Affine LIBOR models with multiple curves: John Schoenmakers, WIAS Berlin joint with Z. Grbac, A. Papapantoleon & D. Skovmand 9th Summer School in Mathematical Finance Cape Town, 18-20 February 2016

18-20.02.2016

John Schoenmakers ()

MC ALM

18-20.02.2016

1 / 34

Outline 1 Introduction

Pre-crisis markets In-crisis markets LIBOR mechanics 2 Multi-curve LIBOR models

The new landscape 3 Affine LIBOR models with multiple curves

General framework The MC affine LIBOR model Calibration Old and new examples Connections to other frameworks 4 Summary and Outlook 1 / 42

Introduction

Pre-crisis markets

Market size According to the Bank for International Settlements: 6/06

6/07

6/08

6/09

6/10

6/11

Foreign exchange Interest rate Equity-linked Commodity Credit default swaps Unallocated

38 262 6 6 20 35

49 347 8 7 42 61

63 458 10 13 57 82

49 437 6 4 36 72

53 452 6 3 30 38

65 554 7 3 32 46

Total

370

516

684

604

583

707

Table: Notional amounts outstanding for OTC derivatives, billions of US$

2 / 42

Introduction

Pre-crisis markets

Interest rates I 2

Comparison of estimated interest rates (least squares Svensson)

3 2 0

1

interest rate in percent

4

5

Euroland Japan Switzerland USA

0

2

4

6

8

10

time to maturity

Figure: Term structure of EUR, USD, JPY, CHF interest rates; 17.2.2004 Termstructure, February 17, 2004

3 / 42

Introduction

Pre-crisis markets

Interest rates II

0

1-month rate in % 5 10

15

3

1970

1975

1980

1985

1990

1995

time

month rateof at one-month the German market, March 01, 1967rate, – March 31, 1997 Figure:One Evolution German interest 3.1967 – 3.1997

   !"#$#%&'()!"#*+,!.-  "#/ 01 23 45-6!879 +;:8 < >= <? =@"A>BDC"E ? >= <.? =F1A>A.C

film

4 / 42

Introduction

Pre-crisis markets

Evolution of interest rates

Figure: Evolution of interest rate term structure, 2003–2004 5 / 42

Introduction

Pre-crisis markets

LIBOR rates Tenor structure: T = {0 < T1 < T2 < · · · < TN },

I = {1, . . . , N}

B(t,T ): zero coupon bond L(t,T ): discretely compounded forward LIBOR t LIBOR FRA

T

T +δ

1

1 + δL(t, T ) B(t,T ) B(t,T +δ)

FRA: buy 1 T -bond, sell

B(t,T ) B(t,T +δ)

[T + δ]-bonds

“Master” equation

L(t,T ) =

1 δ



B(t,T ) −1 B(t,T + δ)

 (1) 6 / 42

Introduction

In-crisis markets

What happened during the ‘credit crunch’ ? 250 200

Euribor - Eoniaswap spreads spread 1m spread 3m spread 6m spread 12m

bp

150 100 50 0

2006

2007

2008

2009

2010 7 / 42

Introduction

LIBOR mechanics

How is LIBOR really computed? LIBOR panels: 8-16 banks scale, reputation, expertise Question: “At what rate could you borrow funds, were you to do so by asking for and then accepting inter-bank offers in a reasonable market size?” Funds: unsecured interbank cash

8 / 42

Introduction

LIBOR mechanics

Euribor and Eonia mechanics Euribor Panel: 39 EU & 4 international banks scale, reputation, expertise

Question: “What rate do you believe one prime bank is quoting to another prime bank for interbank term deposits within the euro zone?” Eonia = Euro Over Night Index Average / OIS Panel: same Each panel bank submits the total volume of overnight unsecured lending transactions that day and the weighted average lending rate for these transactions Negligible counterparty credit and liquidity risk market proxy to a risk free rate.

the best available

9 / 42

Multi-curve LIBOR models

The new landscape

The new landscape Tenor structures: T x = {0 < T0x < T1x < · · · < TNx = TN }, x ∈ {1, 3, 6, 12}M

T0 T1 T2 T3 T4 T5 T6 T0 T0

T1x1

Tn−1TN

T2x1

TNx1x1

T1x2

TNx2x2

Discount curve: OIS zero coupon bonds T 7→ B(0,T ) = B OIS (0,T ) Forward measures Pxk – numeraire B(·,Tkx ) 10 / 42

Multi-curve LIBOR models

The new landscape

The new landscape – II Definition x The time-t OIS forward rate for [Tk−1 , Tkx ] is

Fkx (t)

1 = δx



x B(t,Tk−1 ) −1 B(t,Tkx )

 (2)

Definition (Mercurio) The time-t FRA rate Lxk (t) is the fixed rate to be exchanged at Tk for the LIBOR x rate L(Tk−1 ,Tkx ) such that the swap has value zero: x Lxk (t) = Exk [L(Tk−1 ,Tkx )|Ft ]

(3)

FRA – OIS spread: Skx (t) := Lxk (t) − Fkx (t) 11 / 42

Multi-curve LIBOR models

The new landscape

The new landscape – III Requirements: Fkx (t) ≥ 0 and Fkx is a Pxk -martingale Lxk (t) ≥ 0 and Lxk is a Pxk -martingale Skx (t) ≥ 0 ⇐⇒ Lxk (t) ≥ Fkx (t) (market observations) Options: 1

Model Fkx and Lxk

2

Model Fkx and Skx

3

Model Lxk and Skx

Mercurio [2010]: “The first choice . . . is the most convenient in terms of model tractability and calibration. . . The problem is that there is no guarantee that the implied spreads will have a realistic behavior in the future, in particular preserving the positive sign.” 12 / 42

Affine LIBOR models with multiple curves

General framework

Constructing ordered martingales > 1 1

Take a random variable YTu > 1, FT -measurable and integrable, and set: Mtu = E[YTu |Ft ],

(4)

then (Mt )0≤t≤T is a martingale and Mt > 1 for all t ∈ [0, T ].

13 / 42

Affine LIBOR models with multiple curves

General framework

Constructing ordered martingales > 1 1

Take a random variable YTu > 1, FT -measurable and integrable, and set: Mtu = E[YTu |Ft ],

(4)

then (Mt )0≤t≤T is a martingale and Mt > 1 for all t ∈ [0, T ]. 2

Require that u 7→ YTu is increasing, then u 7→ Mtu

(5)

is a.s. increasing for all t ∈ [0, T ].

14 / 42

Affine LIBOR models with multiple curves

General framework

Constructing ordered martingales > 1 1

Take a random variable YTu > 1, FT -measurable and integrable, and set: Mtu = E[YTu |Ft ],

(4)

then (Mt )0≤t≤T is a martingale and Mt > 1 for all t ∈ [0, T ]. 2

Require that u 7→ YTu is increasing, then u 7→ Mtu

(5)

is a.s. increasing for all t ∈ [0, T ]. 3

Affine LIBOR model: (Keller-Ressel, P., Teichmann) YTu = ehu,XT i X positive affine process, u ∈ Rd>0 Mtu = E[ehu,XT i |Ft ] = exp(φT −t (u) + hψT −t (u), Xt i)

(6) 15 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Ansatz Modeling OIS forward rates: (ukx )k≥0 ux

1+

δx Fkx (t)

x ) B(t, Tk−1 Mt k−1 = = ux B(t, Tkx ) Mt k

(7)

16 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Ansatz Modeling OIS forward rates: (ukx )k≥0 ux

1+

δx Fkx (t)

x ) B(t, Tk−1 Mt k−1 = = ux B(t, Tkx ) Mt k

(7)

Modeling FRA rates: (vkx )k≥0 vx

1+

δx Lxk (t)

=

Mt k−1 ux

(8)

Mt k

17 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Ansatz Modeling OIS forward rates: (ukx )k≥0 ux

1+

δx Fkx (t)

x ) B(t, Tk−1 Mt k−1 = = ux B(t, Tkx ) Mt k

(7)

Modeling FRA rates: (vkx )k≥0 vx

1+

δx Lxk (t)

=

Mt k−1 ux

(8)

Mt k x

The Pxk -martingale property is obvious (M uk is the density)

18 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Ansatz Modeling OIS forward rates: (ukx )k≥0 ux

1+

δx Fkx (t)

x ) B(t, Tk−1 Mt k−1 = = ux B(t, Tkx ) Mt k

(7)

Modeling FRA rates: (vkx )k≥0 vx

1+

δx Lxk (t)

=

Mt k−1 ux

(8)

Mt k x

The Pxk -martingale property is obvious (M uk is the density) Orderings:  x uk−1 ≥ ukx ⇒ Fkx ≥ 0 automatic: initial values x x vk−1 ≥ uk−1 ⇒ Lxk ≥ Fkx

(?) 19 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Analytical tractability X : affine process under PN    Ex,N ehw ,Xt i = exp φTN −t (w ) + hψTN −t (w ), xi

(9)

20 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Analytical tractability X : affine process under PN    Ex,N ehw ,Xt i = exp φTN −t (w ) + hψTN −t (w ), xi

(9)

Proposition The process X is a time-inhomogeneous affine process under the measure Pxk , for every x, k, with    hw ,Xt i  k,x k,x x (10) Ex,k e = exp φt (w ) + hψt (w ), xi , where   x x φk,x t (w ) := φt ψTN −t (uk ) + w − φt ψTN −t (uk )   ψtk,x (w ) := ψt ψTN −t (ukx ) + w − ψt ψTN −t (ukx ) .

(11) (12) 21 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Caplet pricing Easy: express the payoff of a caplet as: x x δx (L(Tk−1 , Tkx ) − K )+ = (1 + δx L(Tk−1 , Tkx ) − 1 + δx K )+  x x + A +B ·X = e k k Tk−1 − K

where K := 1 + δx K . Apply Fourier methods   x C0 (K , Tkx ) = δx B(0, Tkx ) Exk (L(Tk−1 , Tkx ) − K )+ Z ΛAxk +Bkx ·XTk−1 (R − iv ) KB(0, Tkx ) Kiv −R dv = 2π (R − iv )(R − 1 − iv ) R

(13)

(14)

where ΛAxk +Bkx ·XTk is the Pxk -mgf (known).

22 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Swaption pricing In-crisis: no cancelations . . . x S+ 0 (K , Tpq )

=

B(0, Tpx )

q X

Exp



δx B(Tpx , Tix )



K

Tpx

x (Tpq )

−K

+ 

i=p+1

 = B(0, Tpx ) Exp 

q X

δx B(Tpx , Tix )Lxi (Tpx )

i=p+1



q X

+  δx B(Tpx , Tix )K  

i=p+1

Efficient numerical approximation?

23 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Swaption pricing II Main ingredients: Affine property under forward measures  x  S+ 0 (K , Tpq ) = B(0, TN ) EN

q X

M

x vj−1 Tpx



j=p+1

 = B(0, TN ) EN 

q X j=p+1

= B(0, TN )

− Kx

q X

q X

+  ujx Tpx

Kx M  

j=p+1

M

x vj−1 Tpx



q X

 ujx Tpx



Kx M  1{f (XT x )≥0}  p

j=p+1

h i x vx M0 j−1 Ej−1 1{f (XT x )≥0} p

j=p+1 q X

h i B(0, Tjx ) Exj 1{f (XT x )≥0} p

j=p+1

Linear approximation of the exercise boundary (Singleton & Umantsev) 24 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Swaption pricing III Swaption 2Y2Y

Swaption 2Y2Y

0.58

0.05 Error in bp

Implied Volatility

0.56

0.06 True Approximation

0.54 0.52 0.5

0.04 0.03 0.02 0.01

0.48 0.005

0.01

0.015 Strike

0.02

0 0.005

0.025

0.01

0.015 Strike

Swaption 2Y8Y

0.02

0.025

Swaption 2Y8Y 0.7

True Approximation

0.6 0.5

0.22 Error in bp

Implied Volatility

0.24

0.2 0.18

0.3 0.2 0.1

0.16 0.01

0.4

0.015

0.02

0.025 Strike

0.03

0.035

0 0.01

0.04

0.015

0.02

Swaption 5Y5Y 0.205

0.035

0.04

0.3 0.25

0.195 0.19 0.185

0.2 0.15 0.1

0.18 0.175 0.01

0.03

0.35 True Approximation Error in bp

Implied Volatility

0.2

0.025 Strike Swaption 5Y5Y

0.05 0.015

0.02

0.025 0.03 Strike

0.035

0.04

0.045

0 0.01

0.015

0.02

0.025 0.03 Strike

0.035

0.04

0.045

25 / 42

Affine LIBOR models with multiple curves

The MC affine LIBOR model

Basis swaption pricing −3

Basis Swaption 2Y2Y 50

2.6 True Approximation

48

5.5

42 40

4.5

2

Pct.

44

1.8

3

1.4 0.1

0.15 0.2 Strike in pct.

0.25

1.2 0.05

0.3

0.1

Basis Swaption 2Y8Y

Basis Point

Basis Point

90 80

0.1

0.15 0.2 Strike in pct.

0.25

0.13 0.12

0.1

0.11

0.095

0.1

0.09

0.09

0.1

0.15 0.2 Strike in pct.

0.25

0.08 0.05

0.3

0.1

Absolute Error

0.15 0.2 Strike in pct.

0.25

0.3

0.15 0.2 Strike in pct.

0.25

0.3

0.25

0.3

Relative Error

0.095 True Approximation

0.14

0.09

60

55

0.135 0.085 Pct.

Basis Point

65

0.1

Relative Error

0.11

0.085 0.05

0.3

70

Basis Point

2.5 0.05

0.3

0.105

Basis Swaption 5Y5Y

50 0.05

0.25

Pct.

True Approximation

100

70 0.05

0.15 0.2 Strike in pct. Absolute Error

120 110

4 3.5

1.6

38

Relative Error

x 10

5

2.2 Basis Point

Basis Point

46

36 0.05

−3

Absolute Error

x 10

2.4

0.08

0.13

0.075

0.1

0.15 0.2 Strike in pct.

0.25

0.3

0.05

0.1

0.15 0.2 Strike in pct.

0.25

0.3

0.125 0.05

0.1

0.15 0.2 Strike in pct.

26 / 42

Affine LIBOR models with multiple curves

Calibration

Calibration – model structure Dynamics of FRA rates: 

 x x 1+δx Lxk (t) = exp φTN −t (vk−1 )−φTN −t (ukx )+ ψTN −t (vk−1 ) − ψTN −t (ukx ), Xt

x x Cancelations if vi,k−1 = ui,k x Constraints: ukx ≥ uk+1 and vkx ≥ ukx

M maturities, 2M drivers  X = (X 1,1 , X 2,1 ), . . . , (X 1,M , X 2,M ) Dynamics dXt1,i

=

−λ1,i (Xt1,i

− θ1,i )dt + 2η1,i

dXt2,i = −λ2,i (Xt2,i − θ2,i )dt + 2η2,i

q

Xt1,i dWt1,i + dZti ,

(15)

q

Xt2,i dWt2,i ,

(16) 27 / 42

Affine LIBOR models with multiple curves

Calibration

Calibration – model structure II Hence, the structure is x vM/δ x −1

x v(M−1)/δ x −1 x v(M−2)/δx −1 .. . x v1/δ x −1

= = = =

(0, 0) (0, 0) (0, 0) .. . v¯1/δx −1

... ... ... . .. ...

(0, 0) (0, 0) v¯(M−2)/δx −1 .. . v¯(M−2)/δx −1

(0, 0) v¯(M−1)/δx −1 v¯(M−1)/δx −1 .. . v¯(M−1)/δx −1

 v¯M/δx −1  v¯M/δx −1  v¯M/δx −1 .. .  v¯M/δx −1

where u¯i , v¯i ∈ R2>0 , and x uM/δ x

x u(M−1)/δ x x u(M−2)/δx .. . x u1/δ x

= = = =

(0, 0) (0, 0) (0, 0) .. . u¯1/δx

... ... ... . .. ...

(0, 0) (0, 0) u¯(M−2)/δx .. . v¯(M−2)/δx −1

(0, 0) u¯(M−1)/δx v¯(M−1)/δx −1 .. . v¯(M−1)/δx −1

 u¯M/δx  v¯M/δx −1  v¯M/δx −1 .. .  v¯M/δx −1 .

Allows for sequential calibration 28 / 42

Affine LIBOR models with multiple curves

Calibration

Calibration – caplet data Maturity = 2

1.2

1.2

1.1 1 0.9 0

0.05 Strike Maturity = 4

0

0.05 Strike Maturity = 5

0.62 0.6 0.58 0.05 Strike Maturity = 7

0.55 0.5

0

0.05 Strike Maturity = 8

0.45

0.4

0

0.05 Strike

0.1

0

0.05 Strike Maturity = 6

0.1

0

0.05 Strike Maturity = 9

0.1

0.55 0.5 0.45 0.4

0.1

0.5 Implied Volatility

0.5

0.8

0.6

0.6

0.45

0.1

0.82

0.78

0.1

Implied Volatility

Implied Volatility

Implied Volatility

0.9

0.65

0.64

0

Implied Volatility

1

0.8

0.1

0.66

0.35

1.1

0.45 Implied Volatility

0.8

Maturity = 3 0.84 Implied Volatility

1.3 Implied Volatility

Implied Volatility

Maturity = 1 1.3

0.45 0.4 0.35

0

0.05 Strike

0.1

Model Market

0.4 0.35 0.3 0.25

0

0.05 Strike

0.1

29 / 42

Affine LIBOR models with multiple curves

Calibration

Calibration – caplet data (multiple tenors) Maturity = 1

Maturity = 2

0.7 0.6

0

0.05 Strike

0.8 0.7 0.6 0.5

0.1

Implied Volatility

0.8

0.5

0

Maturity = 4

0.52

0.05 Strike

0.5

0.45

0.4

0.1

0

0.4

0.1

0.1

0.46 0.44 0.42 0.4 0.38

0.1

0

0.05 Strike

0.1

Maturity = 9 0.45 Implied Volatility

Implied Volatility

Implied Volatility

0.05 Strike

0.5

0.45

0.05 Strike

0.48

Maturity = 8

0.5

0.05 Strike

0

0.5

Maturity = 7

0

0.62

Maturity = 6

Implied Volatility

Implied Volatility

Implied Volatility

0.54

0

0.64

0.6

0.1

0.55

0.56

0.35

0.05 Strike

0.66

Maturity = 5

0.58

0.5

Maturity = 3 0.68

0.9 Implied Volatility

Implied Volatility

0.9

0.45 0.4 0.35

0

0.05 Strike

0.1

Model Market

0.4 0.35 0.3 0.25

0

0.05 Strike

0.1

30 / 42

Affine LIBOR models with multiple curves

Old and new examples

Affine processes I Model setup: 1

X = (Xt )0≤t≤TN a time-homogeneous Markov process in D = Rd>0

2

X is affine, if the moment generating function satisfies:    Ex exphu, Xt i = exp φt (u) + hψt (u), xi

3

(17)

where x ∈ D, while φt (u) and ψt (u) are defined on [0, T ] × IT , where n o   IT := u ∈ Rd : Ex ehu,XT i < ∞, for all x ∈ D , (18) the ’domain of exponential moments’.

4

The process X is a regular affine process in the spirit of DFS, and a semimartingale. 31 / 42

Affine LIBOR models with multiple curves

Old and new examples

Affine processes II

Lemma (Riccati equations) The functions φ and ψ satisfy the (generalized) Riccati ODEs ∂ φt (u) = F (ψt (u)), ∂t ∂ ψt (u) = R(ψt (u)), ∂t

φ0 (u) = 0,

(19a)

ψ0 (u) = u,

(19b)

for all suitable 0 ≤ t + s ≤ T and u ∈ IT .

32 / 42

Affine LIBOR models with multiple curves

Old and new examples

Affine processes III Lemma (Riccati equations II) [DFS] showed that F (u) :=

∂ φt (u) ∂t t=0+

and

R(u) :=

∂ ψt (u) ∂t t=0+

(20)

exist for all u ∈ IT and are continuous in u. Moreover, F and R satisfy L´evy–Khintchine-type equations: Z  F (u) = hb, ui + ehξ,ui − 1i m(dξ) (21) D

and Ri (u) = hβi , ui +



i

2

E Z u, u +

 ehξ,ui − 1 − hu, hi (ξ)i µi (dξ),

(22)

D

where (b, m, αi , βi , µi )1≤i≤d are admissible parameters.

33 / 42

Affine LIBOR models with multiple curves

Old and new examples

Affine processes IV Admissible parameters for R2>0 -valued affine processes:   + b= , +

  ∗ β1 = , + 

a = 0,

α1 =

 + ∗ , ∗ 0

  + β2 = ∗   0 ∗ α2 = ∗ +

m, µ1 , µ2 are L´evy measures on R2>0 µ1 , µ2 can have infinite variation ’Classical’ examples: CIR, CIR with jumps, OU processes, . . . 34 / 42

Affine LIBOR models with multiple curves

Old and new examples

New examples I 2D CIR with dependent jumps q = − θ1 )dt + 2η1 Xt1 dWt1 + α1 dZt , q 2 2 dXt = −λ2 (Xt − θ2 )dt + 2η2 Xt2 dWt2 + α2 dZt . dXt1

−λ1 (Xt1

Functional characteristics F (u1 , u2 ) = λ1 θ1 u1 + λ2 θ2 u2 + ` 1 µ

Ri (u1 , u2 ) = −λi ui +

2ηi2 ui2 ,

u1 α1 + u2 α2 , − u1 α1 − u2 α2

i = 1, 2.

Explicit solution of the Riccati equations when λ1 = λ2 35 / 42

Affine LIBOR models with multiple curves

Old and new examples

New examples II Stochastic volatility/intensity on R2>0 p Xt dWt1 + dZt , p dVt = −λ2 (Vt − θ2 )dt + 2η2 Vt dWt2 , dXt = −λ1 (Xt − θ1 )dt + 2η1

where the intensity of Z is an affine function of V : Λt = `0 + `1 · Vt . Functional characteristics u1 , F (u1 , u2 ) = λ1 θ1 u1 + λ2 θ2 u2 + `0 1 µ − u1 R1 (u1 , u2 ) = −λ1 u1 + 2η12 u12 , R2 (u1 , u2 ) = −λ2 u2 + 2η22 u22 + `1

1 µ

u1 , − u1

Explicit solution of the Riccati equations when 2η12 = λ1 µ and λ2 = λ1 /2 36 / 42

Affine LIBOR models with multiple curves

Connections to other frameworks

Connection to LMMs Assume that X is an affine diffusion: OIS dynamics d   √ dFkx 1 + δx Fkx X l x = ψT −t uk−1 − ψTl −t (ukx ) σlT X x,k;l dW x,k x x Fk δ x Fk l=1

FRA dynamics d  √ 1 + δx Lxk X l dLxk = ψT −t (vkx ) − ψTl −t (ukx ) σlT X x,k;l dW x,k x x Lk δx Lk l=1

where x

W

x,k

=W

N



N d Z X X l=k+1 i=1

· x ψTi −t (ul−1 ) − ψTi −t (ulx )

q

Xti σi dt.

0

Built-in displacement Structure of volatility: completely determined by X 37 / 42

Affine LIBOR models with multiple curves

Connections to other frameworks

Connection to HJM & CVA

Extend the model to a continuous tenor: the instantaneous forward rate looks like f (t, T ) = p(t, T ) + q(t, T ) · Xt ,

(23)

while the short rate looks like rt = pt + qt · Xt ,

(24)

where p and q are known in terms of φ and ψ. Consistent CVA computations (work in progress)

38 / 42

Summary and Outlook

Summary and Outlook We have presented . . . a class of tractable LIBOR models for the multiple curve framework explicit examples (multi-dimensional, correlated) numerical methods for swaption pricing calibration to caplets

39 / 42

Summary and Outlook

Summary and Outlook We have presented . . . a class of tractable LIBOR models for the multiple curve framework explicit examples (multi-dimensional, correlated) numerical methods for swaption pricing calibration to caplets Open questions – future work: CVA computation, dependence strucures,. . .

40 / 42

Summary and Outlook

Summary and Outlook We have presented . . . a class of tractable LIBOR models for the multiple curve framework explicit examples (multi-dimensional, correlated) numerical methods for swaption pricing calibration to caplets Open questions – future work: CVA computation, dependence strucures,. . . Z. Grbac, A. Papapantoleon, J. Schoenmakers, D. Skovmand Affine LIBOR models with multiple curves: theory, examples and calibration (SIAM J. on Financial Math. 2015)

41 / 42

Summary and Outlook

Summary and Outlook We have presented . . . a class of tractable LIBOR models for the multiple curve framework explicit examples (multi-dimensional, correlated) numerical methods for swaption pricing calibration to caplets Open questions – future work: CVA computation, dependence strucures,. . . Z. Grbac, A. Papapantoleon, J. Schoenmakers, D. Skovmand Affine LIBOR models with multiple curves: theory, examples and calibration (SIAM J. on Financial Math. 2015)

42 / 42

Libor-Models.pdf

Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Libor-Models.pdf. Libor-Models.pdf. Open. Extract. Open with.

485KB Sizes 0 Downloads 126 Views

Recommend Documents

No documents