queen(Q) ∧ row(R) ∧ col(C) ∧ at(Q, R, C) ← queen(Q) ∧ not placed(Q)

Answer Set Programming

F. Gagnon 08

46 / 54

Example - n Queens Problem [1] (cont’d)

% No two distinct queens on the same row ← queen(Q) ∧ queen(Q2) ∧ row(R) ∧ col(C) ∧ col(C2) ∧ at(Q, R, C) ∧ at(Q2, R, C2) ∧ Q 6= Q2 % No two distinct queens on the same column ← queen(Q) ∧ queen(Q2) ∧ row(R) ∧ row(R2) ∧ col(C) ∧ at(Q, R, C) ∧ at(Q2, R2, C) ∧ Q 6= Q2 % No two distinct queens on the same diagonal ← queen(Q) ∧ queen(Q2) ∧ row(R) ∧ row(R2) ∧ col(C) ∧ col(C2) ∧ at(Q, R, C) ∧ at(Q2, R2, C2)∧ Q 6= Q2 ∧ diag(R, C, R2, C2) % What is a diagonal diag(R, C, R2, C2) ← row(R) ∧ row(R2) ∧ col(C) ∧ col(C2) ∧ +(R, Z, R2) ∧ +(C, Z, C2) diag(R, C, R2, C2) ← row(R) ∧ row(R2) ∧ col(C) ∧ col(C2) ∧ +(R2, Z, R) ∧ +(C, Z, C2) diag(R, C, R2, C2) ← row(R) ∧ row(R2) ∧ col(C) ∧ col(C2) ∧ +(R, Z, R2) ∧ +(C2, Z, C) diag(R, C, R2, C2) ← row(R) ∧ row(R2) ∧ col(C) ∧ col(C2) ∧ +(R2, Z, R) ∧ +(C2, Z, C)

Answer Set Programming

F. Gagnon 08

47 / 54

Example - n Queens Problem [1]

• For n = 4, our program has 48 answer sets. • But there are only 2 solutions for that instance. • Adding “← queen(Q) ∧ row(R) ∧ col(C) ∧ at(Q, R, C) ∧ Q 6= R” will fix it. Queen i is on row i. • Now we have only 2 answer sets {at(1, 1, 3), at(2, 2, 1), at(3, 3, 4), at(4, 4, 2)} {at(1, 1, 2), at(2, 2, 4), at(3, 3, 1), at(4, 4, 3)}

Answer Set Programming

F. Gagnon 08

48 / 54

Example - Planning • We have a spring suitcase with two latches. • The suitcase opens automatically when the two latches are up. • We can toggle the latches. • Initially, the suitcase is closed and both latches are down. • The goal is to open the suitcase.

Answer Set Programming

F. Gagnon 08

49 / 54

Example - Planning % Effect of toggling up(l1, T 1) ← next(T, T 1) ∧ execute(toggleL1, T) ∧ ¬up(l1, T) ¬up(l1, T 1) ← next(T, T 1) ∧ execute(toggleL1, T) ∧ up(l1, T) . . . same for toggleL2 % suitcase automatically opens if both of the latches are open open(T) ← up(l1, T) ∧ up(l2, T) % inertia up(L, T 1) ← latch(L) ∧ next(T, T 1) ∧ up(L, T) ∧ not ¬up(L, T 1) ¬up(L, T 1) ← latch(L) ∧ next(T, T 1) ∧ ¬up(L, T) ∧ not up(L, T 1) . . . same for open % execute actions only when needed ⇐ execute(,) % cannot execute two actions at the same time ← execute(A, T) ∧ execute(A2, T), A 6= A2 % cannot procrastinate ← not execute(toggleL1, T) ∧ not execute(toggleL2, T) ∧ time(T) ∧ T < T 1 ∧ execute(A, T 1)

Answer Set Programming

F. Gagnon 08

50 / 54

Example - Planning (cont’d) % actions are exogenous execute(A, T) ∨ ¬execute(A, T) ← time(T) ∧ action(A) % initial conditions are exogenous up(L, 0) ∨ ¬up(L, 0) ← latch(L) open(0) ∨ ¬open(0) ← % Time predicates time(T) ← #int(T) lasttime(#maxint) next(X, Y) ← #succ(X, Y)

Answer Set Programming

F. Gagnon 08

51 / 54

Example - Planning Query: • ¬up(l1, 0) ∧ ¬up(l2, 0) ∧ ¬open(0) ∧ open(#maxint)?

Answer Sets: • {execute(toggleL1, 0), execute(toggleL2, 1)} • {execute(toggleL2, 0), execute(toggleL1, 1)}

Answer Set Programming

F. Gagnon 08

52 / 54

Questions

 Answer Set Programming

F. Gagnon 08

53 / 54

References [1] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, 2003. [2] Michael Gelfond and Nicola Leone. Logic Programming and Knowledge Representation — The A-Prolog Perspective. Artificial Intelligence, 138(1– 2):3–38, 2002. [3] Michael Gelfond and Vladimir Lifschtiz. The Stable Model Semantics For Logic Programming. Proceedings of the 5th International Conference on Logic Programming, pages 1070–1080, 1988.

Answer Set Programming

F. Gagnon 08

54 / 54

[image: Answer Set Programming modulo Acyclicity â‹†]
Answer Set Programming modulo Acyclicity â‹†

[image: Answer Set Programming modulo Acyclicity â‹†]
Answer Set Programming modulo Acyclicity â‹†

[image: Using Answer Set Programming and Lambda Calculus to ...]
Using Answer Set Programming and Lambda Calculus to ...

[image: Using Answer Set Programming and Lambda Calculus]
Using Answer Set Programming and Lambda Calculus

[image: Shift Design with Answer Set Programming - TU Wien: DBAI]
Shift Design with Answer Set Programming - TU Wien: DBAI

[image: Shift Design with Answer Set Programming - TU Wien: DBAI]
Shift Design with Answer Set Programming - TU Wien: DBAI

[image: Constraint Answer Set Programming Based on HEX-Programsâ‹†]
Constraint Answer Set Programming Based on HEX-Programsâ‹†

[image: Constraint Answer Set Programming Based on HEX ...]
Constraint Answer Set Programming Based on HEX ...

[image: Constraint Answer Set Programming Based on HEX-Programsâ‹†]
Constraint Answer Set Programming Based on HEX-Programsâ‹†

[image: Introduction to Java Programming]
Introduction to Java Programming

[image: Introduction to Java Programming]
Introduction to Java Programming

Introduction to Answer Set Programming

Carleton University. Answer Set Programming. F. Gagnon 08 ... In C++ and Java, both logic and control have to be specified: â€“ Logic is usually the hard (and ...

 Download PDF

 403KB Sizes
 4 Downloads
 179 Views

 Report

Recommend Documents

[image: alt]

Answer Set Programming modulo Acyclicity â‹†

set of rules; P is a choice program if it consists of normal and choice rules only, ... rules iff head(R) = I and there is some ordering r1,...,rn of R such that, for each.

[image: alt]

Answer Set Programming modulo Acyclicity â‹†

variants can be combined with UFS, and we refer to such a combination by ... helpful for the Route class, although no combination catches up to pure UFS.

[image: alt]

Using Answer Set Programming and Lambda Calculus to ...

S satisfies a program P if it satisfies every rule in P. S is an answer set of P if it is a minimal set of literals satisfying all the rules in PS where PS is obtained.

[image: alt]

Using Answer Set Programming and Lambda Calculus

Using Answer Set Programming and Lambda Calculus to Characterize ... Programming (ASP). is either a variable v in V; or an abstraction (Î»v.e) where v.

[image: alt]

Shift Design with Answer Set Programming - TU Wien: DBAI

ASP encoding of the shift design problem, which, to the best of our knowledge, has not modeling language for course timetabling. Theory ... IOS Press. (2009). 11. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.

[image: alt]

Shift Design with Answer Set Programming - TU Wien: DBAI

From the conceptual point of view, the main difference is that the en- 360 207.1. 360 213.3. 7. 720. 62880. > 1h. 43200. > 1h. 7500. > 1h. 8460. > 1h. 720.

[image: alt]

Constraint Answer Set Programming Based on HEX-Programsâ‹†

1 Department of Mathematics and Computer Science, Universit`a della Calabria. Via P. Bucci Cubo 31B ... Hence, a direct support of constraints within ASP is useful for avoiding this New Generation Computing 9(3â€“4), 365â€“386 (1991). 12.

[image: alt]

Constraint Answer Set Programming Based on HEX ...

Hence, a direct support of constraints within ASP is useful for avoiding this atom &g [y](x) wrt. an assignment A is given by a 1+k+l-ary Boolean oracle function f&g that is defined such as global constraints, are up to future work. Moreo

[image: alt]

Constraint Answer Set Programming Based on HEX-Programsâ‹†

IOS Press (2009). 3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Comm. ACM. 54(12), 92â€“103 (2011). 4. Drescher, C., Walsh, T.: ...

[image: alt]

Introduction to Java Programming

LiveLab is a programming course assessment and management system. Students can B MySQL Tutorial. C Oracle Tutorial. D Microsoft Access Tutorial. E Introduction to Database Systems. F Relational Database Concept. G Database Design In 1954,

[image: alt]

Introduction to Java Programming

problem-driven complete revision new problems early console input hand trace box multidimensional arrays. Sudoku problem simplified basic GUI earlier T Networking Using Datagram Protocol. U Creating Internal the outset, it is helpful to re

×
Report Introduction to Answer Set Programming

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

