

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Investigating Broad Phase Collision Detection Methods for 3D Scenarios Using Force Feedback Devices Rafael de Sousa Rocha Universidade de Fortaleza (UNIFOR), Informática, Fortaleza-CE, Brazil, 60811-905 and Maria Andréia F. Rodrigues Universidade de Fortaleza (UNIFOR), Mestrado em Informática Aplicada (MIA), Fortaleza-CE, Brazil, 60811-905

Figure 1. Animation sequence of the crowded interactive environment developed using force feedback devices (the real joystick is exhibited on the foreground and the virtual one on the background).

Abstract Highly interactive environments composed of a large number of objects (such as those shown in Figure 1) need an efficient mechanism for fast collision detection. Recently, sophisticated devices have been used to interact with graphical elements in dynamic environments. Besides providing realism during interaction, collision detection makes the surrounding objects of a scene feel solid. This work presents a performance analysis of four broad phase collision detection algorithms for highly interactive environments. Substantial experiments were conducted and the performance of the broad phase detection methods was evaluated in terms of output quality and running time, by applying a usability criteria. The results show that interactive frame rates for environments composed of up to 1000 moving objects can be successfully achieved with a good level of user satisfaction using the Sweep & Prune algorithm. Keywords: Collision Detection, Broad Phase, 3D Scenarios, Force Feedback Devices.

1. INTRODUCTION

In the last years, new computer technologies have been developed to achieve realism and enhance the level of interactivity supported by virtual environments [5]. A recent example is the use of force feedback devices, which offer the user the sense of being immersed into the 3D world. Beyond having the abilities of a standard input device, force feedback devices are also output devices. This characteristic enables them to track a user’s physical manipulation

(input) and provide realistic touch sensations coordinated with on-screen events (output). In addition, another important issue related to both realism and level of interactivity of a virtual environment is the method used for collision handling between 3D objects [15]. Collision methods provide more realism to the application during the interaction of the user, making the surrounding objects of a scene feel solid. Moreover, when timing is an issue (e.g., real-time simulations, games) fast collision detection is fundamental. Ideally, when a collision is detected, the physical properties of the objects can be used to properly design an effective response to the user, through force feedback devices. Basically, a collision system is handled in two modules: collision detection and response. The collision detection module aims at reporting collisions, and delivering specific information (that depends on the algorithms used and profile of the application) to the collision response module, so that the latter can compute the responses accordingly. For example, in a game, no additional geometric data related to the status of the colliding objects are usually needed, however, for physically based simulations it is necessary to precisely calculate the time of collision as well as the contact normal and contact point vectors [3]. Collision detection algorithms can be further classified into the following categories: continuous and discrete. Continuous algorithms utilize time-parameterized equations to compute the first time of contact between colliding objects, as well as their contact state [19]. By contrast, discrete algorithms sample the object’s trajectory and report interpenetrations. Despite the former being more accurate, the latter fits better in interactive environments with high scalability, such as those composed of a large number of objects. In order to speed up the collision detection process, a traditional approach is to separate the problem into two distinct phases: broad and narrow [13]. The broad phase aims to efficiently cull out pairs of objects that cannot possibly be interacting, discarding as many pairs of objects as possible that do not collide. The collision process is refined in the narrow phase, where the remaining pairs of objects (those that were not discarded in the broad phase) are analyzed more accurately to validate the occurrence of a collision. At this phase, the objects’ geometry [14] or an approximation of it [15] may be used. Pairs of objects are then validated, issued as colliding objects, and passed to the collision response module. This work presents an empirical, comparative study to evaluate the performance of broad phase collision detection strategies in a highly interactive 3D environment, in which the user interacts with the objects via a joystick with force feedback. We have analyzed, measured, and compared the performance of our system by using the Brute Force, Grid, Octree, and Sweep & Prune algorithms. We carried out extensive experiments with up to 4000 moving objects. The results demonstrate the viability to use the Sweep & Prune algorithm in interactive virtual environments composed of up to 1000 moving objects, including rendering. Specifically, in our experiments, we were able to achieve at least a rate of 20 frames per second (fps) for a number of moving objects spanning from 100 to 600, and 10fps for objects spanning from 600 to 1000. The rest of the paper is organized as follows. In Section 2 we provide an overview of related work. In Section 3, four traditional broad phase collision detection methods are presented, as well as their main advantages and limitations. Section 4 presents the scenarios we designed. The experiments we have carried out using the interactive environment we implemented and the obtained results are discussed in Section 5. The algorithms were evaluated in terms of output quality of the running time, using a subjective analysis and usability criteria which is based on the obtained frame rates and levels of user satisfaction in Section 6. A recommendation for which collision detection algorithm should be used for highly interactive environments is made based on the trade-off between these criteria. Finally, conclusions and future work are summarized in Section 7.

2. RELATED WORK Two-phase collision detection algorithms [13] are used in some of the current collision detection libraries [3, 4]. Before actually starting the narrow phase, bounding volumes can be used to surround the object and quickly reject pairs of objects that do not collide. The most popular bounding volumes used are axis aligned bounding boxes (AABB) [4], oriented bounding boxes (OBB) [7], spheres [22], and politopes [9]. Although bounding volumes are very useful, testing all the bounding volumes is O(n²), where n is the number of objects. Decreasing the complexity of this problem is the broad phase’s role. An important aspect of the broad phase is the concept of spatial coherence (objects that are located far away from each other do not need to be tested for collision) [6]. Spatial data structures can be used to decompose the virtual environment into cells (usually voxels) to take advantage of spatial coherence. Regular grids [10], octrees [2], R-trees [8] and BSP-trees [11] are some examples of spatial data structures used with this purpose. In particular, the Sweep & Prune algorithm [4] presents a different approach for the broad phase. Instead of partitioning the environment into regions, it keeps track of the objects’ bounding boxes’ intervals in three ordered lists (one for each axis). Luque et al. utilize a self-adjusting BSP-tree for the broad phase and compare it with other strategies in different scenarios with up to 4250 objects. The authors claim that the best performance was achieved by their proposed algorithm which was equivalent to the one achieved by the quadtree algorithm. Storey et al. describes a routine (namely Expanding Sphere algorithm) to detect collisions in distributed virtual environments with the number of objects ranging from 1000 to 4000. The authors also show two extensions of their proposed algorithm. The one that exploits coherence based on the Sweep & Prune algorithm obtained the best results. Thousands of moving objects were

2

used in the experimentations conducted by Luque et al. and Storey et al. However, the work proposed by Luque et al. does not consider the level of system interactivity and the work of Storey et al. lacks comparison of their algorithm performance with others found in the literature. Although many approaches have been proposed for broad phase collision detection, only a few papers have been published on moving a large number of objects, taking the level of interactivity achieved during the simulations into account. By contrast, in this work, we compare four traditional algorithms (Brute Force, Grid, Octree, and Sweep & Prune) in a highly interactive 3D environment composed of a considerable number of moving objects, where the user can navigate using a force feedback joystick.

3. BROAD PHASE COLLISION DETECTION METHODS

We initially investigated the Brute Force algorithm for the broad phase in which we tested all the objects’ bounding volumes for intersection (Algorithm 1). This approach is O(n²) and was only used for purpose of comparison with other approaches we have implemented. The method intersect (line 5, shown in Algorithm 1) retrieves the bounding volumes of its two parameters and returns a boolean value of the bounding intersection. Algorithm 1 - Brute Force Algorithm: receives 3D objects as input and outputs a list of broad phase colliding pairs 1: PairList collideBruteForce(Object3D[] objects) { 2:

PairList pairs = new PairList();

3:

for (int a = 0; a < objects.length - 1; a++)

4: 5: 6:

for (int b = a + 1; b < objects.length; b++) if (intersect(objects[a], objects[b])) pairs.add(new Pair(objects[a], objects[b]));

7: return pairs; }

3.1 Grid and Octree Algorithms A simple way to enhance the Algorithm 1 is to partition the virtual environment space into cells and, for each cell, execute the Brute Force algorithm. We have implemented an algorithm that uses regular 3D grids to partition the space into voxels. Each voxel contains the objects within its region and uses the Brute Force algorithm to compute a list of pairs of objects whose bounding volumes intersect. The object is added to a voxel only if its bounding volume intersects this voxel, which also corresponds to a bounding volume (precisely, an AABB). The center of the objects’ bounding volumes may indicate an initial voxel where the object is located. After that, a flooding routine can be used to find out the remaining cells. Whenever the object’s position is updated, the voxels where the object is located are notified and the process of finding out the new voxels where the object is restarts. The main advantage of using grids is that these data structures can be used statically. It means that the grid granularity does not have to be always updated, and the objects can be updated in the grid very quickly. In fact, the granularity may never change and can be computed in a pre-processing time. However, grids have still serious limitations. For example, it is very difficult to estimate the best grid granularity that works for different scenarios. Moreover, sometimes objects may belong to more than one cell (requiring an extra use of memory) or are not able to adapt themselves to the distribution of the objects in a scene [17, 18]. To build the grid, we first create an AABB that surrounds all the space considered for collision. Then, the next step is to fill this AABB with smaller, non-overlapping AABBs, depending on the grid granularity, so that they cover all the space. Each of these AABBs corresponds to the voxels of the grid. Because each voxel is an AABB, finding out the objects’ location inside the grid is straightforward, by intersecting their bounding volume with the correspondent voxel. Algorithm 2 shows how we compute object pairs for the broad phase utilizing the Grid algorithm. Once all the objects are organized into the voxels, we need to loop through all the voxels and test the objects in the voxel’s list for intersection. In line 4, we invoke Algorithm 1 for each voxel. Because the voxels are aware of their objects, we do not have to pass them as an input parameter. The lists of object pairs of each voxel are then added to the variable pairs in line 5, which is returned in line 6. In our current implementation, we do not loop through all the voxels. Instead, when we update the objects in the grid, we keep track of those cells that had updates. Then, we pass them to the collision detection method. Octrees are built by subdividing the space of the environment into eight octants recursively, and retaining only those octants that contain, at least, some part of the objects [21]. The grid may be extended to build this structure as the

3

octree’s cells are partitioned in a way that it forms a grid with granularity 2x2x2 (8 cells). With this in mind, we extended our grid implementation to support a hierarchical data structure, partitioning the cells in a new grid when required, to implement an octree structure. Differently from the grids, octrees have the property of adapting to the distribution of the objects. However, the cost for this is very high because the structure needs to be updated constantly. In our implementation, the octree is updated at each frame, what causes a significant overhead in its structure. Another problem is that the octree requires large amount of memory due to the number of cells and because objects may be located in more than one cell. Algorithm 2 - Grid Algorithm: loops through all updated voxels and outputs a list of broad phase colliding pairs 1: PairList collideGrid(Voxel[] voxels) { 2:

PairList pairs = new PairList();

3:

for (int a = 0; a < voxels.length; a++) {

4:

PairList p = voxels[a].collideBruteForce();

5:

pairs.addAll(p); }

6:

return pairs; }

The process of building the octree structure is as follows. Firstly, an AABB that surrounds the space considered for collision is created and becomes the root of the tree. After this, all the objects inside the root node are inserted in the node’s object list, and the node is partitioned in a 2x2x2 grid. Each voxel of the grid becomes a new octree node, and this process is repeated using the objects of its parent’s list, until a target depth (the distance from the root) is reached. In Algorithm 3, after building the octree structure, we start processing the root node by traversing the tree down the leaves. Whenever a leaf node is reached (line 3), Algorithm 1 is invoked to compute the object pairs among the objects, within the leaf. Otherwise, the algorithm recurs on the current node’s children as shown in line 7. In the end, the variable pairs stores the pair lists of all the leaf nodes, which is returned. Algorithm 3 - Octree Algorithm: traverses the tree and outputs a list of broad phase colliding pairs 1: PairList collideOctree(OctreeNode node) { 2:

PairList pairs = new PairList();

3:

if (node.isLeaf())

4: 5: 6:

pairs.addAll(node.collideBruteForce()); else for (int a = 0; a < node.numChildren(); a++) {

7:

PairList p = collideOctree(node.getChild(a));

8:

pairs.addAll(p); }

9: return pairs; }

3.2 Sweep & Prune Algorithm An AABB can be represented by its three intervals (one for each axis). Further, two AABBs intersect if, and only if, all their three intervals intersect. The Sweep & Prune algorithm keeps all the AABBs’ intervals in three separated sorted lists (one for each axis) and also takes advantage of frame coherence. It means that the lists from the previous frame are nearly sorted in the current frame, because the objects do not move too far between frames. An insertion sort algorithm is then used to keep the lists sorted in linear time [3]. Analyzing the adjacent intervals in the lists can consequently derive all the colliding object pairs for the broad phase. In particular, our implementation is based on the algorithm shown in [5]. The advantages of this method are that it does not need to tune any parameters, such as the grid granularity or the octree depth, for example. It updates its structure (specifically the three lists) very fast and requires less intersection tests than the methods discussed previously in this work. Its main limitation is the occurrence of some special object distributions in the scene, such as a line arrangement of objects. In this case, there is a likelihood of having many intersection tests, where most of the intervals in one of the lists do intersect.

4

4. SCENARIOS

The scenarios we have designed and implemented for our experiments are composed of a large number of objects in which an avatar can interact with the virtual scenario, through a real force feedback joystick (Figure 1) or via a virtual one (Figure 2). We populate our scenarios with two types of 3D objects: boxes (simple geometry) and bunnies (complex geometry). While the box is composed of 12 triangles, the bunny is composed of 1500 triangles. These objects move with constant velocity in random directions inside a room. In particular, they are not allowed to rotate, so their bounding volumes do not need to be recalculated. The dimensions of their bounding boxes are approximately 1x1x1 and of the room is 100x25x100. Since we are dealing particularly with the broad phase of the collision detection, the objects’ geometry has no influence in the algorithm performance, although it still may slow down the scene rendering process. Whenever two objects collide, the components of their velocities are negated based on a heuristic response algorithm. In our experiments, we varied the number of objects (ranging from 100 to 4000) and their type of possible movements (in the plane XZ and space XYZ). For each simulation, the application starts timing the processes of the algorithm (more specifically, the structure updating and the broad phase collision detection), during 500 frames. We then use these times to calculate the broad phase frame rate (the total number of rendered frames divided by the total time spent on collision detection). The virtual components of the environment and all the collision methods were implemented with the graphics package Java3D [20], and the simulations were gathered on a 3.06 GHz PC with 768 Gbytes RAM.

Figure 2. The scenario implemented for the experiments. On the left, is shown the avatar circumscribed by a circle, and on the right is shown the virtual joystick.

5. EXPERIMENTS AND RESULTS In our first experiment we evaluate the Grid algorithm behaviour. We are particularly interested in experimentally finding out the most appropriate grid granularity, capable to offer a fast and scalable solution for our simulations. However, the choice of the most suitable grid granularity for a given 3D scene depends on the number of objects and how they are distributed in the virtual environment. For example, grids with many cells spend most of the time updating the structure as the objects move. By contrast, grids with few cells do not take much advantage of spatial coherence. Consequently, the algorithm may perform poorly (e.g., in cases when only one cell is used, the performance of the grid method is not better than the one obtained by the Brute Force routine). Therefore, we must find a balance between the number of cells and the number of objects used to undergo our computer experiments. In scenarios with a minimum number of 100 and a maximum of 1000 objects, we demonstrate that a grid with many cells is more suitable for culling out pairs of objects (grid 10x4x10 in Figure 3). However, updating the grid structure may be compromised when an excessive number of cells is used (grid 15x5x15 in Figure 3). We compare the performance of three different grid granularities (5x2x5, 10x4x10, and 15x5x15), for moving objects in XYZ. We show in the diagram of Figure 3 that the best granularity for our scenario is 10x4x10. We can easily figure out that the Grid algorithm that partition the virtual environment into 400 cells has always the best frame rate for a number of objects varying from 100 to 1000. Similar results were obtained in XZ, where the 10x1x10 achieved the best performance. In the second experiment, we implemented the Octree algorithm by extending the Grid algorithm. When dealing with a large number of moving objects, some of them may enter an empty node of the data-structure. Therefore, in our implementation, the octree should be rebuilt at every frame. This causes a large amount of overhead in the 5

algorithm. To circumvent this problem, we need to find a way to search for a very fast and scalable octree depth, since it corresponds to a key element for reaching an interactive frame rate during the collision process. The octree depth depends heavily on how the objects are distributed and the number of moving objects in the scene. In Figure 4, we compare the performance of three octree depths (3, 4, and 5). For moving up to 600 objects in the space XYZ, we show that the octree with depth 3 is the most indicated for our simulations, whereas for moving more than 600 objects, the octree with depth 4 is more appropriate. A similar behaviour can be identified for moving objects in the plane XZ. However, for moving more than 300 objects simultaneously, the octree with depth 4 presents the best performance. Grid Frame Rate 250

Frame Rate

200 150

Grid 5x2x5 Grid 10x4x10

100

Grid 15x5x15

50 0 100

250

400

550

700

850

1000

Number of Objects

Figure 3. Frame rate for the broad phase using grids with different granularities. Octree Frame Rate 90 80

Frame Rate

70 60

Octree depth 3

50

Octree depth 4

40

Octree depth 5

30 20 10 0 100

250

400

550

700

850

1000

Number of Objects

Figure 4. Frame rate for the broad phase using octrees with different depths. For a scenario with moving objects that range from 100 to 500, Figure 5 shows the Grid and the Octree algorithms that present the best performance in our simulations. The Brute Force algorithm is also included in this figure for comparison reasons. The experimental evaluation demonstrates that the Grid algorithm has superior performance than the Octree algorithm. This happens because the octrees have to be built dynamically, while the grids can be built in a pre-processing time and, therefore, do not change its data-structure during the simulations. In contrast, the Grid algorithm has the fastest decay curve. This means that its performance gets worse over time, faster than the performance achieved by the Octree algorithm. In Figure 6, we compare the frame rates obtained with the Grid, Octree and Sweep & Prune algorithms during the broad phase. Due to the main advantages of the Sweep & Prune algorithm (already mentioned in Section 3.2), this method achieves high frame rates, accelerating the broad phase. For these reasons, in comparison with the Grid and Octree approaches, the Sweep & Prune algorithm has not much overhead, making it the fastest and most scalable 6

algorithm we tested for our scenarios. Despite of this, its behaviour presents some instability, shown in the diagram of Figure 6. Broad Phase Frame Rate (1) 250

Frame Rate

200

150

Brute Force Octree depth 3 Grid 10x4x10

100

50

0 100

150

200

250

300

350

400

450

500

Num ber of objects

Figure 5. Frame rate for the broad phase using the Brute Force, Octree and Grid algorithms. Broad Phase Frame Rate (2) 900 800 700 Frame Rate

600 Octree depth 3

500

Grid 10x4x10

400

Sw eep and Prune

300 200 100 0 100

200

300

400

500

600

700

800

900

1000

Num ber of Objects

Figure 6. Frame rate for the broad phase using the Octree, Grid and Sweep & Prune algorithms. When dealing with broad phase collision detection, there are some situations that should be avoided. For example, if the grid is used with many large cells, relative to the objects’ size, than it may happen that all the objects (or most of them) concentrate themselves in one of the cells. This situation decreases the algorithm’s performance (frame rate). We can avoid this by setting the grid granularity so that each cell has approximately the size of the objects. The same problem may occur with octrees that have large leaf nodes. One possible alternative solution is to set the depth of the octree such as its leaf nodes are roughly equivalent in size to the dimensions of the objects. Not differently, the Sweep & Prune algorithm have a similar limitation, particularly in situations when most of the objects’ bounding boxes intersect onto one axis (in this case all the objects should be tested for overlapping). Despite of this, the Sweep & Prune algorithm presents the best performance among the strategies for broad phase collision detection evaluated empirically in this work. In Figures 7.a and 7.b, we compare the time spent to update the data structures of the Grid and the Sweep & Prune algorithms, respectively, with the time needed to compute the pairs of objects (whose bounding boxes overlap during the broad phase). The diagrams of Figure 7 show that the time necessary to perform the simulations using the Sweep & Prune algorithm is considerable smaller than the one spent running the Grid algorithm (for example, for 1000 objects the grid spent 36.5s to detect collisions as the sweep and prune spent 9.2s). Note that the percentage (in relation to total broad phase time) of update time spent by the Grid algorithm is smaller than the percentage of update time

7

spent by the Sweep & Prune algorithm. This is observed in Figures 7.a and 7.b, where the percentage of update time for the former algorithm varies from approximately 53% to 62%, whereas the percentage of update time for the latter ranges approximately from 78% to 98%. Sweep and Prune Timings

20

20

16

16

12

Total Time

Total Time

Grid Timings

Updating Time Broad Phase Time

8 4

12

Updating Time Broad Phase Time

8 4

0

0 500

600

700

800

900

1000

500

600

Number of Objects

700

800

900

1000

Number of Objects

(a) (b) Figure 7. The time spent to update the data structures and compute the broad phase colliding pairs for the Grid (a), and the Sweep & Prune (b) algorithms. So far we have dealt with four broad phase collision approaches to represent the behaviour of moving objects in an interactive environment: the Brute Force, Grid, Octree, and Sweep & Prune algorithms. Ideally, the algorithm used in our virtual environment needs to be fast (obtaining high frame rates) and scalable (taking into account a large number of moving objects). Thus, the Brute Force, Grid, and Octree approaches prove themselves unsuitable as possible candidates for representing our interactive environment. Within the broad phase collision approaches investigated, we can clearly see in Figure 7 that the Sweep & Prune is our best candidate algorithm. Therefore, we basically focus our attention on the behaviour of the Sweep & Prune algorithm in a very crowded environment (with up to 4000 moving objects). By displaying the diagram (number of objects x frame rate), we observe that as the number of objects increases, the frame rate decreases. In Figure 8, we show that a highly interactive environment composed of approximately 2750 moving objects, with a frame rate higher than 10, can be developed in Java3D using the Sweep & Prune algorithm. Also, a frame rate of 54fps is the upper limit found in our experiments for approximately 1000 moving objects. Within the range of possible solutions, frame rate values from 54fps to 25fps are also found for a number of objects varying from 1000 to 1750. Sweep and Prune 60 50

Frame Rate

40 30

Sw eep and Prune

20 10 0 1000

2000

3000

4000

Num ber of Objects

Figure 8. Frame rate for the broad phase using the Sweep & Prune algorithm. Finally, we investigate the performance of the Sweep & Prune algorithm including rendering. Figure 9 shows the total frame rate of the animation (the total number of rendered frames divided by the total simulation time). Note that frame rates higher than 10fps are still achieved even when there are approximately 1000 moving objects in the

8

environment. The numerical instability of the curve may be caused by the rendering process, which depends on the number of polygons being actually rendered. Total Frame Rate

Frame Rate with Rendering

90 80 70 60 50

Sw eep and Prune

40 30 20 10 0 100

300

500

700

900

Num ber of Objects

Figure 9. Frame rate using the Sweep & Prune algorithm for moving objects (with rendering).

6. USABILITY ANALYSIS

Usability is still an important aspect to analyze the level of interactivity of virtual environments. According to ISO 9241-11, the dimensions of usability are: effectiveness, efficiency, and satisfaction. Effectiveness measures usability from the point of view of the output of the interaction. The first component of effectiveness, accuracy, refers to the quality of the output and the second, completeness, refers to the quantity of the output in relation to a specified target level. Efficiency relates effectiveness of interaction to resources expended. Satisfaction refers to the comfort and acceptability of using the system. An experimental evaluation of the Sweep & Prune versus the Grid algorithm, in the context of interacting with the 3D scenarios described in this work, demonstrates the superiority of the former for a number of objects up to 1000 (Figure 6). In addition, the quality of the output of the interaction (perceptions) is validated based on level of usability of the system implemented using the effectiveness (frame rate) and satisfaction (subjective user analysis) criteria [23]. Minimal frame rates that range from 6Hz to 20Hz are suggested as acceptable frame rates for interactive virtual environments [1, 12, 16], whereas values spanning from 60Hz to 75Hz are still presented in the literature as theoretical targets to be reached [24]. Table 1 shows the overall level of effectiveness and satisfaction obtained with the Sweep & Prune algorithm. The results indicate a high level of user satisfaction for scenarios with up to 300 objects and a very good satisfaction for scenarios with a number of objects ranging from 350 to 500. Most importantly, user satisfaction was good for scenarios with the number of objects spanning from 550 to 1000. Table 1 – The overall level of effectiveness and satisfaction obtained with the Sweep & Prune algorithm. Effectiveness / Frame Rate (fps)

Level of Satisfaction / Performance

< 10

low

≥ 10 and ≤ 25

good

≥ 26 and ≤ 40

very good

> 40

high

7. CONCLUSIONS AND FUTURE WORK This work presented a detailed performance analysis of four broad phase collision detection algorithms for highly interactive environments we have designed and implemented. Extensive experiments were conducted and the performance of broad phase collision detection algorithms was evaluated in terms of output quality and running time,

9

by applying a usability criteria. The results show that interactive frame rates for environments composed of 1000 moving objects, including rendering, can be successfully obtained using the Sweep & Prune algorithm, with a very good level of user satisfaction. For future work we hope to extend this work by overcoming some of the current limitations of the collision methods investigated. For example, according to our analyses, the data structure updating of the Sweep & Prune dominates the time of the broad phase. Further, although the performance of the Grid algorithm is worse than the performance of the Sweep & Prune algorithm, the time spent for updating the grid structure does not dominate the broad phase time. Therefore, we expect to improve the results obtained in this work by combining the Grid and Sweep & Prune algorithms or, alternatively, by extending the Octree one. The latter may be done in a way that the octree does not need to be constantly rebuilt using, for example, loose octrees, with large overlapping cells. Acknowledgements Rafael de Sousa Rocha benefits of a PIBIC studentship and is grateful to the Brazilian supporting Agency CNPq. References [1] Airey, J.M., Rohlf, J.H., Brooks Jr., F.P. (1990) “Towards Image Realism with Interactive Update Rates in Complex Virtual Building Environments”, In Proceedings of the Symposium on Interactive 3D Graphics, Vol. 24(2), pp. 41-50, March. [2] Bandi, S. and Thalmann, D. (1995) “An Adaptive Spatial Subdivision of the Object Space for Fast Collision Detection of Animating Rigid Bodies”, Computer Graphics Forum (CGF), Vol. 14(3), pp. 259-270. [3] Bergen, G. V. D. (2004) Collision Detection in Interactive 3D Environments. Morgan and Kaufmann Publishers. [4] Cohen, J. D., Lin, M. C., Manocha, D. and Ponamgi, M. K. (1995) “I-Collide: An Interactive and Exact Collision Detection System for Large-Scale Environments”, In Proceedings of the Symposium on Interactive 3D Graphics, pp. 189-196. [5] Ericson, C. (2005) Real-Time Collision Detection. Morgan and Kaufmann Publishers. [6] Figueiredo, M., Marcelino, L. and Fernando, T. (2002) “A Survey on Collision Detection for Virtual Environments”, In Proceedings of the 5th Virtual Reality Symposium, Fortaleza, pp. 285-306. [7] Gottschalk, S., Lin, M. C. and Manocha, D. (1996) “OBB-Tree: A Hierarchical Structure for Rapid Interference Detection”, Computer Graphics Journal, Vol. 30, pp. 171-180. [8] Held, M., Klosowski, J. and Mitchell, J. (1995) “Evaluation of Collision Detection Methods for Virtual Reality Fly-Throughs”, In Proceedings of the 7th Canadian Conference Computer Geometry, Vol. 3, pp. 205-210. [9] Klosowski, J. T., Held, M., Mitchell, J. S. B. and Sowizral, H. (1996) “Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs”, IEEE Transactions on Visualization and Computer Graphics, Vol. 4(1), pp. 21-36. [10] Lawlor, O. S. and Kalée, L. V. (2002) “A Voxel-Based Parallel Collision Detection Algorithm”, In Proceedings of the 16th International Conference on Supercomputing, pp. 285-293. [11] Luque, R. G., Comba, J. L. D. and Freitas, C. M. D. S. (2005) “Broad-Phase Collision Detection Using SemiAdjusting BSP-Trees”, In Proceedings of the Symposium on Interactive 3D Graphics and Games, ACM Press, pp. 179-186. [12] Mckenna, M.D. and Zeltzer, D. “Three Dimensional Visual Display Systems for Virtual Environments”. Presence, Vol. 1(4), pp. 421-458. [13] Mirtich, B. (1997) Efficient algorithms for Two-Phase Collision Detection, Tech Report TR-97-23, December. [14] Moore, M. and Wilhelms, J. (1988) “Collision Detection and Response for Computer Animation”, In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques , Vol. 22(4), pp. 289-298. [15] O' Sullivan, C. and Dingliana, J. (1999) “Real-Time Collision Detection and Response using Sphere-Trees”, In Proceedings of the 15th Spring Conference on Computer Graphics, Budmerice, Slovakia, pp. 83-92. [16] O' Sullivan, C. and Dingliana, J. (2001) “Collisions and Perception”, ACM Transactions on Graphics Journal, Vol. 20(3), pp. 151-168, July.

1

[17] Rocha, R.S. and Rodrigues, M.A.F. (2005) “Ambientes Interativos com Detecção de Colisão Broad Phase Utilizando Grids”, In Proceedings of the 8th WIC on the 18th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI), SBC, Natal, RN, Brazil, October, pp. 1-8. [18] Rocha, R. S. and Rodrigues, M.A.F. (2006) “Detecção de Colisão Broad Phase Utilizando Grids para Ambientes Interativos”. Revista Eletrônica de Iniciação Científica (REIC), SBC, June, Vol. 6(2), pp. 1-17. [19] Redon, S. (2004) “Continuous Collision Detection for Rigid and Articulated Bodies”, ACM SIGGRAPH Course Notes. [20] Rowe, G.W. (2001) Computer Graphics with Java. Palgrave. [21] Sammet, H. and Webber, R. (1998) “Hierarchical Data Structures and Algorithms for Computer Graphics”. IEEE Computer Graphics and Applications, Vol 4(3), pp. 46-68. [22] Storey, K., Lu, F. and Morgan, G. (2004) “Determining Collisions between Moving Spheres for Distributed Virtual Environments”, Computer Graphics International, pp. 140-147. [23] Taddeo, L. S. “Detecção de Colisão utilizando Grids e Octrees Esféricas para Ambientes Gráficos Interativos”, MSc. Thesis, Universidade de Fortaleza (UNIFOR), Fortaleza-CE, Brazil, 2005. [24] Watson, B., Walker, N., Ribarsky, W. and Spaulding, V. (1998) “Effects on Variation in System Responsiveness on User Performance in Virtual Environments”, Human Factors (Special Section on Virtual Environments), Vol 40(3), pp. 403-414.

1

[image: [hal-00555720, v1] Dynamic Adaptation of Broad Phase ...]
[hal-00555720, v1] Dynamic Adaptation of Broad Phase ...

[image: Cloth Simulation and Collision Detection using ...]
Cloth Simulation and Collision Detection using ...

[image: A Review on Various Collision Detection and ...]
A Review on Various Collision Detection and ...

[image: Performance Evaluation of a Hybrid Algorithm for Collision Detection ...]
Performance Evaluation of a Hybrid Algorithm for Collision Detection ...

[image: Face Detection Methods: A Survey]
Face Detection Methods: A Survey

[image: 9. Visible-Surface Detection Methods]
9. Visible-Surface Detection Methods

[image: Collision Detection Strategies for Virtual Construction ...]
Collision Detection Strategies for Virtual Construction ...

[image: Performance Evaluation of a Hybrid Algorithm for Collision Detection ...]
Performance Evaluation of a Hybrid Algorithm for Collision Detection ...

[image: ray-traced collision detection for deformable bodies]
ray-traced collision detection for deformable bodies

[image: Collision Detection - Journal of Virtual Reality and Broadcasting]
Collision Detection - Journal of Virtual Reality and Broadcasting

[image: Performance Evaluation of a Hybrid Algorithm for Collision Detection ...]
Performance Evaluation of a Hybrid Algorithm for Collision Detection ...

[image: Interactive and Accurate Collision Detection in Virtual ...]
Interactive and Accurate Collision Detection in Virtual ...

[image: [hal-00412870, v1] New trends in collision detection ...]
[hal-00412870, v1] New trends in collision detection ...

[image: ray-traced collision detection for deformable bodies]
ray-traced collision detection for deformable bodies

[image: Optimized Spatial Hashing for Collision Detection of ...]
Optimized Spatial Hashing for Collision Detection of ...

[image: Fall Detection â€“ Principles and Methods - CiteSeerX]
Fall Detection â€“ Principles and Methods - CiteSeerX

[image: a robust phase detection structure for m-psk]
a robust phase detection structure for m-psk

[image: Phase Unwrapping: A Review of Methods and a ... - GeoConvention]
Phase Unwrapping: A Review of Methods and a ... - GeoConvention

[image: Plan in North Carolina: Phase I Research Methods and Data]
Plan in North Carolina: Phase I Research Methods and Data

Investigating Broad Phase Collision Detection Methods ...

450. 500. Number of objects. Fra m e. R a te. Brute Force. Octree depth 3 ... Broad Phase Frame Rate (2). 0. 100. 200. 300. 400. 500. 600. 700. 800. 900. 100.

 Download PDF

 469KB Sizes
 0 Downloads
 223 Views

 Report

Recommend Documents

[image: alt]

[hal-00555720, v1] Dynamic Adaptation of Broad Phase ...

Jan 14, 2011 - propose to use off-line simulations to determine fields of optimal performance ... a study on how graphics hardware parameters (number of cores, bandwidth ... In the virtual reality field, several thematics are considered as ma-.

[image: alt]

Cloth Simulation and Collision Detection using ...

achieved a significant performance gain over the existing method. Since the size of ... Element Modeling and Control of Flexible Fabric Parts. IEEE. Computer ...

[image: alt]

A Review on Various Collision Detection and ...

avoidance for VANET are not efficient to meet every traffic scenarios. each vehicle has traffic information with itself and this information is transferred to all the ...

[image: alt]

Performance Evaluation of a Hybrid Algorithm for Collision Detection ...

Extensive tests were conducted and the ... that this approach is recommendable for applications performance in the previous tests for the broad phase.

[image: alt]

Face Detection Methods: A Survey

IJRIT International Journal of Research in Information Technology, Volume 1, Issue 11, November, 2013, Pg. 282-289 ... 1Student, Vishwakarma Institute of Technology, Pune University. Pune At the highest level, all possible face candidates are fo

[image: alt]

9. Visible-Surface Detection Methods

Perspective Transformation (in a perspective viewing system):. After Modelling Transformation, Viewing Transformation is carried out to transform objects from the world coordinate system to the viewing coordinate system. Afterwards, objects in the sc

[image: alt]

Collision Detection Strategies for Virtual Construction ...

Keyword: construction crane, collision detection, virtual reality, construction simulation,. 25. * Revised ... exponentially when the number of objects, including construction machinery and structural. 55 elements office project. The project si

[image: alt]

Performance Evaluation of a Hybrid Algorithm for Collision Detection ...

are also approaches other than spatial partitioning data structures. ... from GPU memory is usually a very slow operation, making buffer ... data structures: grids and octrees. Finally, in ... partitioning the cells in a new grid when required (with.

[image: alt]

ray-traced collision detection for deformable bodies

object (which we call the colliding object) is tested against the other as shown in the attached video. ... national Conference in Central Europe on Computer.

[image: alt]

Collision Detection - Journal of Virtual Reality and Broadcasting

355â€“360, ISBN 978-1-60558-711-0. [TPB08]. Bernhard Thomaszewski, Simon Pabst, and Wolfgang Blochinger, Parallel tech- · niques for physically based ...

[image: alt]

Performance Evaluation of a Hybrid Algorithm for Collision Detection ...

and the performance of the algorithm was evaluated in terms of output (c). Figure 1. The object's geometry and the object's spherical octree with 4 and 5 levels are shown in [15] G. Rowe, Computer Graphics with Java, Palgrave,. 2001.

[image: alt]

Interactive and Accurate Collision Detection in Virtual ...

a prototype 3D simulation system for training and treatment planning in Orthodontics. ... detection, we have used discrete tests among bounding cir- cles to detect sistance and center of rotation of the tooth are calculated au- tomatically and t

[image: alt]

[hal-00412870, v1] New trends in collision detection ...

Sep 2, 2009 - This survey also presents middle-ware allowing usi. (section 4). Differences between a cluster and a supercomputer become very thin because they use same CPUs and. GPUs connected with a high performance network working on the same Opera

[image: alt]

ray-traced collision detection for deformable bodies

pend on precomputed data to determine the colliding ... used, which is not the case for a regular grid. Sofa - an open source framework for medical simula-.

[image: alt]

Optimized Spatial Hashing for Collision Detection of ...

In [20], the interaction of a cylindrical tool with deformable tis- Journal of Graphics Tools, vol. 2, no. 4, pp ... metric objects,â€� Proceedings of IEEE Visualization.

[image: alt]

Fall Detection â€“ Principles and Methods - CiteSeerX

an ambulatory monitor triggered by a photo-interrupter to record the falling sequences. over short distances and the availability of the required algorithms.

[image: alt]

a robust phase detection structure for m-psk

Moreover, the new detector has a very compact hardware efficient fixed-point hardware implementation in the form 6.1.2 Linear Modeling of VM,N(n).

[image: alt]

Phase Unwrapping: A Review of Methods and a ... - GeoConvention

There are an abundance of phase unwrapping algorithms in the literature that ... introduce a further phase unwrapping algorithm that operates in the range of the ...

[image: alt]

Plan in North Carolina: Phase I Research Methods and Data

At the time of the data request, two companies provided the payroll software database ... of K12 Enterprise's â€œSunPacâ€� program and Education Management System's â€œISISâ€� program Online access to accounts and financial literacy programs.

×
Report Investigating Broad Phase Collision Detection Methods ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

