

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Large Scale Disk-Based Metric Indexing Structure for Approximate Information Retrieval by Content Stanislav Barton CNAM/CEDRIC 292, rue Saint-Martin F75141 Paris Cedex 03

Valerie Gouet-Brunet CNAM/CEDRIC 292, rue Saint-Martin F75141 Paris Cedex 03

Marta Rukoz POND University 200 Av. de la Republique 92001 Nanterre, France

ABSTRACT

pruning paradigm that we call the locality phenomenon for highly effective pruning. Thus making the index suitable for similarity search in very large scale high-dimensional data where the distance between objects is measured by metric or semi-metric functions. The speed and large scalability are traded for approximation, but as is shown, the substantial and most relevant part of the answer is always found. That the proposed approach satisfies well the needs of a real-time multimedia content-based retrieval system is proved by the experimental evaluation on several data sets representing global and local visual and audio contents. As for the audio content, experiments are done on semi-metric data. We also propose the possibility of tuning the search parameters to meet the particular multimedia search system needs in terms of recall, approximation and speed. The scalability of the disk based structure is analyzed on a 30 million SIFT data set. On this large dataset, a fast approximate k-nearest neighbor search is also evaluated.

In order to achieve large scalability, indexing structures are usually distributed to incorporate more of expensive main memory during the query processing. In this paper, an indexing structure, that does not suffer from a performance degradation by its transition from main memory storage to hard drive, is proposed. The high efficiency of the index is achieved using a very effective pruning based on precomputed distances and so called locality phenomenon which substantially diminishes the number of retrieved candidates. The trade-offs for the large scalability are, firstly, the approximation and, secondly, longer query times, yet both are still bearable enough for recent multimedia content-based search systems, proved by an evaluation using visual and audio data and both metric and semi-metric distance functions. The tuning of the index’s parameters based on the analysis of the particular’s data intrinsic dimensionality is also discussed.

1

1.1

Introduction

Necessary Background

In metric spaces, the objects are distinguished from each other only by the means of their mutual dissimilarity – a distance or metric function. The metric space is defined as a pair (D, d) where D denotes the domain of objects and d : D × D → R is a total function which must have the well-known non-negativity, symmetry, identity and triangle inequality properties. From the triangular inequality are derived important distance pruning rules that are adopted in many metric space approaches, see for example Zezula et al. [21] or Bouteldja [4]. Note also that the vector spaces with proper distance function (e.g. Euclidean distance) form a metric space. The most common types of queries are range query and k-nearest neighbors query. Range query R(q, r) = {o ∈ S, d(o, q) ≤ r}, where q ∈ D, represents a set of all objects that fall within certain range r from a query object q. The k-nearest neighbors query kN N (q) = {R ⊂ S, |R| = k ∧ ∀x ∈ R, y ∈ S − R : d(q, x) ≤ d(q, y)}, represents a set of k objects that have the closest distance to q from S.

Mapping techniques of images to vector spaces using local visual features, e.g. SIFTs [12], allow searching sub-images or even objects in images [18] but with larger search complexity. In effect, these techniques, contrary to the global mapping techniques, increase the number of vectors per a single image to hundreds or even thousands. In these cases traditional centralized approaches to indexing the high-dimensional vector spaces, e.g. M-Tree [6] or LSH [8], cease to suffice. The problem is mainly that the query processing involves a large number of data objects. Moreover, all these approaches rely on storage in the computer’s main memory to make the query processing time competitive. With the transition to secondary storage, they suffer from substantial performance degradation. The approximation and the data distribution are the most popular techniques for enhancing such methods to deal with scalability [16, 1], while keeping them still in main memory of the used resources. In this paper, a different approach to achieve large scalability is adopted. The indexing structure itself does not occupy the computer’s main memory and is present in a materialized form – on a disk – in a traditional relational database, where billions of rows (data objects) can be easily organized. The similarity range query is then transformed into an SQL query that benefits from the precomputed distances to several pivots at once allowing it to exploit a new

2

Related Work

The indexing structure presented in this paper relies on the distance matrix to prune the data space and to find the candidates for the answer to the query. A state of the art method using distance matrix is Linear AESA (LAESA) [15] – improved AESA (Approximating and Eliminating Search Algorithm) [19], where quadratic storage complexity drawback is addressed. Contrary to AESA, it selects a set of pivots P and precomputes the distances only to this set, thus diminishing the complexity to O(|P |(n − |P |)/2). The pivots can be selected using various strategies and the performance of the structure tightly depends on this step. The best performing technique attempts to select pivots mutually as far distant as possible. A recent approach called Metric Inverted File [1] utilizes the precomputed distances in a different way. It also pre-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. NTSS 2011, March 25, 2011, Uppsala, Sweden. Copyright 2011 ACM 978-1-4503-0612-6/11/03 ...$10.00.

1

o3

o3

R4

R5

R5

R3

R1

o1

o2

R1

R2

(a)

Solid lines denote the three closest reference objects R to data objects o1 , o2 and o3 .

R4

R5

R3

R6 o1

o3

R4

r

q

R3

R6 o1

o2

R1

R2

R6

r

q

o2

R2

(b)

Candidate points for range query R(q, r) evaluation using precomputed distances to two closest reference objects R2 , R3 .

(c)

Distance pruning using pivots R2 and R3 . The dark shaded area represents an area containing the candidates of the query answer.

Figure 1: Reference points’ assignement and pruning paradigm visualized. computes the distances to predefined set of pivots, but stores from data set S need to be computed. After the compuonly a predefined number of distances to closest pivots (reftation, for each pivot p exists a list of pairs ho, d(o, p)i of erence objects) which is usually much smaller than the numdata object o and its distance to the pivot. These lists are ber of pivots. In fact it does not store the precomputed represented physically as tables in a traditional relational distance itself but instead ranks to the closest reference obdatabase. Therefore for each p ∈ P a table that has two jects. This information is stored in a fashion of an inverted columns (data object identifier, distance to p) is created. file for each pivot p, storing the posting list comprised of obAlgorithm 1 sums up the index creation procedure, where jects and their ranks to the particular reference objects. For constant m denotes the actual number of stored distances searching, signatures of data objects are used. The signato closest pivots. This method results into |P | × n distance ture of an object is a tuple of arbitrary length (smaller than computations and the number of rows in |P | tables is m × n. the number of reference objects used to build the index) 3.1.1 Pivot Selection Techniques. where i-th position contains the number of i-closest reference object to the object. The presumption is that similar Mic´ o et al. [15] and Bustos et al. [5] found out that their objects have similar signatures. The similarity of the sigstructures performs the best when the pivots are selected natures is compared P using a Spearman Footrule Distance as far from each other as possible. On the other hand, the SF D(S1 , S2) = |S1 (p) − S2 (p)| where S1 , S2 are vecoptimized query processing algorithm of AESA favored the p∈P selection of the closest pivot to the query object q since those tors (signatures) of order ranks to particular reference obpivots seemed to estimate the original distance between data jects. The inverted files are then used to compute the SFD object o and q the best. distance. The output of the algorithm is an approximate Alternatively, a random selection technique is being usuanswer. ally considered for its simplicity. Here, all of theses methods An approach called iDistance, that utilizes transformawere considered and evaluated. The best performance retion of metric space to uni-dimensional domain, is presented sults gained were with the random pivot selection technique. by Jagadish et al. [9]. In iDistance, a set of reference obThe reason is that the approach benefits the best when the jects is selected and each data point is assigned to its closest pivots are close to the query object, which is provided by reference point. Those clusters are encoded into real numthe random pivot selection technique that copies the actual ber domain using sufficient distance between each reference distribution of the indexed data. point and distances between respective reference point and assigned data point. The k-NN search then incorporates 3.2 Search Algorithm a range search on a B+ -Tree for the real number domain The search algorithm comprises of two steps. Firstly, it is encoding. a filtering step. By pruning the data set using the pivots and the precomputed distances and thus acquiring a set of 3 Disk-Based Metric Indexing Structure candidates for the query answer. Secondly, in a verification step, for each candidate its representation is retrieved from The indexing approaches exploiting the distance matrix exthe disk and the original distance between the query object hibit good performance in processing the similarity queries. and the candidate is computed. If the distance is within the However, this search performance is counter-balanced by inqueried radius, the candidate is added to a set representing tensiveness of the distance matrix computation and storage. answer to the query. Therefore, their usage is limited to data sets of rather small The concept of the filtering step is depicted in Figure 1(c). sizes. To overcome this, we will store only a small number In this example, two closest pivots to q were used, i.e. s = 2. (m) of precomputed distances to closest pivots – reference The intersection of areas covered by both R2 and R3 , the points, like Amato and Savino [1]. Figure 1(a) depicts for light yellow area, forms the area where all possible candieach data object o its three closest reference points. The dates lie. From the intersection area, using the precomway the precomputed distances are exploited for the evalputed distances to both R2 and R3 , only those candidates uation of a range query R(q, r) is depicted in Figure 1(b). that might fall within the radius r from q are considered – Firstly, s closest reference objects are found for the query object q, e.g., for s = 2, reference objects R2 and R3 . The area covered by R2 is the light yellow area plus the small green area, for R3 it is the brown and light yellow area. 1 select set of pivots P ; 2 for p ∈ P do The intersection, denoted as the light yellow area, is the 3 create its own table Tp with columns o and distance; area where the candidates for the answer to the query are 4 end 5 for o ∈ S do found – objects o1 and o2 . The list intersection represents 6 float[] D = float[|P |]; pivot[] PO = pivot[|P |]; 7 for p ∈ P do an important pruning rule which favors locality. As it will 8 D[i] = d(o, p); be shown in the experimental evaluation, it forms the corner 9 PO[i] = p; 10 end stone for effective data space filtering which works even on 11 sort D and keep PO updated; data with high dimensionality and uniform distributions. 12 for i =0; i < m; i++ do 13

3.1

Index Creation

INSERT into TP O[i] VALUES (o, D[i]) ;

14 end 15 end

In order to create the indexing structure, the distances between the selected set of pivots P and the data objects

Algorithm 1: Indexing structure creation algorithm.

2

1 2 3 4 5 6 7 8

also considered but the experimental evaluation showed that L2 works better here. The ranking function is evaluated in Section 6.5.

Input : query object q, radius r, number of pivots to use s, set of pivots P Output: query answer A float[] PD = float[|P |]; pivot[] PO = pivot[|P |]; for p ∈ P do PD[i] = d(q, p); PO[i] = p; end sort PD, keep PO updated; Candidates C = SELECT * FROM TP O[0] ,..., TP O[s−1] WHERE

4

Parameter Setting

The performance of each indexing structure usually tightly depends on optimal setting of various parameters while wrong parameter setting may result in orders of magnitude slower query processing speeds. One way to find optimal settings is to explore the parameter space by empirically testing various settings and analyzing the results as Muja and Lowe [16]. However, in this work, we focus on setting the parameters on the basis of the analysis of the particular data set. The most important aspect for the parameter setting will be data’s intrinsic dimensionality and the radius r for intended range queries. Both considered methods do not rely on vector representation of data and therefore are usable for all data sets. 4.1 Intrinsic Dimensionality It is a common sense that the determining impact on the ability of data to be efficiently searchable has its intrinsic dimensionality rather than the dimensionality of the space in which data is embedded [7, 10]. Two methods are used because in some cases, the usually better CDS method ceases to give satisfactory unbiased results. 4.1.1 kNN Intrinsic Dimensionality Estimator.

TP O[0] .distance ≥ (PD[0] - r) AND TP O[0] .distance ≤ PD[0] + r AND ... AND TP O[s−1] .distance ≥ (PD[s-1] - r) AND TP O[s−1] .distance ≤ PD[s-1] + r AND TP O[0] .o = TP O[1] .o AND ... TP O[s−1] .o = TP O[s] .o ; 9 Set A ←− ∅ ; 10 for c ∈ C do 11 read c.o from disk; 12 if d(q, c.o) ≤ r then 13 A = A ∪{c.o}; 14 end 15 end

Algorithm 2: Range query R(q, r) processing algorithm.

the intersection of the light yellow area and the dark gray area (intersection of the two pruning annuli centered in R2 and R3). Algorithm 2 describes precisely the range query R(q, r) processing. Firstly, the s closets pivots to q are found. On top of that information, a SQL select is built and processed (line 8). This SQL command represents the inner join involving the s closest pivot tables and also the ball region pruning. Note that the precomputed distances are stored in the secondary memory too in the form of the pivot tables. After the candidates are retrieved from the database, in the verification step, their representations are read from disk and the original distance between the query object q and each candidate is computed. As will be seen in Section 5, the read object representation from disk operation is the most expensive operation of the search algorithm. In comparison with other pivoted access structures, the advantage of our design is a larger number of pivots – reference objects and thus better chance of selecting the closest pivot(-s) to a query point, from which the proposed access structure benefits the most. The other techniques like LAESA end up with a small set of pivots that, especially in more uniformly distributed data sets (a majority of high dimensional data), the data objects are all within the same distance from each pivot and thus the pivots are of very limiting pruning importance. The experimental evaluation of Algorithm 2 showed that the inner join condition of the SQL select on line 8 proved to be substantially more pruning effective than pruning uniquely by the pivot - candidate distance. We call this the locality phenomenon – the fact that what matters is not the actual distance between the data point and reference point but that the particular reference point is the closest. Having the relational database system do the joins is the best way due to its query optimizations and planning. 3.2.1 Ranking the Candidates. The candidates can be ordered by the approximation of the original distance between them and the query point using the precomputed distances – placing the approximately closest at the top of the list. Eventually, if only the true positives occupied the head of the list, the expensive verification could be skipped. The approximation of the original distance is defined as s X rank(c) = (d(q, pi) − d(pi , c))2 ,

To estimate the intrinsic dimensionality, the estimator (kNNIDE) described in [7] utilizes the notion of k-NN graph and its total length. The k-NN graph puts an edge between each point in the data set and its k-nearest neighbors with the distance between these points as the edge’s weight. The authors found and proved the strong dependence of the length of this graph to the intrinsic dimensionality and stated its estimator computed by using bootstrapping samples, the method of moments and linear least squares. 4.1.2 Cumulative Distribution Slope (CDS) Estimator. This method, thoroughly described by Barton et al. [3], is a result of the analysis of the pairwise distance and cumulative distance distribution histograms. It follows similar ideas as Fractal dimensionality [10] by considering the number of neighbors within certain range. Contrary to the Fractal dimensionality, our method considers only the distances between the vectors and thus is also extensible to metric spaces where the data objects are not necessary vectors. The computation is done on a normalized cumulative distance distribution histogram. In this histogram, the flat parts are removed and a line representing linear function f (x) = ax+b is fitted using linear least squares method. The calculated parameter a is then mapped onto a domain of intrinsic dimensionalities using the assumption stated by Verveer and Duin [20] that uniform random data has its intrinsic dimensionality very close to its embedding dimensionality. 4.2 Setting the Parameters Before data can be indexed, the |P | – number of pivots and m – the number of distances to closest pivots to store for each data object must be known. We define |P | as a function of the other parameters: n×m |P | = O where n is the size of the database, m is fixed as data’s intrinsic dimensionality and O is targeted average number of objects in the covering area of one pivot. Parameter O represents also an upper bound on the complexity of the inner join calculation because it represents the average size of the inner join. How the parameter O influences the quality of search is discussed in Section 6.1. The only parameter regarding the indexing structure needed for searching is s – the number of pivots considered for searching. Obviously, s ≤ m must hold, otherwise the inner join on the pivot tables would always return empty set of candidates.

i=1

where c ∈ C, C is the set of candidates and pi is one of the first s pivots in P O from Algorithm 2. This ranking favors those points that are closest to the query object q in the transformed vector space. The transformation is done using the pivots pi where the coordinates are the distances of the c to pivots. Euclidean distance (also known as L2) is used as the distance function. The L1 distance function was 3

5

Experimental Evaluation

1

R1 Pr 1 R 11 Pr 11 R 21 Pr 21

0.8

The evaluation is done on multimedia data, considered are both global and local visual features and audio features. The evaluation was done on a machine sporting two 2GHz 2-core Intel XEON processors, 8GB of RAM and running 64-bit Linux, Java 1.6 and PostgreSQL 8.3. 5.1 Multimedia Data and Descriptors Following table lists the characteristics of data sets used for evaluation. The columns denoted Dim., kNN, and CDS represent the data vector dimensionality and the two intrinsic dimensionality estimations, respectively. Column Dist. denotes the distance function used, and column Size the number of data objects in the data set: ID 1 2 11 12 13 21 22

Descriptor Dim. Size Dist. Global Visual Descriptors Data Sets RGB histogram 125 500,000 L2 RGB histogram 1,000,000 L2 Local Visual Descriptor Data Set SIFT 128 500,000 L2 SIFT 1,000,000 L2 SIFT 30,000,000 L2 Audio Descriptors Data Sets MFCC 351 500,000 SKLD MFCC 1,000,000 SKLD

kNN

CDS

3

5

20

8

20

7

0.6 0.4 0.2 0 50

ID 1 ID 11 ID 21

50k

60k

50 80 200

42 67 167

70k 80k |P | 36 32 58 50 143 125

90k

100k

28 45 111

25 40 100

90

100

50

60

70

80

90

100

O

The kNN intrinsic estimation was used instead of the CDS method in the case of audio data set because the data set contains large number of outlying objects and the CDS method had to be computed on a portion of this histogram, resulting into a biased estimation. The targeted size of the query answer was 2,500 objects – 0.5% of all objects. As for O, a simple formula considering that the 2, 500× intrinsic dimensionality should be a starting point. As can be seen, such number is insufficient and needs to be enlarged in order to get sufficient recall values. On the other hand, the search is rather tolerant to the setting of the O parameter and in the next experiments, we will use the value O = 80, 000. The recall for the visual data sets grows hand in hand with O, which is caused by the smaller possibility to miss a candidate when the areas covered by each reference point grows larger. However, the average query processing time grows too because the number of candidates grows even faster – indicated by the decreasing precision. As for the declining recall of audio, the smaller O results in larger number of pivots |P |, that is favorable for the audio data set because of the semi-metric SKLD – the pivots used for pruning should be as close to the query object as possible. Obviously, more pivots dispersed in space do comply with this. The recall values are comparable with those gathered for other data with full metric distance functions. This is very pleasing discovery since most of the traditional metric access structures perform considerably worse on data with semi-metric distance functions. 6.2 Varying parameter s The impact of parameter s – the number of pivots used during search, on the quality of searching is studied. Figure 3 denotes the results for two data set sizes: the 500,000 (ID 1, 11 and 21) on the left and 1 million (ID 2, 12 and 22) on the right. The parameters are summarized in following table:

In the experiments presented further on, a set of range queries was used. The query points were selected randomly from the data set. The radius represented an average retrieval of 0.5% from a 500,000 object data set, which is around 2,500 objects. The ground truth for each considered range query was at least 100 objects. Nonetheless, similarity queries with query objects off the indexed data set can be successfully processed. The performance is mainly measured in terms of time that is presented in this paper in milliseconds (ms). 6.1 Varying parameter O Figure 2 depicts the results of an experiment on how the parameter O affects the search using the proposed indexing structure for data sets ID 1 (RGB), 11 (SIFT) and 21 (Audio). On the left, recall (R) and precision (Pr) are reported. The recall denotes the ratio of the number of true positives in the candidate set and the number of objects in the exact answer. Precision denotes the ratio of true positives and the size of the candidate set. On the right, average total time (time) and average time to read objects’ representations from disk (read) are depicted. The difference between the time and read – the gap between those curves – represents the average time to process the SQL query. The parameters O, |P | and m are summarized in following table and s = 3 for searching: O

80

Figure 2: Results of query processing on data sets ID 1 (RGB), 11 (SIFT) and 21 (Audio) when parameter O varied. On the left, the recall (R) and precision (PR) are reported. On the right, average total time (time) and time to read objects from disk (read) per query are depicted.

The Results

m 5 8 20

70

time 1 read 1 time 11 read 11 time 21 read 21

O

The descriptor techniques contain global visual representing MPEG-7 RGB color descriptor [13], local visual represented by a popular SIFT points [12] and a technique for audio data that is composed of timbral model of music, built on MFCC features [14]. The distance function for this data is Symmetrized Kullback Leibler Divergence – SKLD. It is an efficient measure for music similarity [2]. It is defined as) , where P and Q are SKLD(P ||Q) = KLD(P ||Q)+KLD(Q||P 2 two random variables, and KLD represent the well known Kullback-Leibler Divergence [11]. SKLD is a semi-metric because it generally does not yield the triangular inequality. The visual global features were extracted from frames coming from public domain videos provided by European Web Archive (EWA, http://www.europarchive.org), extracted with a rate of one frame per two seconds. Whereas, the SIFT data describes a set of 40,000 CD popular music covers as was used by Nist´er and Stew´enius [17], that means on average 750 interest points per image. As for the audio, one million models were extracted from 15,000 music songs also provided by EWA.

6

60

12000 11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000

ID m |P | Time (mm:ss)

1 5 32 5:02

11 8 50 7:24

21 20 125 22:03

2 5 65 10:30

12 8 100 15:34

22 20 250 49:24

The last row in the table above regards the time to create the respective index. The greater times for the audio data set are caused firstly, by the fact that the audio feature vectors have nearly three times the embedding dimensionality of the visual feature vectors and thus make the distance computation more expensive and secondly, because more distance computations must be computed in comparison with the other data types due to the greater intrinsic dimensionality. In Figure 3 we can see that the more pivots for searching are used the smaller the recall is got, though, the more accurate is the set of candidates in terms of precision. As for the processing time progress, the total time depends mostly on the time spent on reading the objects from disk to eliminate the false positives from the candidate set. A closer look on the SQL processing time contribution to the total time shows that doubling the size of the data set does not have greater impact on this aspect. That is desirable behavior in order to achieve real search scalability. 4

16000

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

1

30000

0.8

25000

14000 12000 10000

20000

0.6

8000

15000

6000

0.4

4000

0.2

10000 5000

2000

2

3

4

R1 Pr 1 R 11

5 s

6

7

0

0

8

2

Pr 11 R 21 Pr 21

3

4

5 s

time 1 read 1 time 11

6

7

2

8

3

4

5 s

R2 Pr 2 R 12

read 11 time 21 read 21

500k data sets

6

7

8

Pr 12 R 22 Pr 22

0 2

3

4

time 2 read 2 time 12

5 s

6

7

8

read 12 time 22 read 22

1 million data sets

Figure 3: Results of query processing on data sets ID 1 (RGB), 11 (SIFT) and 21 (Audio) in the first row and ID 2, 12, and 22 in the second row, when parameter s varies. Although the SQL query processing time remained the same with the transition in the data set size, a certain drop in recall can be observed for the corresponding s values. This is caused by the fact that the same value of parameter O was used for both sizes even though the average size of the exact answer rose to 4,500 objects, yet the recall dropped only by a fraction. As shows Section 6.5, the answer’s quality was not hurt. Note that for both data set sizes and, for instance for s = 3, the average query processing times remain almost the same. This is attributed to a fact that for both data set sizes the numbers of candidates remain the same and also the times spent on processing the SQL queries are comparable. A further discussion on processing times can be found in Section 6.4. 6.3

in previous experiments. Figure 5 depicts the results regarding the various query radii. The SQL query processing time is similar to those measured on the smaller datasets. This is because the average number of rows in the pivot tables is comparable for all data set sizes. The total query processing time is faster because the average number of candidates dropped significantly. This is attributed to the larger number of pivots used for indexing and therefore their better distribution in data space and their ability to prune the data space – the locality phenomenon. That is supported by the ratio of the size of the candidate set and the size of the total answer to the query (ground truth), see the right subfigure of Figure 5 where number of candidates is contrasted with the size of the exact answer (GT). The overall good performance is granted also by the use of the same value of parameter O – inner joins have roughly the same size as it was in the case of the smaller datasets. This implies that the search performance – especially the SQL processing part – is invariant to the actual size of the dataset provided that the values of the concerned parameters remain unchanged. The creation process was parallelized into two processes, each one computed the half of the index and took 10 hours. The larger creation time is caused by the super-linear increase of the number of distance computations needed to create the index – 30, 000, 000 × 3, 500 in comparison to 1, 000, 000 × 100. However, the number of inserts grows linearly, since for each data object the same number of precomputed distances was stored as for the smaller data sets. The super-linearity of the increase in distance computations can be addressed by deploying an access structure, i.e. AESA, that processes kNN queries on datasets more optimally than a sequential scan. 6.5 Ranking the Candidates We show that the candidates can be ranked using only the information retrieved from the database skipping the expensive verification step, and still getting satisfactory results. The quality of approximation on such large amounts of objects was measured as an average distance divergence to the ground truth for first k objects. The average distance for first k ranked candidates was divided by the average distance of first k objects from ground truth to each q, respectively. The progress is presented in Figure 6 for k = 50 and k = 100. If the lists of candidates and ground truth are

Varying radius r

The impact of the varying radius of the processed range query R(q, r) is depicted in Figure 4. The x-axis represents the fraction of the radius used in previous experiments.The parameter settings used are the same as listed in Section 6.2. The main reason for this experiment is to show how the search results are affected when smaller radii are processed. Note that the test radius retrieved about 2,500, but this number might be too large for real life systems where 100 data objects retrieved can suffice. For instance, for the 1M data sets, about 100 objects are retrieved with r ×0.5, which leads to reducing the average query processing time by 40% for data sets ID 2 and 22. On top of that: the indexing structure never fails to retrieve the original object (r = 0 is an exact match query). Therefore when the recall is dropping, the farther objects from the query object are rather missed. It can be seen that the average time it took to process the SQL query in the database remains mostly constant for the larger query radii (0.3 – 1). This implies that this part of the search algorithm is almost invariant to the searched range, what actually affects the most the processing time is the candidate verification step, that depends on the amount of retrieved candidates. In Section 6.5, a solution that addresses this problem will be discussed. 6.4

Scaling to 30 millions of SIFTs

To show the true capabilities of our disk-based indexing structure, a 30 million SIFT data set was used. The indexing structure was built using following setting: |P | = , so besides |P |, settings are the same as 3500 ∼ 30,000,000×8 80,000 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

R2 P2 R 12 P 12 R 22 P 22

12000 10000 8000 6000 4000

0.2

0.4 0.6 x*r

0.8

1

18000 16000

2000

14000 12000

1500

10000 1000

8000 6000

500

4000 2000

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 x*r

2000

0

2500

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

time 2 read 2 time 12 read 12 time 22 read 22

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 x*r

0 0

0.2

0.4 0.6 x*r

0.8

1

recall sift precision sift

Figure 4: Results of query processing on data sets ID 2, 12 and 22 when range r of R(q, r) varies.

time sift read sift

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 x*r sift candidates sift GT

Figure 5: Results of query processing on a 30 million ID 13 data set when range r of R(q, r) varies. 5

1.35 1.3 1.25 1.2 1.15 1.1 1.05 1

tion towards speedier query processing and larger throughput. The evaluation also showed, that the parameters can be successfully estimated by the data analysis to meet expected performance before the actual structure’s deployment. A simple extension demonstrated the possibility to use the index to process also approximate kNN queries where an almost constant processing time was achieved by skipping the verification step. This constant represents a time to process SQL query that showed invariant to the size of the indexed dataset. Together with the proposed optimizations in the search for closest reference objects during both the buildup and search phase, the index is intended to be applied in applications like real-time multimedia search representing datasets of billions of objects.

2, 50 2, 100 12, 50 12, 100 13, 50 13, 100 22, 50 22, 100

2

3

4

5 s

6

7

8

Figure 6: Ranking function evaluation on data sets ID 2, 12, 13 and 22. First 50 and 100 objects were inspected. equal, the result is 1. The trend is demonstrated for data sets ID 2, 12, 13 and 22 and varying search parameter s. It can be observed that using proper setting, the search system can also successfully process approximated kNN queries while skipping the expensive verification step. So, the total time to process a similarity query equals to the time to process the SQL query with an overhead of O(|P |) original distance computations to find the s closest pivots. The experiment showed that the error is firstly, for both k = 50 and k = 100 almost the same (RGB and SIFT) and secondly for s ∈ {3, 4} almost negligible. Note also the very small drop in approximation quality for the largest SIFT data set (ID 13). 6.6

Acknowledgements This work is supported by the French Federation WISDOM (2007-2010) and project ANR MDCO DISCO (2007-2011).

Bibliography [1] G. Amato and P. Savino. Approximate similarity search in metric spaces using inverted files. In Proc. of InfoScale ’08, pages 1–10. ICST, 2008. [2] J.J. Aucouturier and F. Pachet. Finding songs that sound the same. In Proc. of IEEE Benelux Workshop on Model based Processing and Coding of Audio, pages 1–8, 2002. [3] S. Barton, V. Gouet-Brunet, M. Rukoz, C. Charbuillet, and G. Peeters. On estimating the indexability of multimedia descriptors for similarity searching. In Proc. of RIAO’10, pages 1–4, 2010. [4] N. Bouteldja, V. Gouet-Brunet, and M Scholl. Evaluation of strategies for multiple sphere queries with local image descriptors. In IS and T/SPIE Conference on Multimedia Content Analysis, Management, and Retrieval, pages 1–12, San Jose CA, USA, 2006. [5] B. Bustos, G. Navarro, and E. Ch´ avez. Pivot selection techniques for proximity searching in metric spaces. Pattern Recogn. Lett., 24(14):2357–2366, 2003. [6] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric spaces. In VLDB, pages 426–435, 1997. [7] J. A. Costa and A. O. Hero. Geodesic entropic graphs for dimension and entropy estimation in manifold learning. Signal Processing, IEEE Transactions on, 52(8):2210–2221, 2004. [8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Localitysensitive hashing scheme based on p-stable distributions. In Proc. of SCG’04, pages 253–262, New York, NY, USA, 2004. [9] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance: An adaptive B+-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst., 30(2):364–397, 2005. [10] Flip Korn, Bernd-Uwe Pagel, and Christos Faloutsos. On the ’dimensionality curse’ and the ’self-similarity blessing’. IEEE Trans. on Knowl. and Data Eng., 13(1):96–111, 2001. [11] S. Kullback and RA Leibler. On information and sufficiency. The Annals of Mathematical Statistics, pages 79–86, 1951. [12] D.G. Lowe. Distinctive image features from scale-invariant keypoints. INT J COMPUT VISION, 60:91–110, 2004. [13] B. S. Manjunath, P. Salembier, and T. Sikora. Introduction to MPEG-7: Multimedia Content Description Interface. Wiley & Sons, April 2002. [14] P. Mermelstein. Distance measures for speech recognition, psychological and instrumental. Int. J. Pattern Recognit Artif Intell., pages 374–388, 1976. [15] M. L. Mic´ o, J. Oncina, and E. Vidal. A new version of the nearest-neighbour approximating and eliminating search algorithm (aesa) with linear preprocessing time and memory requirements. Pattern Recogn. Lett., 15(1):9–17, 1994. [16] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In VISSAPP (1), pages 331–340, 2009. [17] D. Nist´ er and H. Stew´ enius. Scalable recognition with a vocabulary tree. In IEEE CVPR, volume 2, pages 2161–2168, June 2006. [18] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. Object retrieval with large vocabularies and fast spatial matching. In IEEE CVPR ’07, pages 1–8, 2007. [19] E V Ruiz. An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern Recogn. Lett., 4(3):145–157, 1986. [20] Peter J. Verveer and Robert P.W. Duin. An evaluation of intrinsic dimensionality estimators. IEEE Trans. Pattern Anal. Mach. Intell., 17(1):81–86, 1995. [21] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric Space Approach. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

Comparison with M-tree and Sequential Scan

M-tree [6] is balanced tree access structure. It stores for each subtree a reference object and all data objects within certain distance. The data objects are stored in leafs. The search algorithm traverses the tree and prunes each subtree on the way provided that the reference object and all the objects that it covers are too far from the query object. A Java implementation (http://lsd.fi.muni.cz/trac/mtree/) provided by the authors was used. A variant that has the leaf nodes stored on disk was evaluated because the proposed structure also relies on the secondary memory. Contrary to the proposed indexing structure, it processes exact range queries. The build time for the M-tree on the RGB data set ID 1 was 29 minutes. The average time to process a similarity range query in this M-tree was 17s. This time is still faster than the sequential scan which comprises of reading the data from disk into memory (23s) and performing the scan (2.1s). The set of range queries was the same as for the evaluation of the proposed indexing structure. Recall that the time to build the index for the 500,000 object RGB data set was 5 minutes. The respective query processing times for the proposed indexing structure can be found in Figure 3. The time to create the M-tree on the larger RGB data set (ID 2) was 64 minutes. However the average time to process query grew more than twice to 50s which is equal to the sequential scan that scales linearly. Contrary to these observations, the time to build the proposed structure on the RGB 1 million data set was 10.5 minutes, and the search time remained almost constant. For these reasons we have not even tried to build an M-tree for the 30 million SIFT data set. Even though M-Tree does not exploit directly the notion of pivots, its pruning is based on distances to the root and sub-root data objects. We believe that its rather poor performance is due to pruning inefficiency lacking the exploitation of the locality phenomenon.

7

Conclusions and Future Work

This paper discussed a disk-based access structure whose major benefit was the novel locality phenomenon pruning, that helped overcome the common problem of uniformly distributed data in high-dimensional space. This combination proved to be a solid base to scale-up to larger data sets. As was outlined, the indexing process can be easily parallelized to maintain the build-up phase scalable with growing indexed data set. Secondly, the indexing engine is based on a traditional relational database engine, it can profit also from the common benefits of this approach in distribution and replication gaining the inter- and intra-query paralleliza6

[image: Lattice Indexing For Large-Scale Web-Search ...]
Lattice Indexing For Large-Scale Web-Search ...

[image: Efficient Indexing for Large Scale Visual Search]
Efficient Indexing for Large Scale Visual Search

[image: Large-Scale Electron Vortex Structure Formation in a ...]
Large-Scale Electron Vortex Structure Formation in a ...

[image: Exploiting structure in large-scale electrical circuit and power system ...]
Exploiting structure in large-scale electrical circuit and power system ...

[image: Large-Scale Electron Vortex Structure Formation in a ...]
Large-Scale Electron Vortex Structure Formation in a ...

[image: Automatic Reconfiguration for Large-Scale Reliable Storage ...]
Automatic Reconfiguration for Large-Scale Reliable Storage ...

[image: Large-Scale Manifold Learning - Cs.UCLA.Edu]
Large-Scale Manifold Learning - Cs.UCLA.Edu

[image: A POD Projection Method for Large-Scale Algebraic ...]
A POD Projection Method for Large-Scale Algebraic ...

[image: Challenges for Large-Scale Internet Voting Implementations - Kyle ...]
Challenges for Large-Scale Internet Voting Implementations - Kyle ...

[image: Large-Scale Deep Learning for Intelligent Computer Systems - WSDM]
Large-Scale Deep Learning for Intelligent Computer Systems - WSDM

[image: Semi-Supervised Hashing for Large Scale Search - Sanjiv Kumar]
Semi-Supervised Hashing for Large Scale Search - Sanjiv Kumar

[image: Lagrangian Heuristics for Large-Scale Dynamic Facility ...]
Lagrangian Heuristics for Large-Scale Dynamic Facility ...

[image: large scale mmie training for conversational telephone ...]
large scale mmie training for conversational telephone ...

[image: Sailfish: A Framework For Large Scale Data Processing]
Sailfish: A Framework For Large Scale Data Processing

[image: BILGO: Bilateral Greedy Optimization for Large Scale ...]
BILGO: Bilateral Greedy Optimization for Large Scale ...

[image: Towards Energy Proportionality for Large-Scale Latency-Critical ...]
Towards Energy Proportionality for Large-Scale Latency-Critical ...

[image: Adaptive Partitioning for Large-Scale Dynamic Graphs]
Adaptive Partitioning for Large-Scale Dynamic Graphs

[image: Large-scale discriminative language model reranking for voice-search]
Large-scale discriminative language model reranking for voice-search

[image: Semi-Supervised Hashing for Large Scale Search - Sanjiv Kumar]
Semi-Supervised Hashing for Large Scale Search - Sanjiv Kumar

[image: Nested Subtree Hash Kernels for Large-Scale Graph ...]
Nested Subtree Hash Kernels for Large-Scale Graph ...

Large Scale Disk-Based Metric Indexing Structure for ...

Mar 25, 2011 - degradation by its transition from main memory storage to hard drive, is proposed. A recent approach called Metric Inverted File [1] utilizes.

 Download PDF

 610KB Sizes
 7 Downloads
 183 Views

 Report

Recommend Documents

[image: alt]

Lattice Indexing For Large-Scale Web-Search ...

Results are presented for three types of typi- cal web audio ... dio or video file, while ignoring the actual audio content. This paper is ... of storage space. (Chelba ...

[image: alt]

Efficient Indexing for Large Scale Visual Search

local feature-based image retrieval systems, â€œbag of visual termsâ€� (BOV) model is ... with the same data structure, and answer a query in a few milliseconds [2].

[image: alt]

Large-Scale Electron Vortex Structure Formation in a ...

to vorticity in the electron velocity field (see, e.g., [4, 5]), the onset of electron trapping can result in the forma- tion of a vortex or a chain of vortices, depending on ...

[image: alt]

Exploiting structure in large-scale electrical circuit and power system ...

such as the QR method [14] on laptop computers for up to a few thousands 10. 20. 30. 40. 50. 60 nz = 1194. Fig. 3. Sparse Jacobian matrix (left) and dense ...

[image: alt]

Large-Scale Electron Vortex Structure Formation in a ...

The PL represents an axisymmetric electromagnetostatic trap in which elec- trons are retained by the electric field in the axial direc- tion, and by the magnetic field in the radial direction. It is the negative space charge accumulated in the PL tha

[image: alt]

Automatic Reconfiguration for Large-Scale Reliable Storage ...

Automatic Reconfiguration for Large-Scale Reliable Storage Systems.pdf. Automatic Reconfiguration for Large-Scale Reliable Storage Systems.pdf. Open.

[image: alt]

Large-Scale Manifold Learning - Cs.UCLA.Edu

ever, when dealing with a large, dense matrix, as in the case of Isomap, these products become expensive to compute. Moreover, when working with 18M data ...

[image: alt]

A POD Projection Method for Large-Scale Algebraic ...

based method in a projection framework. continuous-time algebraic Riccati equation. Electron. Trans. Numer. Anal., 33:53â€“62, 2009. 1,. 3, 3, 6, 6, 7.

[image: alt]

Challenges for Large-Scale Internet Voting Implementations - Kyle ...

Challenges for Large-Scale Internet Voting Implementations - Kyle Dhillon.pdf. Challenges for Large-Scale Internet Voting Implementations - Kyle Dhillon.pdf.

[image: alt]

Large-Scale Deep Learning for Intelligent Computer Systems - WSDM

Page 10 ... Growing Use of Deep Learning at Google. Android. Apps drug discovery. Gmail. Image understanding. Maps. Natural language understanding.

[image: alt]

Semi-Supervised Hashing for Large Scale Search - Sanjiv Kumar

Currently, he is a Research. Staff Member in the business analytics and ... worked in different advising/consulting capacities for industry research labs and ...

[image: alt]

Lagrangian Heuristics for Large-Scale Dynamic Facility ...

by its number of different hosting units, while additional units provide application, since feasible capacity changes and their corresponding costs can be ...

[image: alt]

large scale mmie training for conversational telephone ...

has been used to train HMM systems for conversational telephone (eval97sub): comparison of acoustic model and LM scaling. The Minitrain 12 ...

[image: alt]

Sailfish: A Framework For Large Scale Data Processing

... data intensive computing has become ubiquitous at Internet companies of all sizes, ... by using parallel dataflow graph frameworks such as Map-Reduce [10], ... Our Sailfish implementation and the other software components developed as ...

[image: alt]

BILGO: Bilateral Greedy Optimization for Large Scale ...

results clearly demonstrate that BILGO can solve large-scale semidefinite ... description of the BILGO algorithm, as well as an analysis of its convergence hyper-parameter Î»reg is set by a typical two-fold cross-validation procedure.

[image: alt]

Towards Energy Proportionality for Large-Scale Latency-Critical ...

Warehouse-scale computer (WSC) systems support popular online services such as ... utilization-based DVFS management are ineffective for OLDI workloads.

[image: alt]

Adaptive Partitioning for Large-Scale Dynamic Graphs

system for large-scale graph processing. In PODC,. 2009. [3] I. Stanton and G. Kliot. Streaming graph partition- ing for large distributed graphs. In KDD, 2012. [4] L. Vaquero, F. Cuadrado, D. Logothetis, and. C. Martella. xdgp: A dynamic graph pro-

[image: alt]

Large-scale discriminative language model reranking for voice-search

Jun 8, 2012 - The Ohio State University ... us to utilize large amounts of unsupervised ... cluding model size, types of features, size of partitions in the MapReduce framework with recently proposed a distributed MapReduce infras-.

[image: alt]

Semi-Supervised Hashing for Large Scale Search - Sanjiv Kumar

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. and a soft assignment strategy was used for deriving the image.

[image: alt]

Nested Subtree Hash Kernels for Large-Scale Graph ...

such as chemical compounds, XML documents, program flows, and social networks. Graph classification thus be- comes an important research issue for better ...

×
Report Large Scale Disk-Based Metric Indexing Structure for ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

