y

1

0

1

x

គណះកមមករនពន្ឋ នង ិ ិ េរៀបេរៀង េ



ក លម ឹ ផលគន ុ

ក ែសន ពសដ្ឋ ិ ិ

គណះកមមករ្រតួតពនតយបេចច កេទស ិ ិ េ េ េ

ក លម ឹ ឆុន



ក នន់ សុខ



ក្រសី ទុយ រ ី



ក អុង ឹ សំ

ក ទតយ ិ េម៉ង

ក ្រពម ឹ សុនតយ ិ

គណះកមមករ្រតួតពនយអកខ ិ េ

ក លម ឹ មគក ិ សរិ

ក អុង ឹ សំ

កញញ លី គុ

វរុិ ទ្ឋ

រចនទំពរ័ នង ិ ្រកប

ករយកុំ ពយទ័ ិ ូ រ









្ណ ក -i-

ក ្រពំ ម៉

រមភកថ

sYsþImitþGñksikSa CaTIemRtI ! ! esovePA កំែណលំ ត់គណតវិ ិ ទយថនក់ទ1 ី 2 kMritx
matikaerOg TMB½r CMBUkTI1 lImIténsVIút

01

CMBUkTI2 Gnuvtþn_edrIevénGnuKmn_ CMBUkTI3 emeronTI1 GnuKmn_ GsniTan emeronTI2 GnuKmn_RtIekaNmaRtcRmuH CMBUkTI4 emeronTI1 emeronTI2 CMBUkTI5 emeronTI1 emeronTI2

27 53 65

GaMgetRkalkMNt; maDsUlId nig RbEvgFñÚ

83 96

smIkarDIepr:g;EsüllMdab;TI1 smIkarDIepr:g;EsüúllIenEG‘lMdab;TI2

115 136

- iii -

CMBUkTI1

lImIténsVIút

CMBUkTI1

lImIténsVúIt

emeronsegçb

RbmaNviFIelIlImIt eKmansVIút (a ) nig (b ) Edlman lim a = M nig lim b = N eK)an k> lim ka = k .M x> lim (a + b ) = M + N , lim (a − b ) = M − N K> lim (a b ) = M.N ebI N ≠ 0 enaH lim ba = MN ¡ lImItsVIútFrNImaRtGnnþ k>ebI r > 1 enaH lim r = +∞ ehIy r CasVIútrIkeTArk + ∞ x>ebI r = 1 enaH (r ) CasIVútefrehIy lim r = 1 . K>ebI r = 0 enaH (r ) CasIVútefrehIy lim r = 0 . X>ebI r ≤ −1 enaHsIVú (r ) CasIVútqøas; ehIykalNa n → +∞ ¡

n

n

n

n→ +∞

n→ +∞

n→ +∞

n

n→ +∞

n→ +∞

n

n

n

n

n→ +∞

n

n

n

n

n → +∞

n

n

n

n→ +∞

n

n

n → +∞

n

n

n → +∞

n

-1-

CMBUkTI1

lImIténsVIút

eKminGackMNt;lImItén (r ) )aneT . ¡ sVIútFrNImaRtGnnþEdlrYm ³ sVIút (r ) smmUl − 1 ≤ r ≤ 1 ¡ es‘rIrYm nig es‘rIrIk ³ k-ebIes‘rI ∑ (a ) Caes‘rIrYmenaH lim a n

n



n =1

n

n → +∞

n

=0



x-ebIsIVút (a ) minrYmrk 0 eTenaH ∑ (a ) Caes‘rIrIk . ¡ PaBrYmnigrIkénes‘rIFrNImaRtGnnþ ³ RKb;es‘rIFrNImaRtGnnþ a + ar + ar + ar + .... + ar Edl a ≠ 0 Caes‘rIrYm b¤ rIkeTAtamkrNIdUcxageRkam ³ k-ebI | r |< 1 enaHes‘rIrYmeTArk 1 −a r . x-ebI | r |≥ 1 enaHes‘rIrIk . n

n =1

2

-2-

n

3

n −1

+ ...

CMBUkTI1

lImIténsVIút

lMhat; !>etIsVIút (U ) EdlmantYTUeTAdUcxageRkam CasVIútrYm b¤ rIk ? k> U = 3n + 5n + 1 x> U = 2nn ++n5 K> U = sin5 2n X> U = n2+n3 + n3n+ 5 g> U = nn sin+ n1 c> U = 2 − n3 + 4n @>KNnalImIténsVIútxageRkam 5n + n − n lim k> lim n8n +−3nn +− 11 x> n + n − 1 n

2

2

n

n

2

3

n

n

n

n

n

2

2

3

2

n→ +∞

2

n→ +∞

5n 3 + ( −1)n

2

2

n 2 + sin n lim n→ +∞ 5n 2 + cos πn

K> lim n + (− 1) X> g> lim (n − cos πn) c> lim [− 5n + (− 1) n ] #> KNnalImIténsVIútxageRkam k> lim ( n + 1 − n ) x> lim n ( n − 3 − n ) K> lim (n n + 1 − 1) X> lim ⎛⎜ (n + n1!)!−n! − n2 + 3 ⎞⎟ . n

n→ +∞

2

2

3

n→ +∞

n → +∞

n→ +∞

n→ +∞

2

n→ +∞

n→ +∞ ⎝



-3-

n

3

CMBUkTI1

lImIténsVIút

$>eKmansVIútEdlkMnt;cMeBaHRKb; n ∈ IN mantYTUeTAdUcxageRkam³ n 2 n! = n(n − 1) × ... × 1 U = Edl ,V = n! 2 k>KNna lim UU nig lim VV 3

n

n

n

n

n +1

n → +∞

n +1

n→ +∞

n

n

2n + n 3 lim n→ +∞ n!+ n 3

x>KNna %>KNnalImIténsVIút (a ) EdleKsÁal;tYdUcxageRkam³ k> a = 2 , a = 12 a + 3 x> a = 3 , a = 2a − 5 K> a = 1 , a = 13 a + 43 . ^>Binitües‘rIxageRkamenH etICaes‘rIrIk rW rYm? x> ∑ 1000(1.055) k> ∑ 3.⎛⎜⎝ 32 ⎞⎟⎠ n

1

n +1

1

n +1

n

1

n +1

n



n

n



n =0

n=0

K> g>

n

n+ n ∑ 3 n =1 2n − 1 3 9 27 81 ... 2+ + + + 2 8 32 128 ∞

-4-

2n + 1 ∑ n −1 n =1 2 ∞

X> c> ∑ ( ∞

n =1

2n + 1 − 2n − 1 )

CMBUkTI1

lImIténsVIút

&>rkplbUkénes‘rIxageRkam³ k>1 + 0.1 + 0.01 + 0.001 + ... x> ∑ 4n 2− 1 ∞

2

n =1



X>

n

c>

K> ∑ (2n − 1)(2n + 1) n =1

5(− 1) ∑ 4n n =1 ∞

g> *>KNna k> lim ⎛⎜⎝ 1 − 21 ⎟⎞⎠...⎛⎜⎝ 1 − n1 ⎞⎟⎠ 2

n→ +∞

π⎞ ⎛ ∑ 2⎜ cos ⎟ 3⎠ n=0 ⎝ 2 3 2 ⎛ 2⎞ ⎛ 2⎞ + ⎜ ⎟ + ⎜ ⎟ + ... 3 ⎝ 3⎠ ⎝ 3⎠

1

n



2

x> lim ⎛⎜⎜ n + n + ... + n ⎞⎟⎟ n +2 n +n⎠ ⎝ n +1 !@>KNna lim [(q − 1) + q (q − q ) + ... + q ( ) (q − q )] Edl q = 2 . 1 ( ) (> eK[sVIút a kMNt;eday a = 2 + q Edl q ≠ −1. sikSalImIténsVIút (a ) kalNa n → +∞ . !0>cMeBaHRKb; n ∈ IN eKman n→ +∞

4

4

2

4

2 n −1

2

n

n −1

n→ +∞

1 2

n

n

n

n

n 2 2 2 2 Sn = + + ... + = ∑ (2n − 1)(2n + 1) p=0 (2p + 1)(2p + 3) 1× 3 3 × 5

-5-

CMBUkTI1

lImIténsVIút

k>KNna S CaGnuKmn_én n edayeRbI (2p + 1)(22p + 3) CaTRmg; (2pa+ 1) + (2pb+ 3) . x>KNna lim S . !!>eKmanes‘rIGnnþmYy r r r r + + + ... + + ... bgðajfaes‘rIGnnþ r +1 n

n

n→ +∞

2

2

2

2

(r

2

2

)

+1

(r

2

2

+1

)

n −1

enaHrYmcMeBaHRKb;témø r . !@>kMNt;es‘rIxageRkam etIes‘rImYyNarYm mYyNarIk? ebICaes‘rIrYm cUrrkplbUk. k> ∑ 2⎛⎜⎝ cos π3 ⎞⎟⎠ x> ∑ ⎛⎜⎝ tan π4 ⎞⎟⎠ ∞

n

n



n =1

n =1

5(− 1) ∑ n 4 n =1 ∞



n

K> X> . !&>eKman ΔABC mYymanRklaépÞesμInwg 6 Ékta. sg; ΔA' B' C'; eday A' , B' nig C' CacMnuckNþalénRCug . cUrkMNt;plbUk S = S + S + S + ... . n ∑ n =1 2n + 5

1

2

-6-

3

CMBUkTI1

lImIténsVIút

dMeNaHRsay !> etIsVIút (U ) EdlmantYTUeTAdUcxageRkam CasVIútrYm b¤ rIk ? k> U = 3n + 5n + 1 x> U = 2nn ++n5 K> U = sin5 2n X> U = n2+n3 + n3n+ 5 g> U = nn sin+ n1 c> U = 2 − n3 + 4n dMeNaHRsay sikSaPaBrYm b¤ rIkénsVIút k> U = 3n + 5n + 1 eKman lim U = lim (3n + 5n + 1) n

2

2

n

n

2

3

n

n

n

n

2

n

2

2

n

2

n → +∞

n

n → +∞

5 1 ⎤ ⎡ = lim ⎢n 2 ( 3 + + 2 )⎥ n → +∞ ⎣ n n ⎦ = lim ( 3n 2 ) = +∞ n → +∞

dUcenH (U ) CasIVúrIkxiteTArk + ∞ . x> U = 2nn ++n5 eKman lim U = lim 2nn ++n5 = lim 2nn n

2

n

2

2

2

n → +∞

n

n → +∞

2

-7-

n → +∞

2

=

1 2

CMBUkTI1

lImIténsVIút

dUcenH (U ) CasIVútrYmxiteTArk 12 . K> U = sin5 2n eKman − 1 ≤ sin 2n ≤ 1 naM[ − 51 ≤ U ≤ 51 eday lim 51 = 0 enaH lim U = 0 . dUcenH (U ) CasIVútrYmxiteTArk 0 . X> U = n2+n3 + n3n+ 5 n

n

n

n

n

n → +∞

n

n → +∞

n

n

n

3

n

eKman

2

⎛ 2n 3n 3 ⎞ ⎟⎟ + 2 lim Un = lim ⎜⎜ n → +∞ n → +∞ n + 3 n + 5⎠ ⎝ ⎛ 2n 3n 3 ⎞ = lim ⎜⎜ + 2 ⎟⎟ n → +∞ n n ⎠ ⎝ = lim ( 2 + 3n ) = +∞ n → +∞

dUcenH (U ) CasIVútrIkxiteTArk + ∞ . g> U = nn sin+ n1 eKman − 1 ≤ sin n ≤ 1 naM[ − n n+ 1 ≤ u ≤ n n+ 1 eday lim n n+ 1 = 0 enaH lim U = 0 . dUcenH (U ) CasIVútrYmxiteTArk 0 . n

n

2

n

2

n → +∞

2

n → +∞

n

-8-

n

2

CMBUkTI1

lImIténsVIút

c> U = 2 − n3 + 4n eKman lim U = lim ⎛⎜⎝ 2 − n3 + 4n ⎞⎟⎠ 3 = 2 ¬eRBaH lim = lim n dUcenH (U ) CasIVútrYmxiteTArk 2 . @>KNnalImIténsVIútxageRkam k> lim n8n +−3nn +− 11 x> lim 5nn n

n → +∞

n

n → +∞

n → +∞

n → +∞

4 =0 n

¦

n

2

2

n→ +∞

5n 3 + ( −1)n

K> lim n + (− 1) g> lim (n − cos πn) dMeNaHRsay KNnalImIténsVIútxageRkam k> lim n8n +−3nn +− 11 n

n→ +∞

2

2

n→ +∞

2

n→ +∞

2

n2 1 = lim = n → +∞ 8n 2 8 5n 3 + n 2 − n lim n→ +∞ n 2 + n − 1 5n 3 = lim 2 = lim 5n = +∞ n → +∞ n n → +∞

x>

-9-

+ n2 − n 2 n→ +∞ +n−1 n 2 + sin n lim n→ +∞ 5n 2 + cos πn 3

X> c> lim [− 5n n → +∞

3

+ ( − 1) n 3 n

]

CMBUkTI1

K> lim

lImIténsVIút 5n 3 + ( −1)n

n + ( − 1) 5n 3 = lim = lim 5n 2 = +∞ n → +∞ n n → +∞ n 2 + sin n lim n→ +∞ 5n 2 + cos πn sin n 1+ 2 n = lim cos πn n → +∞ 5+ n2 1 sin n 1 − 1 ≤ sin n ≤ 1 − 2≤ 2 ≤ 2 n n n 1 sin n lim → 0 n → +∞ =0 2 2 n → +∞ n n 1 cos( πn ) 1 − 1 ≤ cos(πn ) ≤ 1 − 2≤ ≤ 2 n n2 n 1 cos( πn ) lim → 0 n → +∞ =0 2 2 n → +∞ n n 2 n + sin n 1 = lim n → +∞ 5n 2 + cos πn 5 n

n→ +∞

X>

eday ehIy dUcKñaEdr ehIy dUcenH g> lim (n n→ +∞

enaH kalNa

enaH

enaH

kalNa

enaH

.

2

− cos 2 πn )

⎡ 2 cos2 πn ⎤ )⎥ = +∞ = lim ⎢n (1 − 2 n → +∞ n ⎣ ⎦ 2 cos πn 1 cos 2 πn 0≤ ≤ 2 ⇒ lim =0 2 2 n → +∞ n n n

eRBaH

- 10 -

.

CMBUkTI1

lImIténsVIút

#> KNnalImIténsVIútxageRkam k> lim ( n + 1 − n ) x> lim n ( K> lim (n n + 1 − 1) X> lim ⎛⎜ (n + n1!)!−n! − n2 + 3 ⎞⎟ . ⎝ ⎠ dMeNaHRsay KNnalImIténsVIútxageRkam k> lim ( n + 1 − n ) n→ +∞

n→ +∞

2

n→ +∞

n→ +∞

n→ +∞

= lim

n → +∞

= lim

n → +∞

n +1− n n+1+ n 1 =0 n+1+ n

x> lim n ( n→ +∞

n − 3 − n)

n (n − 3 − n ) n → +∞ n−3+ n n = −3 lim n → +∞ n − 3 + n n = −3 lim n → +∞ n + n n 3 = −3 lim =− n → +∞ 2 n 2

= lim

- 11 -

n − 3 − n)

CMBUkTI1

lImIténsVIút

K> lim (n n→ +∞

)

n2 + 1 − 1

1 ⎤ ⎡ = lim ⎢n( n 2 + 1 − )⎥ n → +∞ ⎣ n ⎦ = lim n n 2 + 1 = +∞ n → +∞

X> lim ⎛⎜ (n + n1!)!−n! − n2 + 3 ⎞⎟ n→ +∞ ⎝



⎡ n! 2 ⎤ = lim ⎢ − + 3⎥ n → +∞ n! (n + 1) − n! n ⎣ ⎦ ⎞ ⎛1 2 ⎞ ⎛ 1 = lim ⎜ − + 3 ⎟ = lim ⎜ − + 3 ⎟ = 3 n → +∞ ⎝ n n ⎠ n → +∞ ⎝ n ⎠

$>eKmansVIútEdlkMnt;cMeBaHRKb; n ∈ IN mantYTUeTAdUcxageRkam³ 2 n n! = n(n − 1) × ... × 1 Edl ,V = U = n! 2 k>KNna lim UU nig lim VV n

3

n

n

n

n +1

n → +∞

n

n +1

n→ +∞

n

2n + n 3 lim n→ +∞ n!+ n 3

x>KNna dMeNaHRsay k>KNna lim UU nig n +1

n → +∞

eKman

n

Vn+1 n→ +∞ V n lim

2n n3 U n = n , Vn = n! 2

Edl n! = n(n − 1) × ... × 1

- 12 -

CMBUkTI1

eK)an eK)an ehIy eK)an

lImIténsVIút (n + 1)3 n +1 Un + 1 (n + 1)3 1 1 3 2 = = = ( 1 + ) 3 3 Un 2 n n 2n 2n U 1 lim n + 1 = n → +∞ U 2 n 2n + 1 2 Vn + 1 (n + 1)! = = n+1 Vn 2n n! V 2 lim n + 1 = lim =0 n → +∞ n + 1 n → +∞ V n 2n + n 3 lim n→ +∞ n!+ n 3 n3 n 2 (1 + n ) 2n + n 3 2 lim = lim 3 n → +∞ n!+ n n → +∞ n3 n! (1 + ) n! n 2 = lim = +∞ n → +∞ n!

.

x>KNna eK)an

- 13 -

CMBUkTI1

lImIténsVIút

%>KNnalImIténsVIút (a ) EdleKsÁal;tYdUcxageRkam³ k> a = 2 , a = 12 a + 3 x> a = 3 , a = 2a − 5 K> a = 1 , a = 13 a + 43 . dMeNaHRsay KNnalImIténsIVút (a ) k> a = 2 , a = 12 a + 3 KNnatYTUeTAénsIVút a = 12 a + 3 smIkarsmÁal;énsIVútKW r = 12 r + 3 ⇒ r = 6 tagsIVútCMnYy b = a − 6 eK)an b = a − 6 = ⎛⎜⎝ 12 a + 3 ⎟⎞⎠ − 6 = 12 (a − 6) eKTaj b = 12 b enaH (b ) CasIVútFrNImaRtman q = 12 nigtY b = a − 6 = 2 − 6 = −4 eK)an b = −4 × ⎛⎜⎝ 12 ⎞⎟⎠ naM[ a = 6 − 4⎛⎜⎝ 12 ⎞⎟⎠ dUcenH lim a = 6 . n

1

n +1

1

n +1

n

1

n +1

n

n

n

n +1

1

n

n +1

n

n +1

n

n +1

n +1

1

n

n

n

n

n

1

n −1

n −1

n

n → +∞

n

n

- 14 -

CMBUkTI1

lImIténsVIút

x> a = 3 , a = 2a − 5 edaHRsaydUcxagelIeK)an a = 5 − 2 nig K> a = 1 , a = 13 a + 43 . n +1

1

n

n

n

n +1

1

lim an = −∞

n → +∞

n

⎛1⎞ an = 2 − ⎜ ⎟ ⎝ 3⎠

n −1

edaHRsaydUcxageleK)an nig lim a ^>Binitües‘rIxageRkamenH etICaes‘rIrIk rW rYm? x> ∑ 1000(1.055) k> ∑ 3.⎛⎜⎝ 32 ⎞⎟⎠ ∞

n

n → +∞



n

=2

n

n =0

n=0

n+ n ∑ 3 n =1 2n − 1 3 9 27 81 2+ + + + ... 2 8 32 128

2n + 1 ∑ n −1 n =1 2



K> g> dMeNaHRsay sikSaPaBrYm b¤ rIkénes‘rI k> ∑ 3.⎛⎜⎝ 32 ⎞⎟⎠ plbUkedayEpñkrbs;es‘rIKW ∞

.



X> c> ∑ ( ∞

n =1

2n + 1 − 2n − 1 )

n

n=0

n +1

⎛ 3⎞ 1 − ⎜ ⎟ k n ⎛ 3⎞ ⎝ 2⎠ Sn = ∑ 3⎜ ⎟ = 3 × 3 k =0 ⎝ 2 ⎠ 1− 2

- 15 -

⎡ ⎛ 3 ⎞n + 1 ⎤ = −3 ⎢1 − ⎜ ⎟ ⎥ ⎢⎣ ⎝ 2 ⎠ ⎥⎦

CMBUkTI1

eKman

lImIténsVIút ⎡ ⎛ 3 ⎞n + 1 ⎤ lim Sn = −3 lim ⎢1 − ⎜ ⎟ ⎥ = +∞ n → +∞ n → +∞ ⎢⎣ ⎝ 2 ⎠ ⎥⎦ n ∞ ⎛ 3⎞ ∑ 3.⎜ ⎟ n=0 ⎝ 2⎠

Caes‘rIrIk . dUcenH x> ∑ 1000(1.055) Caes‘rIrIkeRBaH r = 1.055 > 1 . K> ∑ 2nn+ −n1 Caes‘rIrYm . ∞

n

n =0 ∞ n =1

3

2n + 1 ∑ n −1 n =1 2 2n + 1 1 ⎞ ⎛ lim n − 1 = lim ⎜ 2 + n −1 ⎟ = 2 ≠ 0 n → +∞ 2 n → +∞ ⎝ 2 ⎠ ∞ 2n + 1 ∑ n −1 n =1 2 3 9 27 81 2+ + + + ... 2 8 32 128 n −1 3 9 ⎛ 3⎞ Sn = 2 + + + ... + 2 ⎜ ⎟ 2 8 ⎝ 4⎠ n ⎛ 3⎞ 1− ⎜ ⎟ n ⎡ 3 4⎠ ⎛ ⎞ ⎤ ⎝ = 2× = 8 ⎢1 − ⎜ ⎟ ⎥ 3 ⎢⎣ ⎝ 4 ⎠ ⎥⎦ 1− 4 ⎡ ⎛ 3 ⎞n ⎤ lim Sn = 8 lim ⎢1 − ⎜ ⎟ = 8⎥ n → +∞ n → +∞ ⎢⎣ ⎝ 4 ⎠ ⎥⎦ ∞

X> eKman dUcenH g>

Caes‘rIrIk .

plbUkedayEpñk

enaHvaCaes‘rIrYm .

eday

- 16 -

CMBUkTI1

lImIténsVIút

c> ∑ ( 2n + 1 − 2n − 1) manplbUkedayEpñk ∞

n =1

S n = ∑ ( 2k + 1 − 2k − 1 ) = 2n + 1 − 1 n

k =1

eday lim S = lim ( 2n + 1 − 1) = +∞ dUcenH ∑ ( 2n + 1 − 2n − 1) Caes‘rIrIk . &>rkplbUkénes‘rIxageRkam³ k>1 + 0.1 + 0.01 + 0.001 + ... x> ∑ 4n 2− 1 n → +∞ ∞

n

n → +∞

n =1



n =1



π⎞ ⎛ ∑ 2⎜ cos ⎟ 3⎠ n=0 ⎝ 2 3 2 ⎛ 2⎞ ⎛ 2⎞ + ⎜ ⎟ + ⎜ ⎟ + ... 3 ⎝ 3⎠ ⎝ 3⎠

X>

K> ∑ (2n − 1)(2n + 1) 1

n =1

5(− 1) ∑ 4n n =1 ∞

2

n



n

g> c> dMeNaHRsay rkplbUkénes‘rI ³ k>1 + 0.1 + 0.01 + 0.001 + ... eyIgeXIjfa 1 , 0.1 , 0.01 , ... Caes‘rIFrNImaRtGnnþEdl a = 1 nig r = 0.1 . - 17 -

CMBUkTI1

lImIténsVIút

dUcenH 1 + 0.1 + 0.01 + 0.001 + ... = 1 −10.1 = 109 . x> ∑ 4n 2− 1 eKman 4k 2− 1 = (2(2kk++11) )(− 2(2kk−−11) ) = 2k1− 1 − 2k1+ 1 eK)an ∞

n =1

2

2

1 ⎞ 1 2n ⎛ 2 ⎞ n ⎛ 1 1 = − = − = ⎜ ⎟ ⎜ ⎟ ∑ 2 ∑ 2k + 1 ⎠ 2n + 1 2n + 1 k = 1 ⎝ 4k − 1 ⎠ k = 1 ⎝ 2k − 1 2n n → +∞ →1 2n + 1 ∞ 2 ∑ 4n 2 − 1 = 1 n =1 ∞ 1 1 = ∑ (2n − 1)(2n + 1) 2 n =1 n

kalNa dUcenH

enaH

K>

π⎞ 2 ⎛ = 2 cos =4 ∑ ⎜⎝ 3 ⎟⎠ π n=0 1 − cos 3 n ∞ 5(− 1) 1 = 5 × =4 ∑ 4n 1 n =1 1+ 4 2 3 2 ⎛ 2⎞ ⎛ 2⎞ 2 1 + ⎜ ⎟ + ⎜ ⎟ + ... = . =2 3 ⎝ 3⎠ ⎝ 3⎠ 3 1− 2 3

X> g> c>



n

- 18 -

CMBUkTI1

lImIténsVIút

*>KNna k> lim ⎛⎜⎝ 1 − 21 ⎟⎞⎠...⎛⎜⎝ 1 − n1 ⎞⎟⎠ n→ +∞

2

2

1 k2 − 1 k − 1 k + 1 1− 2 = = × k k k k2 n 1 ⎞ n ⎛ k − 1⎞ n ⎛ k + 1⎞ ⎛ ∏ ⎜⎝ 1 − k 2 ⎟⎠ = ∏ ⎜⎝ k ⎟⎠ × ∏ ⎜⎝ k ⎟⎠ k=2 k=2 k=2 1 n+1 n+1 = . = n 2 2n n+1 1 1⎞ ⎛ 1⎞ ⎛ = lim ⎜ 1 − 2 ⎟...⎜ 1 − 2 ⎟ = lim n → +∞ ⎝ 2 2 ⎠ ⎝ n ⎠ n → +∞ 2n ⎛ n ⎞ n n ⎟⎟ lim ⎜⎜ 4 ... + + + 4 4 n→ +∞ n +2 n +n⎠ ⎝ n +1

Binitü eK)an

dUcenH >

x> cMeBaHRKb; k = 1 , 2 , ..., n eKman n4 + 1 ≤ n4 + k ≤ n4 + n

n4 + 1 ≤ n4 + k ≤ n4 + n n n n ≤ ≤ n4 + n n4 + k n4 + 1 n n n n n n ≤ ≤ ∑ n4 + n ∑ n4 + k ∑ n4 + 1 k =1 k =1 k =1 2 n n n n2 ≤∑ 4 ≤ 4 n + n k =1 n + k n4 + 1 n2 n2 lim = lim =1 n → +∞ n 4 + n n → +∞ n 4 + 1

eKTaj eday

- 19 -

CMBUkTI1

lImIténsVIút

eKTaj dUcenH (>KNna

n

lim

n



=1

.

n +k n n ⎞ ⎛ n + + + lim ⎜ 4 ... ⎟=1 4 4 n → +∞ ⎝ n + 1 n +2 n +n⎠ n → +∞

[

4

k =1

(

)

(

)]

(

)

(

)]

lim (q − 1) + q 2 q 2 − q + ... + q 2(n − 1 ) qn − qn − 1

n → +∞

1 22

Edl q = . dMeNaHRsay [

lim (q − 1) + q 2 q 2 − q + ... + q 2(n − 1 ) qn − qn − 1

n → +∞

n

q 2 ( k − 1 ) (q k − q k − 1 ) ∑ n → +∞

= lim

k =1 n

= lim

n → +∞

3k − 3 q (q − 1) ∑

k =1

1 − q 3n = lim (q − 1) n → +∞ 1 − q 3 = lim

1−

n → +∞

eRBaH

3n 22

1−

lim

n → +∞

3 22

3n 22

1 (2 2

− 1) = +∞

= +∞

. - 20 -

CMBUkTI1

lImIténsVIút

!0> eK[sVIút (a ) kMNt;eday a = 2 +1q Edl q ≠ −1. sikSalImIténsVIút (a ) kalNa n → +∞ . dMeNaHRsay sikSalImIténsVIút eK)an lim a = lim 2 +1q -ebI q > 1 enaH lim a = lim 2 +1q = 0 1 13 = = lim a lim -ebI q = 1 enaH 2+q -ebI − 1 < q < 1 enaH lim a = lim 2 +1q = 12 -ebI q < −1 enaH lim a = lim 2 +1q = 12 !!>cMeBaHRKb; n ∈ IN eKman n

n

n

n

n → +∞

n

n

n → +∞

n

n → +∞

n → +∞

n

n → +∞

n

n → +∞

n → +∞

n

n

n → +∞

n

n

n → +∞

n → +∞

n

n 2 2 2 2 Sn = + + ... + = ∑ (2n − 1)(2n + 1) p=0 (2p + 1)(2p + 3) 1× 3 3 × 5

k>KNna S CaGnuKmn_én n edayeRbI (2p + 1)(22p + 3) CaTRmg; (2pa+ 1) + (2pb+ 3) . x>KNna lim S . n

n→ +∞

n

- 21 -

CMBUkTI1

lImIténsVIút

dMeNaHRsay k>KNna S CaGnuKmn_én n n

2

(2p + 1)(2p + 3)

=

a b + (2p + 1) (2p + 3)

.

b¤ 2 = a(2p + 3) + b(2p + 1) b¤ 2 = (2a + 2b)p + 3a + b ⎧ 2a + 2b = 0 eKTaj ⎨3a + b = 2 naM[ a = 1 , b = −1 ⎩

eK)an (2p + 1)(2 2p + 3) = 2p1+ 1 − 2p1+ 3 ehIy S

n

n

2 p = 0 ( 2p + 1)( 2p + 3) n ⎛ 1 1 ⎞ = ∑⎜ − ⎟ 2p + 3 ⎠ p = 0 ⎝ 2p + 1

=∑

1 2(n + 1) = 2n + 3 2n + 3 2(n + 1) Sn = 2n + 3 = 1−

dUcenH . x>KNna lim S eKman S = 1 − 2n1+ 3 dUcenH lim S = lim (1 − 2n1+ 3 ) = 1 . n

n→ +∞

n

n → +∞

n

n → +∞

- 22 -

CMBUkTI1

lImIténsVIút

!@>eKmanes‘rIGnnþmYy

r2 r2 r2 + + ... + + ... r + 2 n −1 2 r + 1 r2 + 1 2 r +1 2

(

)

bgðajfaes‘rIGnnþenaHrYmcMeBaHRKb;témø r . dMeNaHRsay bgðajfaes‘rIGnnþrYmcMeBaHRKb;témø r eKman r + r r+ 1 + r + ... + r 2

2

2

(r

2

2

2

)

+1

n

(r

2

plbUledayEpñkrbs;es‘rIenHKW b¤ S

(

2

+1

)

n −1

+ ...

r2 Sn = ∑ 2 k −1 k = 1 (r + 1) n

n

1 ∑ (r 2 + 1)k −1 k =1 1 1− 2 ⎡ ⎤ 1 (r + 1)n 2 = (r 2 + 1) ⎢1 − 2 =r × n⎥ 1 + ( r 1 ) ⎣ ⎦ 1− 2 r +1 1 →0 r n → +∞ 2 n (r + 1)

=r

)

2

kalNa enaH cMeBaHRKb; . eK)an lim S = r + 1 naM[es‘rIxagelICaes‘rIbRgYm . !#>kMNt;es‘rIxageRkam etIes‘rImYyNarYm mYyNarIk? ebICaes‘rIrYm cUrrkplbUk. x> ∑ ⎛⎜⎝ tan π4 ⎞⎟⎠ k> ∑ 2⎛⎜⎝ cos π3 ⎞⎟⎠ 2

n → +∞



n

n



n =1

n =1

- 23 -

n

CMBUkTI1

lImIténsVIút



K> dMeNaHRsay sikSaPaBrIk rYmrbs;es‘rI

X>

n ∑ n =1 2n + 5



n =1

eRBaHvaCaes‘rIFrNImaRtGnnþman

n

.

π 3 =2 π 1 − cos 3 π 1 | r |= cos = < 1 3 2

k> ∑ 2⎛⎜⎝ cos π3 ⎞⎟⎠ Caes‘rIrYmxireTArk n

5(− 1) ∑ n 4 n =1 ∞

2 cos

.

π⎞ ⎛ tan ⎟ ∑⎜ 4⎠ n =1 ⎝ n π⎞ ⎛ lim an = 1 ≠ 0 an = ⎜ tan ⎟ = 1n = 1 → +∞ n 4 ⎝ ⎠ n ∞ π⎞ ⎛ ∑ ⎜ tan ⎟ 4⎠ n =1 ⎝ ∞ n n an = ∑ 2n + 5 n =1 2n + 5 ∞ n n 1 lim an = lim = ∑ n → +∞ n → +∞ 2n + 5 2 n =1 2n + 5 ∞ 5(− 1)n −5 = −4 ∑ n 1 4 n =1 1+ 4

x>



eday

n

ehIy

dUcenH K>

Caes‘rIBRgIk . eday manlImIt naM[ Caes‘rIBRgIk .

X>

Caes‘rIrYmxiteTArk

eRBaHvaCaes‘rIFrNImaRtGnnmanþ - 24 -

1 1 | r |=| − |= < 1 4 4

.

CMBUkTI1

lImIténsVIút

!$>eKman ΔABC mYymanRklaépÞesμInwg 6 Ékta. sg; ΔA' B' C'; eday A' , B' nig C' CacMnuckNþalénRCug ΔABC . cUrkMNt;plbUk S = S + S + S + ... . dMeNaHRsay kMNt;plbUk S = S + S + S + ... 1

1

2

2

3

A

B'

A' '

C'

C' '

B' B

A'

C

tag a , b , c CaRCug ΔABC EdlmanépÞRkLa S = 6 nigknøHbrimaRt p = a + b2 + c tag S CaRkLaépÞ ΔA' B' C' S CaRkLaépÞ ΔA' ' B' ' C' ' -------------------------------1

2

3

- 25 -

3

CMBUkTI1

lImIténsVIút

eday A ' , B' , C' CacMNuckNþalén BC , CA , AB enaH a b c p ni g B' C' = ; A' C' = , A' B' = p' = 2 2 2 2 eK)an S = p2 ( p2 − a2 )( p2 − b2 )( p2 − 2c ) = 14 S dUcKñaEdreKTaj S = 41 S ; S = 41 S , ..... eK)an S = S + S + ..... = 1S− q = 6 1 = 8 . 2

1

3

2

1

4

3

1

1

1

2

1−

- 26 -

4

CMBUkTI2

edrIevénGnuKmn_

CMBUkTI2

emeronsegçb

edrIevénGnuKmn_

eK[GnuKmn_ f kMNt;nigCab;ehIymanedrIevelI I . ebImanBIrcMnYnBit m nig M EdlcMeBaHRKb; x ∈ I : m ≤ f ' ( x) ≤ M enaHRKb;cMnYnBit a , b ∈ I Edl a < b eK)an m(b − a) ≤ f (b) − f (a) ≤ M(b − a) .  eK[GnuKmn_ f manedrIevelIcenøaH [a , b ] . ebImancMnYn M EdlRKb; x ∈ [a , b ] : | f ' (x) |≤ M enaHeK)an ³ | f (b ) − f (a) |≤ M | b − a | .  ebI f CaGnuKmn_Cab;elIcenøaH [a , b ] manedrIevelIcenøaH (a , b ) nig f (a) = f (b) enaHmancMnYn c ∈ (a , b ) mYyy:agticEdl f ' (c) = 0  ebI f CaGnuKmn_Cab;elIcenøaH [a , b ] manedrIevelIcenøaH (a , b ) enaHmancMnYn c ∈ (a , b ) mYyy:agticEdl f ' (c) = f (bb) −− fa(a) . 

- 27 -

CMBUkTI2

edrIevénGnuKmn_

lMhat; !>rk dy , Δy , dy − Δy nig Δdyy énGnumn_xageRkam k> y = x − 3x + 4 cMeBaH x = 3 , Δx = 0.2 x> y = 12 − 5x cMeBaH x = 2 , Δx = 0.07 . @>eRbIDIepr:g;Esül edm,IrktémøRbEhléncMnYnxageRkam³ k> 37 x> 65 K> 26 X> 126 g> 50.4 c> 79.5 q> 62.3 C> 218.6 #> Rkumh‘unplitsmÖar³eRbIR)as;mYy)anTTYlR)ak;cMnUlsrubBIkar lk; smÖar³ x eRKOgEdl[tamGnuKmn_ x R( x ) = 20x − Ki t CamW u n erolEdl 0 ≤ x ≤ 600 . 30 edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNUl ebI smÖar³ lk;ERbRbYlBI 150 eRKOg eTA 160 eRKOg . $> eragcRkplitsmÖar³eRbIR)as;mYy)ancMNayR)ak;srubkñugkar 2

3

3

3

3

2

- 28 -

CMBUkTI2

edrIevénGnuKmn_

plitsmÖar³ x eRKOgEdl[tamGnuKmn_ C( x ) = 930 + 15x + 0.2x Ban;erol . edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNayebIsmÖar³ Edl)anplitekInBI 60 eRKOg eTA 62 eRKOg . %>shRKasplitsmÖar³eGLicRtUnicmYy )ancMNayR)ak;srubkñúg mYyExsRmab;plitsmÖar³ x eRKOgEdl[tamGnuKmn_ C( x ) = 0.1x + 4x + 200 KitCaBan;erol . ehIyshRKas)an TTYlR)ak;cMNUlmkvij[tamGnuKmn_ R( x ) = 54x − 0.3x KitCaBan;erol . k>sresrGnuKmn_R)ak;cMeNj P(x) x>edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMeNj ebIbrimaNsmÖar³Edl)anlk;ekInBI 40 eRKOg eTA 44 eRKOg . ^>tamkarGegátrbs;Gñksßiti)an[dwgfa cMnYnRbCaBlrdæenAkñugTIRkug mYyryHeBl t qñaMeTAmuxeTot mankarekIneLIgEdl[tamGnuKmn_ P(t ) = 10(40 + 2t ) − 160t ¬nak;¦ . edayeRbIDIepr:g;EsüledIm,I)a:n;sμankMeNInRbCaBlrdækñúgTIRkugenaH 2

2

2

2

- 29 -

CMBUkTI2

edrIevénGnuKmn_

ebI t ERbRbYlBI 6 eTA 6.25 qñaM . &>)aLúgmYymanragCaEsV‘ . eRbIDIepr:g;EsüledIm,IKNnatémø RbEhlénkMeNInmaD)aLúg ebIeBlRtUvkMedAéf¶)aLúgrIkmaDEdl kaMrbs;vaERbRbYlBI 2m eTA 2.15m . *>eK[GnuKmn¾ f manedrIevelI (− 2 , ∞ ) Edl f (x) = x + 2 . k>rktMélGmén f (x) cMeBaHRKb; x ∈ [− 1 , 2]. x>bgðajfa cMeBaHRKb; x ∈ [− 1 , 2] eK)an 14 x + 54 ≤ x + 2 ≤ 12 x + 32 . (>eK[GnuKmn¾ f kMNt;elI ⎡⎣⎢ 0 , π2 ⎞⎟⎠ Edl f (x) = tan x . bgðajcMeBaHRKb;cMnYnBit a nig b Edl 0 ≤ a ≤ b ≤ π2 b−a b−a ≤ tan b − tan a ≤ eK)an cos . a cos b !0>eK[GnuKmn¾ f kMNt;elIcenøaH I . eRbIRTwsþIbTr:Ul ¬ebIGac¦ rkRKb;témø c kñúgcenøaH I Edl f ' (c) = 0 ³ k> f (x) = x − 4x , c ∈ (− 2 , 2) x> f (x) = (x − 1)(x − 2)(x − 3) , c ∈ (1 , 3) 2

2

3

- 30 -

CMBUkTI2

edrIevénGnuKmn_

x 2 − 2x − 3 f (x ) = , c ∈ (− 1 , 3 ) x+2 x2 − 1 f (x ) = , c ∈ (− 1 , 1) x ⎛π π⎞ f (x ) = sin 2x , c ∈ ⎜ , ⎟ ⎝ 6 3⎠ x πx f (x ) = − sin , c ∈ (− 1 , 0 ) 2 6

K> X> g> . c> !!>eK[GnuKmn¾ f kMNt;elIcenøaH I . eRbIRTwsþIbTtémømFüm rkRKb;témø c ∈ (a , b) Edl f ' (c) = f (bb) −− fa(a) ³ k> f (x) = x , c ∈ (− 2 , 1) x> f (x) = x(x − x − 2) , c ∈ (− 1 , 1) K> f (x) = x , c ∈ (0 , 1) X> f (x) = x x+ 1 , c ∈ ⎛⎜⎝ − 12 , 2 ⎞⎟⎠ !@>shRKasplitsmÖar³eGLicRtUnicmYy)ancMnayR)ak;srubkñúg mYyéf¶sMrab;plitsmÖar³ x eRKOgEdl[GnuKmn¾ C(x ) = 2400 + 28x + 0.02x KitCaBan;erol. k>kMnt;R)ak;cMNaysrubkñúgkarplitsmÖar³ 10 eRKOg 20 eRKOg nig 30 eRKOg. 2

2

3

2

- 31 -

CMBUkTI2

edrIevénGnuKmn_

x>)a:n;sμantémøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 11 eRKOgTI 21 nig eRKOgTI 31 . !#>eragBumsresrGnuKmn¾R)ak;cMnUlsrub R(x). x> sresrGnuKmn¾R)ak;cMenjsrub P(x). K>KNnaR)ak;cMenjsrubebIkñúg mYyExeragBum>)a:n;sμantémøRbEhlénR)ak;cMenjEdl)anBIkarlk; TsSnavdIþc,ab;TI 3001 c,ab;TI 3501 nigc,ab;TI 4001. !$> shRKasplitsmÖar³eRbIR)as;mYy)ancMnayR)ak;srubkñúgkar plitsmÖar³ x eRKOg [tamGnuKmn¾ C(x) = 480 + 26x + −0.1x Ban;erol. k>kMNt;GnUKmn¾R)ak;cMNaymFüm C(x). 2

2

- 32 -

CMBUkTI2

edrIevénGnuKmn_

x>KNnaR)ak;cMNaymFümbEnßm kalNa x = 30 , x = 50 , x = 70 . !%> shRKasplitsmÖar³eGLicRtUnicmYy)ancMnayR)ak;srubkñúg karplitsmÖar³ x eRKOg Edl[GnuKmn¾ C(x ) = 1080 + 42x + 0.3x Ban;erol. kMNt;brimaNsmÖar³Edl shRKasRtUvplitedIm,I[R)ak;cMNaymFümmankMritGb,brma ebI 0 ≤ x ≤ 90 . !^>Rkumh‘unplitsmÖar³eRbIR)as;mYy)ancMNaysrubkñúgkarplit smÖar³ x eRKOg[yamGnuKmn¾ C(x) = x + 20x + 1050 Ban;erol ehIyRkumh‘un)anlk;ecjvijTTYl)anR)ak;cMNUlsrub [tamGnuKmn¾ R(x) = 140x − 0.5x Ban;erol. kMNt;tMrit brimaNsmÖar³EdlRkumh‘unRtUvplitniglk;edIm,I[Rkumh‘unTTYl)an R)ak;cMenjGtibrima ebI 0 ≤ x ≤ 70 . 2

2

2

- 33 -

CMBUkTI2

edrIevénGnuKmn_

dMeNaHRsay !>rk dy , Δy , dy − Δy nig Δdyy énGnumn_xageRkam k> y = x − 3x + 4 cMeBaH x = 3 , Δx = 0.2 x> y = 12 − 5x cMeBaH x = 2 , Δx = 0.07 . dMeNaHRsay rk dy , Δy , dy − Δy nig Δdyy énGnumn_xageRkam k> y = x − 3x + 4 cMeBaH x = 3 , Δx = 0.2 eK)an dy = y'.dx = (2x − 3).dx eday x = 3 , Δx = 0.2 ≈ dx eK)an dy = (2 × 2 − 3)(0.2) = 0.2 . ehIy Δy = f (x + Δx) − f (x) 2

2

= f ( 3 + 0.2) − f ( 3) = f ( 3.2) − f ( 3)

[

] [

]

= ( 3.2) 2 − 3( 3.2) + 4 − ( 3) 2 − 3( 3) + 4 = (5.2)(0.2) − 3(0.2) = ( 2.2)(0.2) = 0.044 .2 ehIy dy − Δy = 0.2 − 0.044 = 0.156 nig Δdyy = 0.0044 = 4.54 . - 34 -

CMBUkTI2

edrIevénGnuKmn_

x> y = 12 − 5x cMeBaH x = 2 , Δx = 0.07 . eK)an dy = y'.dx = − 2 125− 5x .dx 5 (0.07 ) 2 12 − 10 0.35 =− = −0.123 2 2

=−

ehIy Δy = f (2 + 0.07) − f (2)

= 12 − 5( 2.07) − 12 − 5( 2) = 1.65 − 2 = 1.284 − 1.414 = −0.13 dy = 0.946 dy − Δy = −0.123 + 0.13 = 0.007 Δy

ehIy nig @>eRbIDIepr:g;Esül edIm,IrktémøRbEhléncMnYnxageRkam³ k> 37 x> 65 K> 26 X> 126 g> 50.4 c> 79.5 q> 62.3 C> 218.6 dMeNaHRsay eRbIDIepr:g;Esül edIm,IrktémøRbEhléncMnYnxageRkam³ k> 37 3

3

3

3

- 35 -

.

CMBUkTI2

edrIevénGnuKmn_

eKman f (x + Δx) = f (x) + f ' (x).dx tagGnuKmn_ f (x) = x ⇒ f ' (x) = 2 1 x yk x = 36 ; Δx = 1 = dx eK)an 37 = 36 + 2 136 × 1 = 6 + 121 = 6.08 . x> 65 eKman f (x + Δx) = f (x) + f ' (x).dx tagGnuKmn_ f (x) = x ⇒ f ' (x) = 2 1 x yk x = 64 ; Δx = 1 = dx 1 1 eK)an 65 = 64 + 2 64 × 1 = 8 + 16 = 8.06 . K> 26 eKman f (x + Δx) = f (x) + f ' (x).dx tagGnuKmn_ f (x) = x = x ⇒ f ' (x) = 1 3

3

1 3

3 3 x2

yk x = 27 ; Δx = −1 = dx eK)an 26 = 27 − 1 = 3 − 271 = 2.96 . 3

3

3 3 27 2

- 36 -

CMBUkTI2

edrIevénGnuKmn_

X> 126 eKman f (x + Δx) = f (x) + f ' (x).dx tagGnuKmn_ f (x) = x = x ⇒ f ' (x) = 3

1 3

3

yk x = 125 ; Δx = 1 = dx eK)an 125 = 125 + 1 3

3

3

3 125

g> c> q> C>

50.4 = 7.099 79.5 = 8.916 3

62.3 = 3.964

3

218.6 = 6.023

- 37 -

2

= 5+

1 3 3 x2

1 = 5.013 75

.

CMBUkTI2

edrIevénGnuKmn_

#> Rkumh‘unplitsmÖar³eRbIR)as;mYy)anTTYlR)ak;cMnUlsrubBIkar lk; smÖar³ x eRKOgEdl[tamGnuKmn_ x R( x ) = 20x − KitCamWunerolEdl 0 ≤ x ≤ 600 . 30 edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNUl ebI smÖar³ lk;ERbRbYlBI 150 eRKOg eTA 160 eRKOg . dMeNaHRsay edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNUl tag y = R(x) = 20x − x30 ebI smÖar³lk;ERbRbYlBI 150 eRKOg eTA 160 eRKOgenaH Δx = 10 eK)an dR(x) = R' (x).dx Et R' (x) = 20 − 15x enaH dR(x) = (20 − 150 ).10 = 100 ¬KitCamWunerol¦ . 15 $> eragcRkplitsmÖar³eRbIR)as;mYy)ancMNayR)ak;srubkñugkar plitsmÖar³ x eRKOgEdl[tamGnuKmn_ C( x ) = 930 + 15x + 0.2x Ban;erol . 2

2

2

- 38 -

CMBUkTI2

edrIevénGnuKmn_

edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNayebIsmÖar³ Edl)anplitekInBI 60 eRKOg eTA 62 eRKOg . dMeNaHRsay edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMNay ebIsmÖar³Edl)anplitekInBI 60 eRKOg eTA 62 eRKOgenaH Δx = 2 . eday C(x) = 930 + 15x + 0.2x enaH C' (x) = 15 + 0.4x eK)an dC(x) = C' (x).dx = (15 + 0.4 × 60)(2) = 78 ¬Ban;erol¦ %>shRKasplitsmÖar³eGLicRtUnicmYy )ancMNayR)ak;srubkñúg mYyExsRmab;plitsmÖar³ x eRKOgEdl[tamGnuKmn_ C( x ) = 0.1x + 4x + 200 KitCaBan;erol . ehIyshRKas)an TTYlR)ak;cMNUlmkvij[tamGnuKmn_ R( x ) = 54x − 0.3x KitCaBan;erol . k>sresrGnuKmn_R)ak;cMeNj P(x) x>edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMeNj ebIbrimaNsmÖar³Edl)anlk;ekInBI 40 eRKOg eTA 44 eRKOg . 2

2

2

- 39 -

CMBUkTI2

edrIevénGnuKmn_

dMeNaHRsay k>sresrGnuKmn_R)ak;cMeNj P(x) eK)an P(x) = R(x) − C(x) P( x ) = 54x − 0.3x 2 − 0.1x 2 − 4x − 200

dUcenH P(x) = −0.4x + 50x − 200 . x>edayeRbIDIepr:g;)a:n;sμantémøRbEhlénkMeNInR)ak;cMeNj ebIbrimaNsmÖar³Edl)anlk;ekInBI 40 eRKOg eTA 44 eRKOg enaH Δx = 44 − 40 = 4 eRKÓg . eK)an dP(x) = P' (x).dx eday P' (x) = −0.8x + 50 eK)an dP(x) = (−0.8 × 40 + 50)(4) = 72 ¬KitCaBan;erol¦ ^>tamkarGegátrbs;Gñksßiti)an[dwgfa cMnYnRbCaBlrdæenAkñugTIRkug mYyryHeBl t qñaMeTAmuxeTot mankarekIneLIgEdl[tamGnuKmn_ P(t ) = 10(40 + 2t ) − 160t ¬nak;¦ . edayeRbIDIepr:g;EsüledIm,I)a:n;sμankMeNInRbCaBlrdækñúgTIRkugenaH ebI t ERbRbYlBI 6 eTA 6.25 qñaM . 2

2

- 40 -

CMBUkTI2

edrIevénGnuKmn_

dMeNaHRsay edayeRbIDIepr:g;EsüledIm,I)a:n;sμankMeNInRbCaBlrdækñúgTIRkugenaH ebI t ERbRbYlBI 6 eTA 6.25 qñaMenaH Δt = 6.25 − 6 = 0.25 qñaM eKman P(t ) = 10(40 + 2t ) − 160t eK)an P' (t) = 40(40 + 2t ) − 160 ehIy dP(t ) = P' (t ).dt = [40(40 + 2 × 6) − 160] (0.25) = 480 ¬nak;¦ &>)aLúgmYymanragCaEsV‘ . eRbIDIepr:g;EsüledIm,IKNnatémø RbEhlénkMeNInmaD)aLúg ebIeBlRtUvkMedAéf¶)aLúgrIkmaDEdl kaMrbs;vaERbRbYlBI 2m eTA 2.15m . dMeNaHRsay eRbIDIepr:g;EsüledIm,IKNnatémøRbEhlénkMeNInmaD)aLúg tag V(r) CamaDrbs;)aLúg ehIy r CakaMrbs;)aLúg eKman V(r ) = 43π r ⇒ V' (r ) = 4πr eday r ERbRbYlBI 2m eTA 2.15m enaH Δr = 0.15m ehIy dV(r) = V' (r).dr 2

3

2

- 41 -

CMBUkTI2

edrIevénGnuKmn_ = (4 × 3.14 × 2 2 )(0.15) = 7.536m 3

*>eK[GnuKmn¾ f manedrIevelI (− 2 , ∞ ) Edl f (x) = k>rktMélGmén f ' (x) cMeBaHRKb; x ∈ [− 1 , 2]. x>bgðajfa cMeBaHRKb; x ∈ [− 1 , 2] eK)an 14 x + 54 ≤ x + 2 ≤ 12 x + 32 . dMeNaHRsay k>rktMélGmén f (x) cMeBaHRKb; x ∈ [− 1 , 2] f ( x) = x + 2 ⇒ f ' ( x) =

1 2 x+2

x+2

.

eKman − 1 ≤ x ≤ 2 ⇒ 1 ≤ x + 2 ≤ 4 b¤ 1 ≤ x + 2 ≤ 2 eKTaj 14 ≤ 2 x1+ 2 ≤ 12 dUcenH 14 ≤ f ' (x) ≤ 12 . x>bgðajfa 14 x + 54 ≤ x + 2 ≤ 12 x + 32 cMeBaHRKb; x ∈ [− 1 , 2] tamvismPaBkMeNInmankMNt;cMeBaHGnuKmn_ f kñúg x ∈ [− 1 , 2] eK)an 14 (x + 1) ≤ f (x) − f (−1) ≤ 12 (x + 1) Et f (−1) = 1 1 1 1 1 x+ ≤ x+ 2 −1≤ x+ 4 4 2 2 - 42 -

CMBUkTI2

edrIevénGnuKmn_

dUcenH 14 x + 54 ≤ x + 2 ≤ 12 x + 32 . ⎡ π⎞ (>eK[GnuKmn¾ f kMNt;elI ⎣⎢ 0 , 2 ⎟⎠ Edl f (x) = tan x . bgðajcMeBaHRKb;cMnYnBit a nig b Edl 0 ≤ a ≤ b < π2 b−a b−a ≤ tan b − tan a ≤ eK)an cos . a cos b dMeNaHRsay bgðajcMeBaHRKb;cMnYnBit a nig b Edl 0 ≤ a ≤ b ≤ π2 b−a b−a ≤ tan b − tan a ≤ eK)an cos a cos b eKman f (x) = tan x ⇒ f ' (x) = cos1 x cMeBaH 0 ≤ a ≤ b < π2 ebI a ≤ x ≤ b enaH cos b ≤ cos x ≤ cos a b¤ cos1 a ≤ f ' (x) ≤ cos1 b edayGnuvtþn_vismPaBkMeNInmankMNt;eTAnwgGnuKmn_ f cMeBaH x ∈ [a , b ] eK)an 2

2

2

2

2

2

2

1 1 ( b − a ) ≤ f ( b ) − f ( a ) ≤ (b − a ) 2 2 cos a cos b b−a b−a tan b tan a ≤ − ≤ cos 2 a cos 2 b

dUcenH

.

- 43 -

CMBUkTI2

edrIevénGnuKmn_

!0>eK[GnuKmn¾ f kMNt;elIcenøaH I . eRbIRTwsþIbTr:Ul ¬ebIGac¦ rkRKb;témø c kñúgcenøaH I Edl f ' (c) = 0 ³ k> f (x) = x − 4x , c ∈ (− 2 , 2) x> f (x) = (x − 1)(x − 2)(x − 3) , c ∈ (1 , 3) K> f (x) = x −x +2x2− 3 , c ∈ (− 1 , 3) x −1 ( ) X> f x = x , c ∈ (− 1 , 1) g> f (x) = sin 2x , c ∈ ⎛⎜⎝ π6 , π3 ⎞⎟⎠ c> f (x) = x2 − sin π6x , c ∈ (− 1 , 0). dMeNaHRsay rkRKb;témø c kñúgcenøaH I Edl f ' (c) = 0 ³ k> f (x) = x − 4x , c ∈ (− 2 , 2) eKman f (x) CaGnuKmn_BhuFaCab;RKb; x ∈ (−2 , 2) ehIy f ( −2) = f ( 2) = 0 . tamRTwsþIbTr:UlmancMnYn c ∈ ( −2 , 2 ) Edl f ' (c) = 0 . eKman f ' (c) = 3c − 4 3

2

2

3

2

- 44 -

CMBUkTI2

edrIevénGnuKmn_

ebI f ' (c) = 0 ⇒ 3c − 4 = 0 ⇒ c = − 2 3 3 , c = 2 3 3 x> f (x) = (x − 1)(x − 2)(x − 3) , c ∈ (1 , 3) eKman f (x) CaGnuKmn_BhuFaCab;RKb; x ∈ (1 , 3) ehIy f (1) = f ( 3) = 0 . tamRTwsþIbTr:UlmancMnYn c ∈ (1 , 3 ) Edl f ' (c) = 0 . eKman f (x) = (x − 1)(x − 2)(x − 3) = x − 6x + 11x − 6 eK)an f ' (x) = 3x − 12x + 11 ebI f ' (c) = 0 ⇒ 3c − 12c + 11 = 0 6− 3 6+ 3 . Δ ' = 36 − 33 = 3 > 0 ⇒ c = ,c = 3 3 K> f (x) = x −x +2x2− 3 , c ∈ (− 1 , 3) eKman f (x) CaGnuKmn_BhuFaCab;RKb; x ∈ (−1 , 3) ehIy f ( −1) = f ( 3) = 0 . tamRTwsþIbTr:UlmancMnYn c ∈ (1 , 3 ) Edl f ' (c) = 0 . eKman f ' (x) = (2x − 2)(x +(x2+) −2)(x − 2x − 3) 2

1

2

3

2

2

2

1

2

2

2

2

- 45 -

CMBUkTI2

edrIevénGnuKmn_ 2x 2 + 4x − 2x − 4 − x 2 + 2x + 3 = ( x + 2)2 x 2 + 4x − 1 = ( x + 2)2

ebI

c 2 + 4c − 1 f ' (c ) = =0 2 (c + 2 )

naM[ c

2

+ 4c − 1 = 0

Δ' = 4 + 1 = 5 > 0 ⇒ c1 = 2 + 5 , c 2 = 2 − 5

dUcenH c = 2 + 5 , c = 2 − 5 . !!>eK[GnuKmn¾ f kMNt;elIcenøaH I . eRbIRTwsþIbTtémømFüm rkRKb;témø c ∈ (a , b) Edl f ' (c) = f (bb) −− fa(a) ³ k> f (x) = x , c ∈ (− 2 , 1) x> f (x) = x(x − x − 2) , c ∈ (− 1 , 1) K> f (x) = x , c ∈ (0 , 1) X> f (x) = x x+ 1 , c ∈ ⎛⎜⎝ − 12 , 2 ⎞⎟⎠ dMeNaHRsay rkRKb;témø c ∈ (a , b) Edl f ' (c) = f (bb) −− fa(a) ³ k> f (x) = x , c ∈ (− 2 , 1) eKman f ' (x) = 2x 1

2

2

2

3

2

- 46 -

CMBUkTI2

edrIevénGnuKmn_

eK)an f ' (c) = 2c = f (11)−−(f−(2−)2) = 11 +− 42 = −1 eKTaj c = − 12 . x> f (x) = x(x − x − 2) , c ∈ (− 1 , 1) eKman f (x) = x − x − 2x ⇒ f ' (x) = 3x − 2x − 2 eK)an f ' (c) = 3c − 2c − 2 = f (11)−−(f−(1−)1) = − 22− 0 = −1 eKTaj 3c − 2c − 1 = 0 ⇒ c = − 13 , c = 1 eday c ∈ (−1 , 1 ) dUcenH c = − 13 . K> f (x) = x , c ∈ (0 , 1) eKman f ' (x) = 3x eK)an f ' (c) = 3c = f (11) −− f0(0) = 1 ⇒ c = ± 33 eday c ∈ (0 , 1 ) dUcenH c = 33 . X> f (x) = x x+ 1 , c ∈ ⎛⎜⎝ − 12 , 2 ⎞⎟⎠ eKman f ' (x) = (x +11) 2

3

2

2

2

2

1

3

2

2

2

- 47 -

2

CMBUkTI2

eK)an

edrIevénGnuKmn_ 2 1 +1 2 − − ) f ( 2 ) f ( 1 3 2 = = = f ' (c ) = 2 5 1 3 (c + 1) 2 − (− ) 2 2 3 3 c1 = −1 + , c 2 = −1 − 2 2

. eKTaj !@>shRKasplitsmÖar³eGLicRtUnicmYy)ancMnayR)ak;srubkñúg mYyéf¶sMrab;plitsmÖar³ x eRKOgEdl[GnuKmn¾ C(x ) = 2400 + 28x + 0.02x KitCaBan;erol. k>kMnt;R)ak;cMNaysrubkñúgkarplitsmÖar³ 10 eRKOg 20 eRKOg nig 30 eRKOg. x>)a:n;sμantémøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOg TI 11 eRKOgTI 21 nig eRKOgTI 31 . dMeNaHRsay 2

k>kMnt;R)ak;cMNaysrubkñúgkarplitsmÖar³ 10 eRKOg 20 eRKOg nig 30 eRKOg eKman C(x) = 2400 + 28x + 0.02x 2 ¬KitCaBan;erol¦ -R)ak;cMNaysrubkñúgkarplitsmÖar³ 10 eRKOgKW C(10) = 2400 + 280 + 2 = 2682 Ban;erol . - 48 -

CMBUkTI2

edrIevénGnuKmn_

-R)ak;cMNaysrubkñúgkarplitsmÖar³ 20 eRKOgKW C( 20) = 2400 + 560 + 8 = 2968 Ban;erol . -R)ak;cMNaysrubkñúgkarplitsmÖar³ 30 eRKOgKW C(10) = 2400 + 540 + 18 = 2958 Ban;erol .

x>)a:n;sμantémøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOg TI 11 eRKOgTI 21 nig eRKOgTI 31 eKman C(x) = 2400 + 28x + 0.02x ¬KitCaBan;erol¦ 2

eK)an C' (x) = 28 + 0.04x

-témøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 11 KW C' (11) = 28 + 0.04 × 11 = 28.44 Ban;erol. -témøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 21 KW C' ( 21) = 28 + 0.04 × 21 = 28.84 Ban;erol . -témøRbEhlénR)ak;cMNaykñúgkarplitsmÖar³eRKOgTI 31 KW C' ( 31) = 28 + 0.04 × 31 = 29.24 Ban;erol. !#>eragBum
- 49 -

CMBUkTI2

edrIevénGnuKmn_

ecjvij TsSnavdIþ 1 c,ab;éfø P = D(x) = 4 − 0.0002x Ban;erol. k>sresrGnuKmn¾R)ak;cMnUlsrub R(x). x> sresrGnuKmn¾R)ak;cMenjsrub P(x). K>KNnaR)ak;cMenjsrubebIkñúg mYyExeragBum>)a:n;sμantémøRbEhlénR)ak;cMenjEdl)anBIkarlk; TsSnavdIþc,ab;TI 3001 c,ab;TI 3501 nigc,ab;TI 4001. dMeNaHRsay k>sresrGnuKmn¾R)ak;cMnUlsrub R(x) eK)an R(x) = P × x = (4 − 0.0002x)x = 4x − 0.0002x x> sresrGnuKmn¾R)ak;cMenjsrub P(x) eK)an P(x) = R(x) − C(x) 2

= 4x − 0.0002x 2 − 0.0001x 2 − x − 465 = −0.0003x 2 + 3x − 465

K>KNnaR)ak;cMenjsrubebIkñúg mYyExeragBum
CMBUkTI2

edrIevénGnuKmn_

enaH P(3000) = −0.0003(3000) + 3(3000) − 465 = 5835 Ban;erol . 2

-ebI x = 3500 c,ab; enaH P(3500) = −0.0003(3500) + 3(3500) − 465 = 6360 Ban;erol . -ebI x = 4000 c,ab; enaH P(4000) = −0.0003(4000) + 3(4000) − 465 = 6735 Ban;erol . X>)a:n;sμantémøRbEhlénR)ak;cMenjEdl)anBIkarlk; TsSnavdIþc,ab;TI 3001 c,ab;TI 3501 nigc,ab;TI 4001. eKman P(x) = −0.0003x + 3x − 465 eK)an P' (x) = −0.0006x + 3 -témøRbEhlénR)ak;cMenj)anBIkarlk; TsSnavdIþc,ab;TI 3001 KW P' (3000) = −0.0006(3000) + 3 = 1.2 Ban;erol . -témøRbEhlénR)ak;cMenj)anBIkarlk; TsSnavdIþc,ab;TI 3501 2

2

2

- 51 -

CMBUkTI2

edrIevénGnuKmn_

KW P' (3500) = −0.0006(3500) + 3 = 0.9 Ban;erol . -témøRbEhlénR)ak;cMenj)anBIkarlk; TsSnavdIþc,ab;TI 4001 KW P' (4000) = −0.0006(4000) + 3 = 0.6 Ban;erol .

- 52 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

CMBUkTI3 emeronTI1

GnuKmn¾GsniTan >GnuKmn_ y = ax + b Edl a ≠ 0 EdnkMNt; ³ GnuKmn_mann½ykalNa ax + b ≥ 0 -ebI a > 0 enaH x ≥ − ba ehIy D = [− ba , + ∞) -ebI a < 0 enaH x ≤ − ba ehIy D = (−∞ , − ba ] edrIev y' = 2 axa + b -ebI a < 0 enaH y' < 0 naM[GnuKmn_cuHCanic©elIEdnkMNt;. -ebI a > 0 enaH y' > 0 naM[GnuKmn_ekInCanic©elIEdnkMNt; . >GnuKmn_ y = ax + bx + c man Δ = b − 4ac EdnkMNt; ³ GnuKmn_mann½ykalNa ax + bx + c ≥ 0 -krNI a > 0 Rkabén y = ax + bx + c manGasIumtUteRTtBIrKW k-ebI x → +∞ enaH y = a(x + 2ba ) CaGasIumtUteRTt . 2

2

2

2

- 52 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

k-ebI x → −∞ enaH y = − a(x + 2ba ) CaGasIumtUteRTt -krNI a < 0 RkabénGnuKmn_ y = ax + bx + c KμanGasIumtUteT . 2ax + b edrIev y' = mansBaØadUc 2ax + b 2

2 ax 2 + bx + c

-ebI a < 0 GnuKmn_manGtibrmamYyRtg; x = − 2ba . -ebI a > 0 GnuKmn_manGb,brmamYyRtg; x = − 2ba .

- 53 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

lMhat; !>rkGasIumtUteRTtrbs;GnuKmn¾ y = 2x + 3 − 4x + x + 1 . @>rkedrIevénGnuKmn¾xageRkam³ k> y = (2x − 3) x − 3x + 4 x> y = x + 6x + 5 + x2 + 3 . #>sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 3x − 2 + x − 1 x> y = x + x − 3x + 2 $>k>sikSaGefrPaB nig sg;Rkab (C) énGnuKmn¾ y = 9 − x . x>rkcMnucnwg EdlbnÞat; d : mx − y + 3 − 4m = 0 kat;tamcMeBaHRKb;tMél m . K>eRbIRkab (C) BiPakSatamtémø m GtßiPaBénb¤srbs;smIkar 9 − x − mx + 4m − 3 = 0 . 2

2

2

2

2

2

m

2

%>eK[GnuKmn¾ y = mx + m

2

+ x2 + 1

- 54 -

.

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

k>RsaybBa¢ak;fa GasIumtUteRTtxagsþaMrbs;RkabxagelI b:Hnwg )a:ra:bUlnwgmYy. x>ebI m = 1 sikSaGefrPaBnigsg;Rkab C rbs;GnuKmn¾xagelI. ^> eK[GnuKmn¾ y = 2x(4 − x) . k>sikSaGefrPaB nig sg;Rkab C rbs;GnuKmn¾. x>eRbIRkab C BiPakSatamtémø m GtßiPaBénb¤srbs;smIkar 2x(4x − x ) = mx + 2 2 − 5m . &>k>kMNt;témø m edIm,I[smIkar x + 2x + 1 = m manb¤s. x>kMNt;témø m edIm,I[vismIkar x + 2x + 1 < m manb¤s. *> eK[GnuKmn¾ y = f (x) = x + 4x + 2x + 1 . k>sikSaGefrPaB nig sg;RkabénGnuKmn¾. x>eRbIRkabrktémø m edIm,I[vismIkar 4x + 2x + 1 ≤ m − x manb¤s. (>eK[GnuKmn¾ y = f (x) = x2 + 12 12 − 3x . k>sikSaGefrPaB nig sg;Rkab C énGnuKmn¾. x>RsaybBa¢ak; − 2 ≤ x 12 − 3x ≤ 4 . 2

2

2

2

2

2

- 55 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

K>edaHRsaysmIkar 12 − 3x = 4 − x rYcepÞopÞat;lT§plén smIkaredayRkabénGnuKmn¾xagelI. !0> eK[GnuKmn¾ y = x + 2x + 1 manRkab C . k>rkGasIumtUteRTtrbs;Rkab C . x>tamRkabrktémø m edIm,I[smIkar x + 2x + 1 = m manb¤s. !!>KUbmYy ABCDEFGH manrgVas;RCug a . I CacMnuckNþalén [AB] ehIy J CacMnuckNþalén [EH ]. cMnuc M mYyrt;enAelIRCug énKUb. rkcMgayxøIbMputEdl M rt;BI I eTA J . 2

2

2

- 56 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

dMeNaHRsay !>rkGasIumtUteRTtrbs;GnuKmn¾ y = 2x + 3 − 4x + x + 1 . dMeNaHRsay rkGasIumtUteRTt eKman y = 2x + 3 − 4x + x + 1 eK)an y = 2x + 3 − 4 | x + 18 | + ε(x) Edl lim ε(x) = 0 -ebI x → +∞ 1 11 enaH y = 2x + 3 − 2(x + 8 ) = 4 CaGasIumtUtedkrbs;Rkab . -ebI x → −∞ enaH y = 2x + 3 + 2(x + 18 ) = 4x + 134 CaGasIumtUteRTt . @>rkedrIevénGnuKmn¾xageRkam³ k> y = (2x − 3) x − 3x + 4 x> y = x + 6x + 5 + x2 + 3 . 2

2

x→ ±∞

2

2

2

- 57 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

dMeNaHRsay rkedrIevénGnuKmn¾xageRkam³ k> y = (2x − 3) x − 3x + 4 eK)an y' = (2x − 3)' x − 3x + 4 + ( 2

2

= 2 x − 3x + 4 +

( 2x − 3) 2

2

2 x 2 − 3x + 4

4x 2 − 12x + 16 + 4x 2 − 12x + 9

=

2 x 2 − 3x + 4 8x 2 − 24x + 25

=

x>

x 2 − 3x + 4 )' ( 2x − 3)

2 x 2 − 3x + 4 x2 2 y = x + 6x + 5 + +3 2 2x + 6 y' = +x 2 2 x + 6x + 5 x+3 = +x 2 x + 6x + 5

eK)an

=

dUcenH y' =

x + 3 + x x 2 + 6x + 5 x 2 + 6x + 5 x + 3 + x x 2 + 6x + 5 x + 6x + 5 2

- 58 -

.

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

#>sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 3x − 2 + x − 1 x> y = x + x − 3x + 2 dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 3x − 2 + x − 1 EdnkMNt; D = [1 , + ∞ ) TisedAGefrPaB -edrIev y' = 3 + 2 x1 − 1 -cMeBaHRKb; x > 1 eK)an y' > 0 naM[ y CaGnuKmn_ekIn. KNnalImIt ³ lim (3x − 2 + x − 1) = +∞ . taragGefrPaB 2

x → +∞

+∞

x 1 +

y'

+∞

y

0

- 59 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

sMNg;Rkab y 6 5

C : y = 3x − 2 + x − 1

4 3 2 1

-2

-1

0

1

2

3

4

5

6

7

x

-1

x> y = x +

x 2 − 3x + 2 y 4

3

2

1

-2

-1

0

1

2

-1

- 60 -

3

4

5x

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

$>k>sikSaGefrPaB nig sg;Rkab (C) énGnuKmn¾ y = 9 − x . x>rkcMnucnwg EdlbnÞat; d : mx − y + 3 − 4m = 0 kat;tamcMeBaHRKb;tMél m . K>eRbIRkab (C) BiPakSatamtémø m GtßiPaBénb¤srbs;smIkar 2

m

9 − x 2 − mx + 4m − 3 = 0

dMeNaHRsay k>sikSaGefrPaB nig sg;Rkab (C) énGnuKmn¾ y = EdnkMNt; D = [−3 , 3 ] TisedAGefrPaB y' =

− 2x

2 9 − x2

=−

9 − x2

x 9 − x2

ebI y' = 0 ⇒ x = 0 GnuKmn_manGtibrmaeFobRtg; x = 0 KW y = (0) = 3 taragGefrPaB x

−3

0 +

y'

3

y - 61 -

3

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

sMNg;Rkab y 5 4 3

I

2 1

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

x

-1

x>rkcMnucnwg EdlbnÞat; d : mx − y + 3 − 4m = 0 kat;tamcMeBaHRKb;tMél m eKGacsresr y − 3 = m(x − 4) smIkarenHepÞógpÞat;Canic©RKb; m smmUl x = 4 , y = 3 dUcenH I(4 ; 3 ) CacMnucnwg . K>eRbIRkab (C) BiPakSatamtémø m GtßiPaBénb¤srbs;smIkar 9 − x − mx + 4m − 3 = 0 CasmIkarGab;sIuscMNucRbsBV rvag (C) : y = 9 − x nwg d : y = mx − 4m + 3 tamRkahVikeK)an ³ m

2

2

m

- 62 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

-cMeBaH m = 0 smIkarmanb¤sDúb x = x = 0 . -cMeBaH m = 73 smIkarmanb¤sEtmYyKt;KW x = −3 . -cMeBaH m = 3 smIkarmanb¤sEtmYyKt;KW x = 3 . 3 -cMeBaH m ∈ ( 7 , 3 ) smIkarmanb¤sEtmYyKt;KW − 3 < x < 3 -cMeBaH m > 3 b¤ m < 0 smIkarKμanb¤s . %>eK[GnuKmn¾ y = mx + m + x + 1 . k>RsaybBa¢ak;fa GasIumtUteRTtxagsþaMrbs;RkabxagelI b:Hnwg )a:ra:bUlngmY w y. eKman y = mx + m + x + 1 y = mx + m + | x | + ε( x ) Edl lim ε( x ) = 0 eKTaj y = mx + m + x = (m + 1)x + m CaGasIumtUtxag sþaMrbs;Rkabtag y = mx + m + x + 1 . yk P : y = ax + bx + c Ca)a:ra:bUlnwgRtUvrk smIkarGab;sIus ax + bx + c = (m + 1)x + m b¤ ax + (b − m − 1)x + c − m = 0 (E) smIkar (E) manb¤sDubRKb; m luHRtaEt Δ = 0 ∀m ∈ IR 1

2

2

2

2

2

2

x→ ±∞

2

2

2

2

2

2

2

2

2

- 63 -

CMBUkTI3

GefrPaBnigRkabénGnuKmn¾

Δ = (b − m − 1) 2 − 4a(c − m 2 ) Δ = b 2 − 2b(m + 1) + (m + 1) 2 − 4ac + 4am 2 = b 2 − 2mb − 2b + m 2 + 2m + 1 − 4ac + 4am 2 = (1 + 4a )m 2 + ( 2 − 2b )m + (b − 1) 2 − 4ac 1 ⎧ = − a ⎪ 4 ⎪ Δ = 0 ∀m ∈ IR ⎨b = 1 ⎪c = 0 ⎪ ⎩ x2 +x P:y = − 4

ebI

smmUl

eK)an . x>ebI m = 1 sikSaGefrPaBnigsg;Rkab C rbs;GnuKmn¾xagelI cMeBaH m = 1 eK)an y = x + 1 + x + 1 2

y

C : y = x + 1 + x2 + 1

1 0

1

- 64 -

x

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

>cMNucsMxan;²sRmab;sikSaGnuKmn_RtIekaNmaRt -EdnkMNt; -xYbénHnuKmn_ -PaBKUessénGnuKmn_ -TisedAGefrPaBénGnuKmn_ >xYbénGnuKmn_ -xYbénGnuKmn_ y = sin(ax) KW |2πa | -xYbénGnuKmn_ y = cos(ax) KW |2πa | >PaBKUessénGnuKmn_ -GnuKmn_ f (x) CaGnuKmn_esselI I kalNa ∀x ∈ I , − x ∈ I ehIy f (− x) = −f (x) . -GnuKmn_ f (x) CaGnuKmn_KUelI I kalNa ∀x ∈ I , − x ∈ I ehIy f (− x) = f (x) . - 65 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

lMhat; !>sikSaGefrPaB nig sg;RkabénGnuKmn¾ y = cos . sin 2x . @> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 2 sin x − 3 cos x x> y = 5 sin x + cos x . #>sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = cos 2x − cos 3x x> y = 2x cos 2x − sin x . $>sikSaGefrPaB nig sg;RkabénGnuKmn¾ k> y = 2 sin x − sin 2x x> y = cos x + x sin x . %> sikSaGefrPaB nig sg;RkabénGnuKmn¾ k> y = 1 −cossinx x x> y = cossinx x− 1 . ^> rkbrimaénGnuKmn¾ y = 2 +sincosx x elIcenøaH [0 , 2]. &>eRbIRkabén y = sin 2x − 3 sin x edaHRsaysmIkar sin 2x − 3 sin x = 0 ebI − 2π ≤ x ≤ 2π . *> eK[GnuKmn¾ y = a sin 2x + sin x . sikSaGefrPaB nig sg;RkabcMeBaH a = 1. 2

2

- 66 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

(>eK[GnuKmn¾ y = a sin xa −coscosx x − 1 . sikSaGefrPaB nig sg;RkabcMeBaH a = 1. lMhat;CMBUk 3 !> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 3x − 5 x> y = 7 − 4x . @> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 2 + x − 2x − 3 x> y = 2 + 8 − 2x . #> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 2x − 1 − 3x − 5 x> y = x + 1 − 4 − x . $> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ x−1 k> y = f (x) = sin x + 2 sin x2 x> y = f (x) = 2cos . cos x + 1 %> sikSaGefrPaB nig sg;RkabénGnuKmn¾ 2

2

2

y = f (x ) = 3 sin x + cos x

^>eK[GnuKmn¾ y = −2x + m x + 1 k>sikSaGefrPaB nig sg;RkabcMeBaH m = 4 . x>rktémø m edIm,I[GnuKmn¾Kμantémøbrma. 2

- 67 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

dMeNaHRsay !>sikSaGefrPaB nig sg;RkabénGnuKmn¾ y = cos dMeNaHRsay sikSaGefrPaB nig sg;Rkab

2

x. sin 2x

y = cos 2 x. sin 2x

>EdnkMNt; D = IR >xYb ³ eKman y = cos x sin 2x = 12 (1 + cos 2x) sin 2x GnuKmn_manxYb p = π eRBaH f (x + π) = 12 [1 + cos(2π + 2x)]sin( 2π + 2x) 2

1 = (1 + cos 2x ) sin 2x = f ( x ) 2

>PaBKUess ³ f ( x ) CaGnuKmn_esseRBaH f ( − x ) = cos ( − x ) sin( − x ) 2

= − cos 2 x sin x = −f ( x)

dUcenHeKsikSaEtkñúgcenøaH [0 , π2 ] - 68 -

.

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

>TisedAGefrPaB edrIev f ' (x) = 12 (1 + cos 2x)' sin 2x + 12 (sin 2x)' (1 + cos 2x) = − sin 2 2x + cos 2x(1 + cos 2x )

= −1 + cos 2 2x + cos 2x + cos 2 2x = 2 cos 2 2x + cos 2x − 1 = ( 2 cos 2x − 1)(cos 2x + 1)

edayRKb; x ∈ IR : − 1 ≤ cos 2x ≤ 1 enaH cos 2x + 1 ≥ 0 naM[ f ' (x) mansBaØadUc 2 cos 2x − 1 -ebI 2 cos 2x − 1 = 0 ⇒ cos 2x = 12 b¤ 2x = π3 ⇒ x = π6 -ebI 2 cos 2x − 1 > 0 ⇒ cos 2x > 12 b¤ 0 < x < π6 -ebI 2 cos 2x − 1 < 0 ⇒ cos 2x < 12 b¤ π6 < x < π2 taragGefrPaB x

π 6

0

π 2

+

f ' (x)

π f( ) 6

f ( x)

0

0 - 69 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH π (0 , ) 2 π x= 2 π x= 2

π 3 3 f( ) = 6 8 π f( ) = 0 2

kñúgcenøaH GnuKmn_manGtibrma . eK)an f ' ( π2 ) = 0 nig . cMeBaH Rkab (c) manGkS½ (ox) CabnÞat;b:H . dUcenHRtg; y

1

0

- 70 -

(c) : y = cos 2 x sin 2x 1

x

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

@> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 2 sin x − 3 cos x x> y = 5 sin x + cos x . dMeNaHRsay sikSaGefrPaB nig sg;Rkab k> y = 2 sin x − 3 cos x y

1

0

1

x

x> y = 5 sin x + cos x y

1 0

1

x

- 71 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

#>sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = cos 2x − cos 3x x> y = 2x cos 2x − sin x . dMeNaHRsay k> y = cos 2x − cos 3x y

1

0

1

x

x> y = 2x cos 2x − sin x y

1 0

1

x

- 72 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

$>sikSaGefrPaB nig sg;RkabénGnuKmn¾ k> y = 2 sin x − sin 2x x> y = cos dMeNaHRsay k> y = 2 sin x − sin 2x

2

x + x sin x

.

y

1

0

x> y = cos

2

1

x

x + x sin x y

1 0

1

- 73 -

x

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

%> sikSaGefrPaB nig sg;RkabénGnuKmn¾ x> y = cossinx x− 1 . k> y = 1 −cossinx x dMeNaHRsay k> y = 1 −cossinx x y

1 0

1

x

x> y = cossinx x− 1 y

1 0

1

- 74 -

x

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

^> eK[GnuKmn¾ y = a sin 2x + sin x . sikSaGefrPaB nig sg;RkabcMeBaH a = 1. dMeNaHRsay sg;RkabcMeBaH a = 1 eK)an y = sin 2x + sin x y

1

0

1

x

&>eK[GnuKmn¾ y = a sin xa −coscosx x − 1 . sikSaGefrPaB nig sg;RkabcMeBaH a = 1. dMeNaHRsay sg;RkabcMeBaH a = 1 sin x − 1 − cos x − 1 = −1 + eK)an y = sin x cos x cos x - 75 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH y

1 0

1

x

- 76 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

lMhat;CMBUk3 nigdMeNaHRsay !> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 3x − 5 x> y = 7 − 4x . dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> y = 3x − 5 >EdnkMNt; D = [ 53 , + ∞) >TisedAGefrPaB edrIev y' = 2 33x − 5 cMeBaH x > 53 eK)an y' > 0 naM[vaCaGnuKmn_ekInelI ( 53 , + ∞ ) lImIt lim 3x − 5 = +∞ taragGefrPaB y

x → +∞

x

5 3

1

+

y' y

+∞

+∞

0 - 77 -

0

1

x

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

x> y = 7 − 4x >EdnkMNt; D = (−∞ , 74 ] >TisedAGefrPaB edrIev y' = 7−−24x cMeBaH x < 74 eK)an y' < 0 naM[vaCaGnuKmn_cuHelI (−∞ , 74 ) lImIt lim 7 − 4x = +∞ taragGefrPaB x → −∞

x

7 4

−∞

y' y

+∞

0 y

1

0

1

- 78 -

x

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

@> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 2 + x − 2x − 3 x> y = 2 + 8 − 2x . dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> y = 2 + x − 2x − 3 2

2

2

y

y=2 1

0

x> y = 2 +

1

x

8 − 2x 2 y

y=2 1

0

1

x

- 79 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

#> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ k> y = 2x − 1 − 3x − 5 x> y = x + 1 − dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> y = 2x − 1 − 3x − 5

4 − x2

.

y

1

0

1

x> y = x + 1 −

x

4 − x2 y

1

0

1

x

- 80 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

$> sikSaGefrPaB nig sg;RkabénGnuKmn¾xageRkam³ x−1 . k> y = f (x) = sin x + 2 sin x2 x> y = f (x) = 2cos cos x + 1 dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn_ k> y = f (x) = sin x + 2 sin x2 y

1 0

1

x

x−1 x> y = f (x) = 2cos cos x + 1 y

1 0

1

x

- 81 -

CMBUkTI3

GnuKmn¾RtIekaNmaRtcRmuH

%> sikSaGefrPaB nig sg;RkabénGnuKmn¾ y = f (x ) = 3 sin x + cos x

dMeNaHRsay sikSaGefrPaB nig sg;RkabénGnuKmn¾ y = f (x ) = 3 sin x + cos x y

1

0

1

x

- 82 -

CMBUkTI4

GaMgetRkalkMNt;

CMBUkTI4 emeronTI1

GaMgetRkalkMNt;

>niymn½y f CaGnuKmn_Cab;elIcenøaH [a , b ] . GaMgetRkalkMNt;BI a eTA b én y = f (x) kMNt;eday ∫ f ( x).dx = F(b) − F(a) Edl F' ( x) = f ( x) . b

a

>épÞRkLaénEpñkbøg; -ebIGnuKmn_ y = f (x) Cab;elIcenøaH [a , b ] enaHépÞRkLaénEpñkbøg; EdlxNÐedayExSekag GkS½Gab;sIus bnÞat;Qr x = a , x = b kMNt;eday S = ∫ f (x).dx ebI f (x) ≥ 0 b

a

y C : y = f (x)

A

S a

B b

- 83 -

x

CMBUkTI4

GaMgetRkalkMNt;

-ebIGnuKmn_ y = f (x) Cab;elIcenøaH [a , b ] enaHépÞRkLaénEpñkbøg; EdlxNÐedayExSekag GkS½Gab;sIus bnÞat;Qr x = a , x = b kMNt;eday S = − ∫ f (x).dx ebI f (x) ≤ 0 . b

y

a

a

b

x

S

(C) : y = f ( x ) B

A

-ebI f nig g CaGnuKmn_Cab;elI [a , b ] enaHeK)anépÞRkLaenAcenøaH ExSekagtagGnuKmn_TaMgBIrkMNt;eday S = ∫ [f (x) − g(x)].dx Edl f (x) ≥ g(x) RKb; x ∈ [a , b ] . b

a

y

A

B

D

C

a

b - 84 -

x

CMBUkTI4

GaMgetRkalkMNt;

lMhat; !>edayeRbIniymn½yKNnaGaMetRkalxageRkam³ k> ∫ 3xdx x> ∫ 4xdx K> ∫ x dx X> ∫ (x − 5x)dx g> ∫ x dx . @>KNnatémøRbEhlénépÞRklaEdlxN½ÐedayRkabtag y = f (x) nigGk½S x' ox elIcenøaH [a , b] Edl³ k> f (x) = 9 − x Edl [a , b] = [− 3 , 2] , n = 5 x> f (x) = x +1 2 Edl [a , b] = [− 1 , 3] , n = 4 #>KNnaRklaépÞxN½ÐedayRkabnigGk½SGab;sIuselIcenaøHEdl[³ k> f (x) = x Edl x ∈ [1 , 3] x> f (x) = x + 2x − 3 Edl x ∈ [1 , 3] K> f (x) = 2 − x Edl x ∈ [− 3 , − 2] X> f (x) = 2x3+ 1 Edl x ∈ [0 , 2] . 2

4

0

2

2

2

2

0

2

0

2

1

2

2

2

3

- 85 -

2

CMBUkTI4

GaMgetRkalkMNt;

$>KNnaRklaépÞxN½ÐedayRkabtagGnuKmn¾TaMgBIr³ k> f (x) = x + 2 nig g(x) = x , x ∈ [2 , 5] x> f (x) = x nig g(x) = x , x ∈ [0 , 1] K> f (x) = 2x + 1 nig g(x) = 3x + 2 , x ∈ [0 , 2] X> f (x) = e nig g(x) = x , x ∈ [1 , 4] %> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ x = y nig y = x − 2 . ^> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ y = f (x ) nig y = g(x ) = 2 − x nig x' ox . &> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ 1 ni g y = g (x ) = e ni g x ∈ [0 , 4]. y = f (x ) = x+1 2

2

3

x −1

2

0.7 x

- 86 -

CMBUkTI4

GaMgetRkalkMNt;

dMeNaHRsay !>edayeRbIniymn½yKNnaGaMgetRkalxageRkam³ k> ∫ 3xdx x> ∫ 4xdx K> ∫ x dx X> ∫ (x − 5x)dx g> ∫ x dx . dMeNaHRsay ⎡ 3x ⎤ k> ∫ 3xdx = ⎢ 2 ⎥ = 6 − 0 = 6 2

4

0

2

2

2

2

0

2

0

2

2

1

2

2

2



0



0

x> ∫ 4xdx = [2x ] = 32 − 8 = 24 K> ∫ x dx = ⎡⎢⎣ 13 x ⎤⎥⎦ = 83 4

2 4 2

2

2

2

2

3

0

0

X> ∫ ( 2

0

g> ∫

2

1

)

2

5 ⎤ 8 20 22 ⎡1 x 2 − 5x dx = ⎢ x 3 − x 2 ⎥ = ( − ) = − 2 ⎦0 3 2 3 ⎣3 2

8 1 7 ⎡1 ⎤ x dx = ⎢ x 3 ⎥ = − = ⎣3 ⎦ 1 3 3 3 2

- 87 -

.

CMBUkTI4

GaMgetRkalkMNt;

@>KNnaRklaépÞxN½ÐedayRkabnigGk½SGab;sIuselIcenaøHEdl[³ k> f (x) = x Edl x ∈ [1 , 3] x> f (x) = x + 2x − 3 Edl x ∈ [1 , 3] K> f (x) = 2 − x Edl x ∈ [− 3 , − 2] X> f (x) = 2x3+ 1 Edl x ∈ [0 , 2] . dMeNaHRsay KNnaRklaépÞ k> f (x) = x Edl x ∈ [1 , 3] eK)an S = ∫ x dx 2

2

3

2

y

3

2

1

3

⎡1 ⎤ = ⎢ x3 ⎥ ⎣3 ⎦ 1

27 1 26 − = 3 3 3 26 S= 3 =

dUcenH

1 0

¬ÉktaépÞ¦

- 88 -

1

x

CMBUkTI4

GaMgetRkalkMNt;

x> f (x) = x eyIg)an

2

+ 2x − 3

Edl x ∈ [1 , 3]

y

3

S = ∫ ( x 2 + 2x − 3).dx 1 3

⎤ ⎡1 = ⎢ x 3 + x 2 − 3x ⎥ ⎦1 ⎣3 32 5 = 9 − (− ) = 3 3 32 S= 3

1 0

ÉktaépÞ

dUcenH

K> f (x) = 2 − x Edl x ∈ [− 3 , − 2] eK)an S = ∫ (2 − x ).dx 3

−2

3

−3

−2

⎡ x4 ⎤ = ⎢ 2x − ⎥ 4 ⎦ −3 ⎣ = ( − 4 − 4 ) − ( −6 − = −2 +

81 ) 4

81 73 = 4 4

- 89 -

1

x

CMBUkTI4

GaMgetRkalkMNt;

X> f (x) = 2x3+ 1 Edl x ∈ [0 , 2] . eK)an y

S=

2

3dx ∫ 2x + 1 0

⎤ ⎡1 = 3 ⎢ ln | 2x + 1 |⎥ ⎦ ⎣2 =

2

0

1

3 ln 5 2

0

1

dUcenH S = 32 ln 5 ÉktaépÞ #>KNnaRklaépÞxN½ÐedayRkabtagGnuKmn¾TaMgBIr³ k> f (x) = x + 2 nig g(x) = x , x ∈ [2 , 5] x> f (x) = x nig g(x) = x , x ∈ [0 , 1] K> f (x) = 2x + 1 nig g(x) = 3x + 2 , x ∈ [0 , 2] X> f (x) = e nig g(x) = x , x ∈ [1 , 4] 2

2

3

x −1

- 90 -

x

CMBUkTI4

GaMgetRkalkMNt;

dMeNaHRsay KNnaRklaépÞ k> f (x) = x + 2 nig g(x) = x eyIg)an 2

, x ∈ [2 , 5] y

5

S = ∫ ( x 2 + 2 − x ).dx 2 5

1 ⎤ ⎡1 = ⎢ x 3 + 2x − x 2 ⎥ 2 ⎦2 ⎣3 235 14 69 = − = 6 3 2

dUcenH S = 34.5 ÉktaépÞ x> f (x) = x nig g(x) = x eK)an 2

S=

∫ (x 1

2

3

1 0

1

x

, x ∈ [0 , 1] y

)

− x 3 .dx 1

0 1

1 ⎤ ⎡1 = ⎢ x3 − x4 ⎥ 4 ⎦0 ⎣3 =

1 1 1 − = 3 4 12 1 S= 12

dUcenH

0

ÉktaépÞ - 91 -

1

x

CMBUkTI4

GaMgetRkalkMNt;

K> f (x) =

2x + 1

nig g(x) = 3x + 2

, x ∈ [0 , 2]

y

1 0

1

eyIg)an S = ∫ (3x + 2 − 2

x

2x + 1 ) .dx

0

2

3 ⎡3 2 ⎤ 1 2 = ⎢ x + 2x − ( 2x + 1) ⎥ 3 ⎢⎣ 2 ⎥⎦ 0

1 125 ) − (0 − ) 3 3 31 − 5 5 = 3 31 − 5 5 S= 3 = (10 −

dUcenH

.

- 92 -

CMBUkTI4

GaMgetRkalkMNt;

X> f (x) = e nig g(x) = x x −1

, x ∈ [1 , 4]

y

1 0

1

x

eK)an 4

S = ∫ (e x−1 − x ).dx 1 4

1 ⎤ ⎡ = ⎢ e x −1 − x 2 ⎥ 2 ⎦1 ⎣

1 = (e 3 − 8) − (1 − ) 2 17 = e3 − 2 2e 3 − 17 S= 2

dUcenH

. - 93 -

CMBUkTI4

GaMgetRkalkMNt;

$> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ x = y nig y = x − 2 . dMeNaHRsay KNnaRklaépÞ 2

y

y

1

0

1

1

x

0

1

eKman y = x − 2 naM[ x = y + 2 eK)an S = ∫ (y + 2 − y ).dy 2

2

−1

2

1 ⎤ ⎡1 = ⎢ y 2 + 2y − y 3 ⎥ 3 ⎦ −1 ⎣2 20 − 3 + 12 − 2 9 8 1 1 = (6 − ) − ( − 2 + ) = = 3 2 3 6 2

- 94 -

x

CMBUkTI4

GaMgetRkalkMNt;

%> KNnaRklaépÞxN½ÐedayExSekagtagGnuKmn¾ 1 y = f (x ) = ni g y = g (x ) = e ni g x ∈ [0 , 4]. x+1 dMeNaHRsay KNnaRklaépÞ 0.7 x

y

1 0

4

S = ∫ (e 0.7 x − 0

1

x

1 ).dx x+1 4

⎡ 1 0.7 x ⎤ =⎢ e − ln( x + 1)⎥ = 20.45 ⎣ 0.7 ⎦0

dUcenH S = 20.45 ÉktaépÞ . - 95 -

CMBUkTI4

GaMgetRkalkMNt;

CMBUkTI4 emeronTI2

maRtsUlItnigRbEvgFñÚ ebIGnuKmn_ f viC¢manehIyCab;elIcenøaH [a , b ] enaHmaDénsUlId brivtþn_)anBIrgVilCMuvijGkS½Gab;sIusénépÞEdlxNÐedayRkabtag GnuKmn_ y = f (x) GkS½Gab;sIus bnÞat;Qr x = a nig x = b kMNt;eday V = lim ∑ [πf (x ).Δx] = π ∫ f (x).dx . maDénsUlIdbrivtþkMNt;)anBIrgVilCMuvijGkS½ (ox ) énépÞxNÐeday Rkab y = f (x) nig y = g(x) elIcenøaH [a , b ]Edl f (x) ≥ g(x) kMNt;eday V = π ∫ [f (x) − g (x)].dx .



b

n

2

n→ +∞

2

k

k =1

a

b

2

2

a x

GnuKmn_ F EdlkMNt;elIcenøaH [a , b ] eday F(x) = ∫ f (t ).dt ehAfaGnuKmn_kMNt;tamGaMgetRkalkMNt; . 1 f ( x ).dx témømFümén f kMNt;Cab;elI [a , b ] KW y = ∫ b−a 

a

b

m

a

b



RbEvgFñÚénRkabtag f elI[a , b ] KW L = ∫ a

- 96 -

1 + f '2 ( x ) .dx

CMBUkTI4

GaMgetRkalkMNt;

lMhat; !>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ y = 2x + 1 Gk½S x' ox bnÞat;Qr x = 1 nig x = 3 . x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ y = x + 1 Gk½S x' ox bnÞat;Qr x = 0 nig x = 3 . K>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ y = x − 3 Gk½S x' ox bnÞat;Qr x = 4 eTA x = 9 . @>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ f (x) = x nig g(x) = 4x − x . x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ f (x) = x − 2x + 3 nig g(x) = 9 − x . 2

2

2

2

- 97 -

CMBUkTI4

GaMgetRkalkMNt;

#>cMeBaHGnuKmn¾ F(x) = ∫ sin πtdt . KNna x> F' (0) k> F(− 1) K> F' ⎛⎜⎝ 12 ⎞⎟⎠ X> F" (x). $>épÞRkla A xNÐedayRkabtagGnuKmn¾ g(t ) = 4 − t4 nig 4⎞ ⎛ ( ) [ ] Gk½SGab;sIuselIcenaøH 1 , x kMNt;eday A x = ∫ ⎜⎝ 4 − t ⎟⎠dt . k>KNna A CaGnuKmn¾én x . etIRkabGnuKmn¾ A mansmIkar GasIumtUtedk rW eT? x>rksmIkarGasIumtUteRTténRkabtagGnuKmn¾ g . %> KNna F' (x) ebI k> F(x) = ∫ (4t + 1)dt x> F(x) = ∫ t dt K> F(x) = ∫ t dt X> F(x) = ∫ t1 dt g> F(x) = ∫ sin t dt c> F(x) = ∫ 2 1+ t dt . ^>k>bgðajfaebI f (t ) CaGnuKmn¾ess enaH F(x) = ∫ f (t ) dt RKb; x ∈ IR CaGnuKmn¾essEdrrWeT? x

1

2

x

2

1

x+ 2

x

x

−x

3

sin x

x2

0

2

2

x3

0

0

sin x

x

a

- 98 -

CMBUkTI4

GaMgetRkalkMNt;

&>eKe)aHdMusársUkULa)anTTYlvik½yb½RtcMnYn 1200 erogral; 30 éf¶mþg. sársUkULaRtUv)anlk;bnþ[Gñklk;rayeday GRtaefrnig x Caéf¶bnÞab;BITTYlvik½yb½Rtmkdl; ehIybBa¢ITUTat; kMNt;eday I(x) = 1200 − 40x . KNnamFümRbcaMéf¶énkarTUTat;. KNnamFümRbcaMéf¶énlk;sársUkULa ebIsársUkULamYyRKb;éfø 300 erol. *>k>KNnaRbEvgFñÚénRkabtagGnuKmn¾ y = x3 + 41x BI x = 1 eTA x = 3 . x>]bmafa f (x) = 12 (e + e ). bnÞat;CYbGk½SGredaenRtg; B ehIyb:HnigRkabtag f Rtg;cMnuc A(a , f (a)) Edl a > 0 . eRbobeFobRbEvgénGgÁt; AB nigRbEvgFñÚrénRkabtag f enAbenøaHbnÞat;Qr x = 0 nig x = a . (>rképÞRkla S énEsV‘rEdlmankaM r . 3

x

−x

- 99 -

CMBUkTI4

GaMgetRkalkMNt;

lMhat;CMBUk4 !>KNnaGaMgetRkalxageRkam³ k> ∫ (4 − x )(2 + x) dx K> ∫ x −xx − 2 dx g> ∫ cos mx cos nxdx q> ∫ 3 +sincos2x x dx @>KNna k> ∫ e cos 2t dt (a ≠ 0) x dx K> ∫ e +e +2 g> ∫ dx 2

n

2

2

2

1

0

2

π

0

π 2 0

π

2

− at

2

0

ln 6

−x

0

2

x

2

1

0

4 − x2

x> ∫ x − 6xx + 8 dx X ∫ x −x1 dx x c> ∫ 1 + 3x dx C> ∫ x cos xdx . 8

2

6

3

1

1

2

0

π 2 0

2

2

x> ∫ sin(πxln x) dx X> ∫ (4 − x − 1 − x )dx c> ∫ 2ax − x dx e

1

1

2

2

0

a

2

0

q> ∫ (x + ) dx C> ∫ x −2xx + 1 dx #>KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRkla xNÐedayRkaPictagGnuKmn¾ f (x) = x + 6 nig g(x) = x elIcenøaH x ∈[− 2 , 3] . a

0

2

3 2 2 a

1

0

2

2

- 100 -

CMBUkTI4

GaMgetRkalkMNt;

$> KNnamaDsUlItbivtþkMNt;)anBIrgVilénépÞRklaxNÐedayRkaPic tagGnuKmn¾ y = 3 − x nig Gk½S x' ox , (− 1 ≤ x ≤ 2) CMuvijGk½S x' ox . %> KNnamaDsUlItbivtþkMNt;)anBIrgVilcMnYn 360 CMuvijGk½S Gab;sIusénépÞRklaxNÐedayRkaPictagGnuKmn¾ y = 1 − x nig Gk½S x' ox , x ∈[− 1 , 1] . ^> KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRkla xNÐedayRkaPictagGnuKmn¾ f (x) = 2x nig g(x) = 4x − x . &> KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRkla xNÐedayRkaPictagGnuKmn¾ f (x) = 2 − x nig g(x) = x elIcenøaH x ∈[0 , 1]. *> KNnamaDsUlItbivtþkMNt;)anBIrgVil cMnYn 180 CMuvijGk½S x' ox énépÞRklaxNÐedayRkaPictagGnuKmn¾ f (x) = 8 − x nig g (x ) = x . (>KNnaépÞRklaEdlxNÐedayRkabtagGnuKmn¾ y = sin π2 x nig y=x . 0

2

2

2

2

0

2

2

4

- 101 -

CMBUkTI4

GaMgetRkalkMNt;

!0> KNnaépÞRklaEdlxNÐedayRkabtagGnuKmn¾ y = sin x nig 5π π y = cos x enAcenøaH x = nig x = . 4 4 !!> KNnaépÞRklaEdlxNÐedayRkab C nig C GnuKmn¾ y = sin x , (0 ≤ x ≤ π ) nig y = sin 3x , (0 ≤ x ≤ π ) !@>BinitüRkab y = sin 2x nig y = cos x Edl 0 ≤ x ≤ π . k>rkkUGredaencMNucRbsBVénRkabTaMgBIr. x>rképÞRkla S EdlxNÐedayRkabTaMgBIr. !#> C CaRkabtag f (x) = ln(x + 1) nig L CabnÞat;b:Hnwg C Edl manemKuNR)ab;TisesμInwg 12 . k>rksmIkarbnÞat;b:H L . x>KNnamaDsUlItbivtþkMNt;)anBIrgVilCMuvijGk½S x' ox én épÞRklaxNÐedayRkab C , L nig Gk½SGredaen. !$>tag C CaRkab y = e nig L CabnÞat;b:Hnwg C Rtg;cMnuc P(1 , e ) . k> rksmIkarbnÞat; L . x>rképÞRkla S EdlxNÐedayRkab C bnÞat; L nigGk½SGredaen. 3

3

1

2 x −1

- 102 -

2

CMBUkTI4

GaMgetRkalkMNt;

!%> tag C CaRkab y = xe , L , L CabnÞat;b:H C EdlKUs ecjBIcMnuc ⎛⎜⎝ 12 , 0 ⎞⎟⎠ . k>rksmIkarbnÞat;b:H L , L . x>rképÞRkla S EdlxNÐedayRkab C nig bnÞat;b:HEdlmankñúg sMnYrTI !. x

1

1

2

- 103 -

2

CMBUkTI4

GaMgetRkalkMNt;

dMeNaHRsay !>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ y = 2x + 1 Gk½S x' ox bnÞat;Qr x = 1 nig x = 3 . x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ y = x + 1 Gk½S x' ox bnÞat;Qr x = 0 nig x = 3 . K>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ y = x − 3 Gk½S x' ox bnÞat;Qr x = 4 eTA x = 9 . dMeNaHRsay k>KNnamaDsUlIt 2

y 7 6

3

V = π ∫ ( 2x + 1)2 .dx 1

[

4

]

3 π ( 2x + 1)3 1 6 158π π = ( 343 − 27 ) = 6 3

=

5

3 2 1

-3

¬ ÉktamaD ¦ .

-2

-1

0 -1

- 104 -

1

2

3

4

5

6 x

CMBUkTI4

GaMgetRkalkMNt;

x>KNnamaDsUlItbrivtþ

y

3

V = π ∫ ( x 2 + 1)2dx 0 3

= π ∫ ( x4 + 2x 2 + 1)dx 0 3

2 ⎡1 ⎤ = π ⎢ x4 + x 3 + x⎥ 3 ⎣4 ⎦0 =

1 0

1

x

165π 4

dUcenH V = 1654 π ¬ÉktamaD ¦ . K>KNnamaDsUlItbrivtþ y 2 1

-2

-1

0

1

2

3

4

5

6

7

8

9

10 x

-1 -2 -3

eyIg)an

9

9

V = π ∫ ( x − 3) dx = π ∫ ( x − 6 x + 9)dx 2

4

4

9

3 ⎡ x2 ⎤ 3π 2 = π ⎢ − 4x + 9x ⎥ = ⎢⎣ 2 ⎥⎦ 4 2

- 105 -

¬ÉktamaD ¦ .

CMBUkTI4

GaMgetRkalkMNt;

@>k>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ f (x) = x nig g(x) = 4x − x . x>KNnamaDsUlItbrivtþkMNt;)anBIrgVilCMuvijGk½S x' ox énépÞRklaEdlxNÐedayRkab tagGnuKmn¾ f (x ) = x − 2x + 3 nig g(x ) = 9 − x . dMeNaHRsay k>KNnamaDsUlItbrivtþ 2

2

2

y 4

3

2

1

-2

-1

0

1

2

3

4

5

-1

eyIg)an V = π ∫ [(4x − x 2

]

) − ( x 2 ) 2 . dx

2 2

0

- 106 -

x

CMBUkTI4

GaMgetRkalkMNt; 2

V = π ∫ (16x 2 − 8x 3 )dx 0

⎡ 16 3 ⎤ V = π ⎢ x − 2x 4 ⎥ ⎣3 ⎦ 32π V= 3

2

=

32π 3

0

dUcenH ¬ÉktamaD ¦ . x>KNnamaDsUlItbrivtþ y 13 12 11 10 9 8 7 6 5 4 3 2 1 -5 -4 -3 -2 -1 0 -1

1

2

3

4

5

6

7

8

9 10 11 12x

-2

eK)an V = π ∫ [(9 − x) − (x − 2x + 3) ]dx bnÞab;BIKNnaeK)an V = 250π ¬ÉktamaD ¦ . 3

2

2

−2

- 107 -

2

CMBUkTI4

GaMgetRkalkMNt;

#>cMeBaHGnuKmn¾ F(x) = ∫ sin πtdt . KNna x> F' (0) k> F(− 1) K> F' ⎛⎜⎝ 12 ⎞⎟⎠ X> F" (x). dMeNaHRsay eKman F(x) = ∫ sin πtdt x

1

x

1

x

1 ⎤ cos πt ⎥ π ⎦1

⎡ = ⎢− ⎣ 1 1 = − cos πx − π π

k> F(− 1) eK)an F(−1) = − π1 (−1) − π1 = 0 . x> F' (0) eKman F' (x) = sin πx eK)an F' (0) = 0 K> F' ⎛⎜⎝ 12 ⎞⎟⎠ π 1 eK)an F' ( 2 ) = sin 2 = 1 . X> F" (x) = π cos πx . - 108 -

CMBUkTI4

GaMgetRkalkMNt;

$>épÞRkla A xNÐedayRkabtagGnuKmn¾ g(t ) = 4 − t4 nig Gk½SGab;sIuselIcenaøH[1 , x] kMNt;eday 4⎞ ⎛ A(x ) = ∫ ⎜ 4 − ⎟dt . t ⎠ ⎝ KNna A CaGnuKmn¾én x . etIRkabGnuKmn¾ A mansmIkar GasIumtUtedk rW eT? dMeNaHRsay k>KNna A CaGnuKmn¾én x 2

x

2

1

x⎛

4⎞ − 4 ∫1 ⎜⎝ t 2 ⎟⎠.dt x 4⎤ 4 ⎡ = ⎢4t + ⎥ = 4x + − 8 t⎦1 x ⎣ 4 A( x ) = 4x − 8 + x

A (x ) =

dUcenH . eday lim A(x) = lim (4x − 8 + 4x ) = +∞ . naM[RkabGnuKmn¾ A KμansmIkarGasIumtUtedkeT . x→ +∞

x→ +∞

- 109 -

CMBUkTI4

GaMgetRkalkMNt;

%> KNna F' (x) ebI k> F(x) = ∫ (4t + 1)dt K> F(x) = ∫ t dt g> F(x) = ∫ sin t dt dMeNaHRsay KNna F' (x) ebI k> F(x) = ∫ (4t + 1)dt eK)an F(x) = [2t + t ]

x> F(x) = ∫ t dt X> F(x) = ∫ t1 dt c> F(x) = ∫ 2 1+ t dt .

x+ 2

x

3

−x

x

x2

sin x

2

0

x3

0

sin x

0

x+ 2

x

x+ 2 x

2

[

]

= 2( x + 2) 2 + x + 2 − ( 2x 2 + x ) = 2x 2 + 8x + 8 + x + 2 − 2x 2 − x = 8x + 10

dUcenH F' (x) = 8 . x> F(x) = ∫ t dt eK)an F(x) = ⎡⎢⎣ 14 t ⎤⎥⎦ dUcenH F' (x) = 0 . x

3

−x

x

=0

4

−x

- 110 -

2

CMBUkTI4

GaMgetRkalkMNt;

K> F(x) = ∫

sin x

t dt

0

eK)an

sin x

⎡2 3 ⎤ F( x ) = ⎢ t 2 ⎥ ⎢⎣ 3 ⎥⎦ 0

dUcenH F' (x) = cos x 1 ( ) X> F x = ∫ t dt

3

2 = sin 2 x 3 sin x

x2

2

2

eK)an F(x) = ⎡⎢⎣− 1t ⎤⎥⎦

x2

=− 2

1 1 + 2 2 x

dUcenH F' (x) = x2 . g> F(x) = ∫ sin t dt eK)an F(x) = [− cos t] = − cos x + 1 dUcenH F' (x) = 3x sin x c> F(x) = ∫ 2 1+ t dt . eK)an F(x) = [ln | 2 + t |] = ln 2 − ln | 2 + sin x | x )' cos x =− dUcenH F' (x) = − (22 ++ sin . sin x 2 + sin x 3

x3

0

x3 0

2

3

3

0

sin x

0 sin x

- 111 -

CMBUkTI4

GaMgetRkalkMNt;

^>k>bgðajfaebI f (t ) CaGnuKmn¾ess enaH F(x) = ∫ f (t ) dt RKb; x ∈ IR CaGnuKmn¾essEdrrWeT? dMeNaHRsay sikSaPaBKUessénGnuKmn_ F(x) man F(x) = ∫ f (t ) dt eK)an F(− x) = ∫ f (t ).dt tag u = −t ⇒ du = −dt cMeBaH t = a enaH u = −a ehIy t = − x enaH u = x eK)an F(− x) = ∫ f (−u) (−du) = ∫ f (−u)du x

a

x

a

−x

a

−a

x

−a

−a

x

−a

b¤ F(− x) = ∫ f (−t )dt = ∫ f (t )dt eRBaH f (t ) CaGnuKmn¾ess x



x x

F( − x ) = − ∫ f (t )dt −a

x

x

0

0

-ebI a = 0 enaH F(x) = ∫ f (t )dt nig F(− x) = − ∫ f (t )dt eK)an F(− x) = −F(x) enaH F(x) CaGnuKmn_ess . -ebI a ≠ 0 enaH F(x) minEmnCaGnuKmn_esseT . - 112 -

CMBUkTI4

GaMgetRkalkMNt; x3 1 y= + 3 4x

&>k>KNnaRbEvgFñÚénRkabtagGnuKmn¾ BI x = 1 eTA x = 3 . x>]bmafa f (x) = 12 (e + e ). bnÞat;CYbGk½SGredaenRtg; B ehIyb:HnigRkabtag f Rtg;cMnuc A(a , f (a)) Edl a > 0 . eRbobeFobRbEvgénGgÁt; AB nigRbEvgFñÚrénRkabtag f enAbenøaHbnÞat;Qr x = 0 nig x = a . dMeNaHRsay y k>KNnaRbEvgFñÚ tamrUbmnþ L = ∫ 1 + y' .dx −x

x

3

2

1 3

eday y = x3 + 41x eK)an y' = x − 41x 2

L=

3

∫ 1 3

1 1 + ( x 2 − 2 ) 2 .dx 4x

= ∫ (x 2 + 1

2

1 2 ) .dx 2 4x 3

1⎤ 53 ⎡1 = ⎢ x3 − ⎥ = 4x ⎦ 1 6 ⎣3

- 113 -

1 0

1

x

CMBUkTI4

GaMgetRkalkMNt;

x> AB nigRbEvgFñÚrénRkabtag f enAcenøaHbnÞat; x = 0 nig x = a y

A 1

0

1

x

B

smIkarbnÞat; T b:HRkabtag f (x) = 12 (e + e ) KW 1 T : y − f (a ) = f ' (a )( x − a ) Edl f ' (a ) = (e − e ) 2 ebI x = 0 ⇒ y = −af ' (a) + f (a) enaH B(0 , − af ' (a) + f (a)) eK)an AB = a + a f ' (a) = a 1 + f ' (a) −x

x

a

2

ehIy

2

2

−a

2

1 a = a 1 + ( e a − e − a ) 2 = (e a + e − a ) 4 2 a 1 x 1a x −x 2 L = ∫ 1 + (e − e ) .dx = ∫ (e + e − x ).dx 4 20 0 1 x 1 −x a = e − e 0 = (e a − e − a ) 2 2

[

]

.

- 114 -

CMBUkTI5

smIkarDIepr:g;Esül

CMBUkTI5 emeronTI1

smIkarDIepr:g;EsüllMdab;TI1 smIkarDIepr:g;EsüllMdab;TI ! manragTUeTA > dy = f ( x ) mancemøIyTUeTA y = ∫ f ( x ).dx + c dx > g(y ). dy = f ( x ) mancemøIyTUeTA G ( y ) = F( x ) + C dx Edl G(y ) = ∫ g(y ).dy . + ay = 0 mancemøIyTUeTA y = A .e > y'+ay = 0 b¤ dy dx Edl A CacMnYnefr . > y'+ay = p(x) mancemøIyTUeTA y = y + y Edl y CacemøIyénsmIkar y'+ay = 0 nig y CacemøIyBiessmYy énsmIkar y'+ay = p(x) . − ax

e

p

- 115 -

p

e

CMBUkTI5

smIkarDIepr:g;Esül

lMhat; !>edaHRsaysmIkarDIepr:g;Esül³ k> y' = 2x − x + 1 x> y' = e K> y' = x 2+x 1 X> y' = x x− 1 kMNt;elI (− 1 , 1) g> xy' = 1 kMNt;elI (0 , + ∞ ). @> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> yy' = cos x , y⎛⎜⎝ π2 ⎞⎟⎠ = e x> y' = e , y(0) = 5 K> (3x − 2)y' = 6 , y(1) = 4 X> tany' x = 1 , y(0) = 0 #>edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI! dy + 2y = 0 3 +y=0 k> dy x> dx dx K> 2y'−3y = 0 X> y'+ y 2 = 0 . −2x

2

2

2

2x

2

- 116 -

CMBUkTI5

smIkarDIepr:g;Esül

$> edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI!tamlkçxNÐ Edl[³ k> − y'+2y = 0 , y(3) = −2 x> 2y'+ y = 0 , y(ln 4) = 15 K> 7y'+4y = 0 , y(7) = e X> 2y'−5y = 0 , y(1) = −3 %>cUrbgðajfaGnuKmn¾nimYy²cxageRkamenHCacMelIyénsmIkar DIepr:g;EsülenAxagsþaM³ k> y = x + e , y'− y = 1 − x x> y = e − x − 1 , y'−3y = 3x + 2 K> y = sin x + cos x , y'+ y = 2 cos x X> y = x + ln x , xy'− y = 1 − ln x . ^>eKmansmIkarDIepr:g;Esül (E) : y'+2y = x . k>kMNt;BhuFa g mandWeRkTI@ EdlCacMelIyBiessén (E) . x>tag h CaGnuKmn¾Edl h(x) = f (x) − g(x) . ebI h EdlCa cMelIyBiessénsmIkarDIepr:g;Esül y'+2y = 0 enaHbgðajfa f CacMelIyTUreTAén (E). −4

x

3x

2

- 117 -

CMBUkTI5

smIkarDIepr:g;Esül

&> eKmansmIkarDIepr:g;Esül (E) : y'−2y = 1 +−e2 . k>edaHRsaysmIkarDIepr:g;Esül y'−2y = 0 EdlepÞogpÞat; y (0 ) = 1 . x>tag f CaGnuKmn¾manedrIev IR Edl f (x) = e g(x) . KNna f ' (x) CaGnuKmn¾én g(x) nig g' (x). K>bgðajfaebI f CacemøIyén (E) luHRtaEt g' (x) = 1−+2ee X>TajrkkenSam g(x) rYc f (x) Edl f CacemøIyén (E) . *>edaHRsaysmIkarDIepr:g;Esül dy 1 +y= −y=e x> k> dy dx dx e +1 K> y'+ y = 1 X> y'+ y = sin x (>edaHRsaysmIkarDIepr:g;EsültamlkçxNÐedIm k> y'− y = 1 , y(0) = 1 x> y'+2y = 1 , y(0) = 0 !0>edaHRsaysmIkarDIepr:g;Esül = sin 5x k> dy x> dx + e dy = 0 dx dy = 2x X> ( x + 1) = x+6 K> e dy dx dx −2x

2x

−2x −2x

3x

2x

3x

x

- 118 -

CMBUkTI5

smIkarDIepr:g;Esül

lMhat; nig dMeNaHRsay !>edaHRsaysmIkarDIepr:g;Esül³ k> y' = 2x − x + 1 x> y' = e K> y' = x 2+x 1 X> y' = x x− 1 kMNt;elI (− 1 , 1) g> xy' = 1 kMNt;elI (0 , + ∞ ). dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül³ k> y' = 2x − x + 1 eK)an y = ∫ (2x − x + 1).dx dUcenH y = 23 x − 12 x + x + c x> y' = e eK)an y = ∫ e dx dUcenH y = − 12 e + c 2

2

2

2

2

3

2

−2x

−2x

−2x

- 119 -

−2x

CMBUkTI5

smIkarDIepr:g;Esül

K> y' = x 2+x 1 eK)an y = ∫ x 2+x 1.dx dUcenH = ln( x + 1) + C X> y' = x x− 1 kMNt;elI (− 1 , 1) eK)an y = ∫ x x− 1dx 2

2

2

2

2

1 ⎛ 1 1 ⎞ + ⎜ ⎟.dx ∫ 2 ⎝ x + 1 x − 1⎠ 1 dx 1 dx = ∫ + ∫ 2 x+1 2 x−1 1 1 = ln | x + 1 | + ln | x − 1 | + C 2 2 1 y = ln ( x + 1)( x − 1) + C 2 =

dUcenH g> xy' = 1 kMNt;elI (0 , + ∞ ). eK)an y' = 1x ⇒ y = ∫ dxx = ln | x | +C dUcenH y = ln | x | +C .

- 120 -

CMBUkTI5

smIkarDIepr:g;Esül

@> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> yy' = cos x , y⎛⎜⎝ π2 ⎞⎟⎠ = e x> y' = e , y(0) = 5 K> (3x − 2)y' = 6x , y(1) = 4 X> tany' x = 1 , y(0) = 0 dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül k> yy' = cos x , y⎛⎜⎝ π2 ⎞⎟⎠ = e eK)an ∫ yy' dx = ∫ cos xdx 2x

2

ln y = sin x + c ⇒ y = e sin x+c π π x = ⇒ y ( ) = e1+ c = e ⇒ c = 0 2 2

cMeBaH dUcenH y = e . x> y' = e , y(0) = 5 eK)an y = ∫ e dx = 12 e + c cMeBaH x = 0 eK)an y(0) = 12 + c = 5 ⇒ c = 92 dUcenH y = 12 e + 92 sin x

2x

2x

2x

2x

- 121 -

CMBUkTI5

smIkarDIepr:g;Esül

K> (3x − 2)y' = 6x , y(1) = 4 eK)an y = ∫ 36xxdx− 2 = ln | 3x − 2 | +C ebI x = 1 ⇒ y(1) = C = 4 dUcenH y = ln | 3x − 2 | +4 X> tany' x = 1 , y(0) = 0 eK)an y = ∫ tan xdx = − ln | cos x | +C ebI x = 0 ⇒ y = C = 0 dUcenH y = − ln | cos x | . #>edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI! dy + 2y = 0 3 +y=0 k> dy x> dx dx K> 2y'−3y = 0 X> y'+ y 2 = 0 . dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül + 2y = 0 eday a = 2 k> dy enaHcemø I y TU e TArbs; s mI k ar dx KW y = A.e Edl A CacMnYnefr . 2

2

2

2

−2x

- 122 -

CMBUkTI5

smIkarDIepr:g;Esül

dy 1 + y = 0 b¤ + y=0 x> 3 dy dx dx 3

eday enaHcemøIyTUeTArbs;smIkarKW y = A.e Edl A CacMnYnefr . K> 2y'−3y = 0 b¤ y'− 32 y = 0 1 a= 3

1 − x 3

3 x 2 A.e

eday enaHcemøIyTUeTArbs;smIkarKW y = Edl A CacMnYnefr . X> y'+ y 2 = 0 eday a = 2 enaHcemøIyTUeTArbs;smIkarKW y = A.e Edl A CacMnYnefr . $> edaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;TI!tamlkçxNÐ Edl[³ k> − y'+2y = 0 , y(3) = −2 x> 2y'+ y = 0 , y(ln 4) = 15 K> 7y'+4y = 0 , y(7) = e X> 2y'−5y = 0 , y(1) = −3 dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül 3 a=− 2

2x

−4

- 123 -

CMBUkTI5

smIkarDIepr:g;Esül

k> − y'+2y = 0 , y(3) = −2 smIkarGacsresr y'−2y = 0 eday a = 2 enaHcemøIyTUeTArbs;smIkarKW y = Ae ebI x = 3 ⇒ y(3) = Ae = −2 ⇒ A = −2e dUcenH y = −2e . x> 2y'+ y = 0 , y(ln 4) = 15 smIkarGacsresr y'+ 12 y = 0

2x

−6

6

2 x− 6

eday

1 a= 2

enaHcemøIyTUeTArbs;smIkarKW y = Ae

ebI x = ln 4 ⇒ y(ln 4) = Ae 1

2 − x y= e 2 5

dUcenH K> 7y'+4y = 0



1 ln 4 2

=



1 x 2

1 2 ⇒A= 5 5

.

, y (7 ) = e − 4

.smIkarGacsresr y'+ 74 y = 0

eday enaHcemøIyTUeTArbs;smIkarKW y = ebI x = 7 ⇒ y(7) = Ae = e ⇒ A = 1 dUcenH y = e . 4 a= 7

−4

−4

4 − x 7

- 124 -

4 − x Ae 7

CMBUkTI5

smIkarDIepr:g;Esül

X> 2y'−5y = 0 , y(1) = −3 smIkarGacsresr y'− 52 y = 0 eday

enaHcemøIyTUeTArbs;smIkarKW y =

5 a= 2

5 Ae 2



5 2

5 x Ae 2

ebI x = 1 ⇒ y(1) = = −3 ⇒ A = −3e dUcenH y = −3 e . %>cUrbgðajfaGnuKmn¾nimYy²cxageRkamenHCacMelIyénsmIkar DIepr:g;EsülenAxagsþaM³ k> y = x + e , y'− y = 1 − x x> y = e − x − 1 , y'−3y = 3x + 2 K> y = sin x + cos x , y'+ y = 2 cos x X> y = x + ln x , xy'− y = 1 − ln x . dMeNaHRsay karbgðaj k> y = x + e , y'− y = 1 − x man y = x + e ⇒ y' = 1 + e eK)an y'− y = (1 + e ) − (x + e ) = 1 − x Bit 5 ( x −1 ) 2

x

3x

x

x

x

x

x

- 125 -

CMBUkTI5

smIkarDIepr:g;Esül

dUcenH y = x + e CacemøIyénsmIkar y'− y = 1 − x . x> y = e − x − 1 , y'−3y = 3x + 2 eKman y' = 3e − 1 eK)an y'−3y = 3e − 1 − 3e + 3x + 3 = 3x + 2 Bit dUcenH y = e − x − 1 CacemøIysmIkar y'−3y = 3x + 2 . K> y = sin x + cos x , y'+ y = 2 cos x eKman y' = cos x − sin x eK)an y'+ y = cos x − sin x + cos x + sin x = 2 cos x Bit dUcenH y = sin x + cos x CacemøIysmIkar y'+ y = 2 cos x . X> y = x + ln x , xy'− y = 1 − ln x eKman y' = 1 + 1x ⇒ xy' = x + 1 eK)an xy'− y = x + 1 − x − ln x = 1 − ln x Bit dUcenH y = x + ln x CacemøIyrbs;smIkar xy'− y = 1 − ln x x

3x

3x

3x

3x

3x

- 126 -

CMBUkTI5

smIkarDIepr:g;Esül

^>eKmansmIkarDIepr:g;Esül (E) : y'+2y = x . k>kMNt;BhuFa g mandWeRkTI@ EdlCacMelIyBiessén (E) . x>tag h CaGnuKmn¾Edl h(x) = f (x) − g(x) . ebI h EdlCa cMelIyBiessénsmIkarDIepr:g;Esül y'+2y = 0 enaHbgðajfa f CacMelIyTUreTAén (E). dMeNaHRsay k>kMNt;BhuFa g mandWeRkTI@ EdlCacMelIyBiessén (E) tag g(x) = ax + bx + c CacemøIyrbs;smIkar (E) eK)an g' (x) + 2g(x) = x (1) Et g' (x) = 2ax + b enaHTMnak;TMng ¬!¦Gacsresr 2

2

2

2ax + b + 2(ax 2 + bx + c) = x 2 2ax 2 + ( 2a + 2b )x + b + 2c = x 2 1 1 1 a= , b=− ,c= 2 2 4 1 1 1 g( x ) = x 2 − x + 2 2 4

eKTaj . dUcenH x> bgðajfa f CacMelIyTUreTAén (E). man h CaGnuKmn¾Edl h(x) = f (x) − g(x) ebI h CacMelIyBiessénsmIkarDIepr:g;Esül y'+2y = 0 - 127 -

CMBUkTI5

smIkarDIepr:g;Esül

eK)an h' (x) + 2h(x) = 0 eday h' (x) = f ' (x) − g' (x) enaH f ' (x) − g' (x) + 2f (x) − 2g(x) = 0 [ f ' ( x ) + 2f ( x ) ] − [ g' ( x ) + 2g( x ) ] = 0 ( 2)

yk

(1)

CYskñúg (2) eK)an

. sRmaybBa¢ak;enHmann½yfa ebI h CacMelIyBiessénsmIkar DIepr:g;Esül y'+2y = 0 enaH f CacMelIyTUreTAén (E). &> eKmansmIkarDIepr:g;Esül (E) : y'−2y = 1 +−e2 . k>edaHRsaysmIkarDIepr:g;Esül y'−2y = 0 EdlepÞogpÞat; y (0 ) = 1 . x>tag f CaGnuKmn¾manedrIev IR Edl f (x) = e g(x) . KNna f ' (x) CaGnuKmn¾én g(x) nig g' (x). K>bgðajfaebI f CacemøIyén (E) luHRtaEt g' (x) = 1−+2ee X>TajrkkenSam g(x) rYc f (x) Edl f CacemøIyén (E) . f ' ( x) + 2f ( x) − x 2 = 0 ⇒ f ' ( x ) + 2f ( x ) = x 2

−2x

2x

−2x

−2x

- 128 -

CMBUkTI5

smIkarDIepr:g;Esül

dMeNaHRsay k>edaHRsaysmIkarDIepr:g;Esül y'−2y = 0 EdlepÞogpÞat; y (0 ) = 1 ³ eKman y'−2y = 0 ⇒ y = A.e Edl A CacMnYnefr ebI x = 0 ⇒ y(0) = A = 1 . dUcenH y = e . x>KNna f ' (x) CaGnuKmn¾én g(x) nig g' (x) eKman f (x) = e g(x) eK)an f ' (x) = 2e g(x) + e g' (x) dUcenH f ' (x) = [2g(x) + g' (x)] e . K>bgðajfaebI f CacemøIyén (E) luHRtaEt g' (x) = 1−+2ee ebI f CacemøIyén (E) : y'−2y = 1 +−e2 enaHeK)an −2 eday f (x) = e g(x) f ' ( x) − 2f ( x ) = 1+ e nig f ' (x) = [2g(x) + g' (x)]e enaHeK)an 2x

2x

2x

2x

2x

2x

−2x −2x

−2x

2x

−2x

2x

[2g( x ) + g' ( x)]e 2 x − 2e 2 x g( x ) =

- 129 -

−2 1 + e −2x

CMBUkTI5

smIkarDIepr:g;Esül − 2e − 2 x g' ( x ) = 1 + e −2x − 2e − 2 x g' ( x ) = 1 + e −2x

eKTaj . müa:geTotebI ehIyeday f ' (x) = [2g(x) + g' (x)] e eK)an 2x

− 2e − 2 x 2 x f ' ( x) = [2g( x ) + ]e −2x 1+ e 2 2x f ( x ) = g ( x ). e f ' ( x) = 2g( x )e 2 x − 1 + e −2x 2 −2 f ' ( x) = 2f ( x) − ⇒ f ' ( x ) − 2 f ( x ) = 1 + e −2x 1 + e −2x − 2e − 2 x f g' ( x ) = (E) 1 + e −2x

eday

. dUcenH ebI CacemøIyén luHRtaEt X>TajrkkenSam g(x) rYc f (x) Edl f CacemøIyén (E) − 2e eKman g' (x) = 1 + e eK)an g(x) = ∫ 1−+2ee .dx = ∫ (11++ ee )'.dx dUcenH g(x) = ln | 1 + e | +C . müa:geToteday f (x) = g(x).e dUcenH f (x) = e . ln(1 + e ) + C.e Edl C ∈ IR . −2x

−2x

−2x

−2x

−2x

−2x

−2x

2x

2x

−2x

- 130 -

2x

CMBUkTI5

smIkarDIepr:g;Esül

*>edaHRsaysmIkarDIepr:g;Esül 1 dy k> dy −y=e x> +y= dx dx e +1 K> y'+ y = 1 X> y'+ y = sin x dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül k> dy −y=e dx − y = e nig y Ca tag y = ke CacemøIyBiessén dy dx − y = 0 enaH y = y + y CacmøIyTUeTA cemøIyénsmIkar dy dx −y=e . énsmIkar dy dx − y = 0 naM[ y = A.e Edl A ∈ IR eK)an dy dx − y = e enaHeK)an eday y = ke CacemøIyBiessén dy dx dy dy −y =e Et dx = 3ke dx eK)an 3ke − ke = e ⇒ k = 12 . eK)an y = 12 e . dUcenH y = A.e + 12 e Edl A CacMnYnefr . 3x

2x

3x

3x

3x

e

p

e

p

3x

x

e

3x

3x

p

p

p

3x

3x

p

3x

3x

3x

3x

p

x

3x

- 131 -

CMBUkTI5

smIkarDIepr:g;Esül

1 x> dy +y= dx e +1 b¤ y'+ y = e 1+ 1 KuNGgÁTaMgBIrnwg e eK)an 2x

2x

x

ex y' e + e y = 2 x e +1 ex x ⇒ ye x = ( ye )' = 2 x e +1 x

x



e x dx e 2x + 1

tag t = e ⇒ dt = e dx eK)an ye = ∫ t dt+ 1 = arctan(t ) + C b¤ ye = arctan(e ) + C dUcenH y = e arctan(e ) + C.e . K> y'+ y = 1 b¤ y'+ y − 1 = 0 tag z = y − 1 enaH z' = y' smIkarGacsresr z'+ z = 0 ⇒ z = A.e eday z = y − 1 ⇒ y = z + 1 = A.e + 1 Edl A ∈ IR . X> y'+ y = sin x cemøIy y = A.e + 12 (sin x − cos x) Edl A ∈ IR . x

x

x

2

x

x

−x

x

−x

−x

−x

−x

- 132 -

CMBUkTI5

smIkarDIepr:g;Esül

(>edaHRsaysmIkarDIepr:g;EsültamlkçxNÐedIm k> y'− y = 1 , y(0) = 1 x> y'+2y = 1 , y(0) = 0 dMeNaHRsay edaHRsaysmIkarDIepr:g;EsültamlkçxNÐedIm k> y'− y = 1 , y(0) = 1 eKman y'− y = 1 KuNGgÁTaMgBIrnwg e eK)an −x

y' e − x − e − x y = e − x ( ye − x )' = e − x ⇒ ye − x = ∫ e − x dx ⇒ ye − x = −e − x + k ⇒

y = −1 + ke − x

ebI x = 0 enaH y(0) = −1 + k = 1 ⇒ k = 2 dUcenH y = −1 + 2e . x> y'+2y = 1 , y(0) = 0 edaHRsaydUcxagelIEdreK)ancemøIyrbs;smIkarKW 1 1 y= − e . 2 2 −x

−2x

- 133 -

CMBUkTI5

smIkarDIepr:g;Esül

!0>edaHRsaysmIkarDIepr:g;Esül = sin 5x x> dx + e dy = 0 k> dy dx dy = 2x X> ( x + 1) = x+6 K> e dy dx dx dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül = sin 5x k> dy dx eKTaj y = ∫ sin 5x.dx = − 15 cos 5x + C x> dx + e dy = 0 eKTaj y = ∫ e dx = − 13 e + C = 2x K> e dy dx eKTaj y = ∫ 2xe dx tag f (x) = 2x ⇒ f ' (x) = 2 ehIy g' (x) = e ⇒ g(x) = ∫ e .dx = −e tamrUbmnþ ∫ f (x).g' (x).dx = f (x)g(x) − ∫ g(x)f ' (x).dx eK)an y = −2xe + ∫ 2e dx = −2xe − 2e + C 3x

x

3x

−3x

−3x

x

−x

−x

−x

−x

−x

- 134 -

−x

−x

−x

CMBUkTI5

smIkarDIepr:g;Esül

dUcenH y = −2(x + 1)e = x+6 X> (x + 1) dy dx eK)an y = ∫ xx ++ 16.dx

−x

+C

.

5 )dx x+1 y = x + 5 ln | x + 1 | + C y = ∫ (1 +

- 135 -

CMBUkTI5

smIkarDIepr:g;Esül

CMBUkTI5 emeronTI2

smIkarDIepr:g;EsüllIenEG‘lMdab;TI2 !-smIkarDIepr:g;EsüllIenEG‘lMdab;2

niymn½y

smIkarDIepr:g;EsüllIenEG‘lMdab;TI2 GUm:UEsn nigmanemKuNCa cMnYnefrCasmIkarEdlGacsresrCaragTUeTA ay' '+by'+cy = 0 Edl a ≠ 0 , a, b, c ∈ IR . 2-dMeNaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;2Gum:UEsn nigmanemKuNCacMnYnefr

k>smIkarsmÁal;

smIkarsmÁal;énsmIkarDIepr:g;EsüllIenEG‘lMdab;TI2 GUm:UEsn nigmanemKuNCacMnYnefr ay' '+by'+cy = 0 CasmIkardWeRkTIBIr aλ + bλ + c = 0 Edl a ≠ 0 , a, b, c ∈ IR . 2

- 136 -

CMBUkTI5

smIkarDIepr:g;Esül

x>viFIedaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;2

]bmafaeKmansmIkarDIepr:g;EsüllIenEG‘lMdab;@dUcxageRkam³ (E) : y' '+ by'+ cy = 0 Edl b , c ∈ IR . smIkar (E) mansmIkarsmÁal; λ + bλ + c = 0 (1) KNna Δ = b − 4c -krNI Δ > 0 smIkar (1) manb¤sBIrCacMnYnBitepSgKñaKW λ = α λ = β enaHsmIkar (E) mancemøIyTUeTACaGnuKmn_rag y = A.e + B.e Edl A , B CacMnYnefrmYyNak¾)an . -krNI Δ = 0 smIkar (1) manb¤sDúbKW λ = λ = α enaHsmIkar (E) mancemøIyTUeTACaGnuKmn_rag y = Ax.e + B.e Edl A , B CacMnYnefrmYyNak¾)an . -krNI Δ < 0 smIkar (1) manb¤sBIrepSgKñaCacMnYnkMupøicqøas;KñaKW λ = α + i .β nig λ = α − i .β ¬ α , β ∈ IR ¦ enaHsmIkar (E) mancemøIyTUeTACaGnuKmn_rag 2

2

1

2

αx

βx

1

αx

1

αx

2

y = ( A cos β x + B sin β x )e αx

Edl A , B CacMnYnefrmYyNak¾)an . - 137 -

2

CMBUkTI5

smIkarDIepr:g;Esül

3-dMeNaHRsaysmIkarDIepr:g;EsüllIenEG‘lMdab;2minGum:U EsnnigmanemKuNCacMnYnefr ]bmafaeKmansmIkarDIepr:g;EsüllIenEG‘lMdab;TI@minGUm:UEsn y' '+ by'+ cy = P( x ) Edl P( x ) ≠ 0 . edIm,IedaHRsaysmIkarenHeKRtUv ³ EsVgrkcemøIyBiessminGUm:UEsn tageday y rbs;smIkar y' '+ by'+ cy = P( x ) Edl y manTRmg;dUc P( x ) . rkcemøIyTUeTAtageday y énsmIkarlIenEG‘lMdab;TI@GUm:UEsn y' '+ by'+ cy = 0 . eK)ancemøIyTUeTAénsmIkarDIepr:g;EsüllIenEG‘lMdab;TI@ minGUm:UEsnCaplbUkrvag y nig y KW y = y + y . P

P

c

P

- 138 -

c

P

C

CMBUkTI5

smIkarDIepr:g;Esül

lMhat; !>epÞógpÞat;faGnuKmn_ f CacemøIyénsmIkarDIepr:g;EsülEdl[ k> f (x) = (2x + 1)e , y' '+2y'+ y = 0 x> f (x) = e sin x , y' '+2y'+2y = 0 K> f (x) = Ae + Bxe , y' '−2y'+ y = 0 Edl A nig B CacMnYnefrNamYyk¾)an . @> edaHRsaysmIkar k> 2y' '−3y'+ y = 0 x> − 4y' '+7y'+2y = 0 K> y' '−2y' = 0 X> y' '−3y'+3y = 0 g> 2y' '+3y'−2y = 0 c> y' '−3y'+ y = 0 #>kñúgkrNInImYy²xageRkam eK[ f CaGnuKmn_kMNt;elI IR . rksmIkarDIepr:g;EsüllIenEG‘lMdab;TIBIr GUm:UEsnEdlman GnuKmn_ f CacemøIy k> f (x) = (x + 1)e x> f (x) = 2e + 3e K> f (x) = (2 cos 3x − 3 sin 3x)e −x

−x

x

x

−2x

−x

3x

x

- 139 -

CMBUkTI5

smIkarDIepr:g;Esül

$> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> y' '− y = 0 , y(0) = 1 , y' (0) = −2 x> y' '−2y'+3y = 0 , y(0) = 2 , y' (0) = 1 K> y' '+ y = 0 , y( π2 ) = 3 , y' ( π2 ) = 2 X> y' '−3y'+2y = 0 , y(0) = 1 , y' (0) = 3 . %>eKmansmIkarDIepr:g;Esül y' '−4y'+2y = 4 k>rkGnuKmn_efr k EdlCacemøIyBiessén (E) x>edaHRsaysmIkar y' '−4y'+2y = 4 K>rkcMelIyBiessén (E) EdlepÞogpÞat;lkçxNÐedIm y (0 ) = 2 2 , y' (0 ) = 0 .

- 140 -

CMBUkTI5

smIkarDIepr:g;Esül

dMeNaHRsay !>epÞógpÞat;faGnuKmn_ f CacemøIyénsmIkarDIepr:g;EsülEdl[ k> f (x) = (2x + 1)e , y' '+2y'+ y = 0 x> f (x) = e sin x , y' '+2y'+2y = 0 K> f (x) = Ae + Bxe , y' '−2y'+ y = 0 Edl A nig B CacMnYnefrNamYyk¾)an . dMeNaHRsay epÞógpÞat;faGnuKmn_ f CacemøIyénsmIkarDIepr:g;Esül k> f (x) = (2x + 1)e , y' '+2y'+ y = 0 GnuKmn_ f (x) = (2x + 1)e CacemøIysmIkar y' '+2y'+ y = 0 luHRtaEt f (x) , f ' (x) , f ' ' (x) epÞógpÞat;nwgsmIkareBalKW f ' ' ( x ) + 2f ' ( x ) + f ( x ) = 0 cMeBaHRKb; x . eKman f ' (x) = 2e − (2x + 1)e = (−2x + 1)e nig f ' ' (x) = −2e − (−2x + 1)e = (2x − 3)e eK)an −x

−x

x

x

−x

−x

−x

−x

−x

−x

−x

−x

f ' ' ( x ) + 2f ' ( x ) + f ( x ) = ( 2x − 3 − 4x + 2 + 2x + 1)e − x = 0

dUcenHGnuKmn_ f CacemøIyénsmIkarDIepr:g;EsülEdl[ . - 141 -

CMBUkTI5

smIkarDIepr:g;Esül

x> f (x) = e sin x , y' '+2y'+2y = 0 eKman f ' (x) = −e sin x + e cos x b¤ f ' (x) = −f (x) + e cos x (1) ehIy f ' ' (x) = −f ' (x) − e cos x − e sin x b¤ f ' ' (x) = −f ' (x) − e cos x − f (x) (2) bUksmIkar (1) nig (2) eKTTYl)an −x

−x

−x

−x

−x

−x

−x

f ' ' ( x ) + f ' ( x ) = − f ' ( x ) − 2f ( x )

b¤ f ' ' (x) + 2f ' (x) + 2f (x) = 0 . dUcenH f (x) = e sin x CacemøIyrbs; y' '+2y'+2y = 0 . K> f (x) = Ae + Bxe , y' '−2y'+ y = 0 Edl A nig B CacMnYnefrNamYyk¾)an . eKman f ' (x) = Ae + Be + Bxe nig f ' ' (x) = Ae + 2Be + Bxe eK)an f ' ' (x) − 2f ' (x) + f (x) = 0 Bit dUcenH f (x) = Ae + Bxe CacemøIyrbs;smIkarDIepr:g;Esül y' '−2y'+ y = 0 Edl A nig B CacMnYnefrNamYyk¾)an . −x

x

x

x

x

x

x

x

x

x

x

- 142 -

CMBUkTI5

smIkarDIepr:g;Esül

@> edaHRsaysmIkar k> 2y' '−3y'+ y = 0 x> − 4y' '+7y'+2y = 0 K> y' '−2y' = 0 X> y' '−3y'+3y = 0 g> 2y' '+3y'−2y = 0 c> y' '−3y'+ y = 0 dMeNaHRsay k> 2y' '−3y'+ y = 0 mansmIkarsmÁal; 2λ − 3λ + 1 = 0 eday a + b + c = 0 ⇒ λ = 1 ; λ = ac = 12 dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ y = Ae + Be Edl A , B CacMnYnefr . x> − 4y' '+7y'+2y = 0 mansmIkarsmÁal; − 4λ + 7λ + 2 = 0 eday Δ = 49 + 32 = 9 ⇒ λ = 2 ; λ = ac = − 14 dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ y = Ae + Be Edl A , B CacMnYnefr . 2

1

x

2

1 x 2

2

2

1

2x

1 − x 4

- 143 -

2

CMBUkTI5

smIkarDIepr:g;Esül

K> y' '−2y' = 0 mansmIkarsmÁal; λ − 2λ = 0 eKTajb¤s λ = 0 ; λ = 2 dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ y = A + Be Edl A , B CacMnYnefr . X> y' '−3y'+3y = 0 mansmIkarsmÁal; λ − 3λ + 3 = 0 eday Δ = 9 − 12 = −3 ⇒ λ = 32 ± i 23 eKTaj α = 32 , β = 23 . dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ 3 3 y = (C cos x + D sin x) e Edl C , D CacMnYnefr 2 2 g> 2y' '+3y'−2y = 0 cemøIy y = Ae + Be Edl A , B CacMnYnefr . c> y' '−3y'+ y = 0 cemøIy y = Ae + Be Edl A , B CacMnYnefr . 2

1

2

2x

2

1, 2

3x 2

−2x

3− 5 x 2

1 x 2

3+ 5 x 2

- 144 -

CMBUkTI5

smIkarDIepr:g;Esül

#>kñúgkrNInImYy²xageRkam eK[ f CaGnuKmn_kMNt;elI IR . rksmIkarDIepr:g;EsüllIenEG‘lMdab;TIBIr GUm:UEsnEdlman GnuKmn_ f CacemøIy k> f (x) = (x + 1)e x> f (x) = 2e + 3e K> f (x) = (2 cos 3x − 3 sin 3x)e dMeNaHRsay rksmIkarDIepr:g;EsüllIenEG‘lMdab;TIBI k> f (x) = (x + 1)e eKman f ' (x) = e − 2(x + 1)e = (−2x − 1)e ehIy f ' ' (x) = −2e − 2(−2x − 1)e b¤ f ' ' (x) = 4xe . eKman f ' ' (x) + 4f ' (x) + 4f (x) = (4x − 8x − 4 + 4x + 4)e = 0 dUcenH y' '+4y'+4y = 0 CasmIkarEdlRtUvrk . x> f (x) = 2e + 3e cemøIy y' '−2y'−3y = 0 K> f (x) = (2 cos 3x − 3 sin 3x)e cemøIy y' '−2y'+10y = 0 . −2x

−x

3x

x

−2x

−2x

−2x

−2x

−2x

−2x

−2x

−2x

−x

3x

x

- 145 -

CMBUkTI5

smIkarDIepr:g;Esül

$> edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> y' '− y = 0 , y(0) = 1 , y' (0) = −2 x> y' '−2y'+3y = 0 , y(0) = 2 , y' (0) = 1 K> y' '+ y = 0 , y( π2 ) = 3 , y' ( π2 ) = 2 X> y' '−3y'+2y = 0 , y(0) = 1 , y' (0) = 3 . dMeNaHRsay edaHRsaysmIkarDIepr:g;EsültamlkçxNÐEdl[³ k> y' '− y = 0 , y(0) = 1 , y' (0) = −2 mansmIkarsmÁal; λ − 1 = 0 eKTajb¤s λ = 1 ; λ = −1 dUcenHcemøIyTUeTArbs;smIkarDIepr:gEsülenHKWCaGnuKmn_ y = Ae + Be ehIy y' = Ae − Be eday y(0) = 1 nig y' (0) = −2 1 3 ⎧A + B = 1 A = − , B = − eK)an ⎨A − B = −2 naM[ 2 2 2

1

x

2

−x

x



dUcenH y = − 12 e

x

3 − e −x 2

.

- 146 -

−x

CMBUkTI5

smIkarDIepr:g;Esül

x> y' '−2y'+3y = 0 , y(0) = 2 , y' (0) = 1 cemøIy y = (cos 2x − 22 sin 2x) e K> y' '+ y = 0 , y( π2 ) = 3 , y' ( π2 ) = 2 cemøIy y = −2 cos x + 3 sin x X> y' '−3y'+2y = 0 , y(0) = 1 , y' (0) = 3 cemøIy y = −e + 2e %>eKmansmIkarDIepr:g;Esül y' '−4y'+2y = 4 k>rkGnuKmn_efr k EdlCacemøIyBiessén (E) x>edaHRsaysmIkar y' '−4y'+2y = 4 K>rkcMelIyBiessén (E) EdlepÞogpÞat;lkçxNÐedIm y (0 ) = 2 2 , y' (0 ) = 0 . dMeNaHRsay k>rkGnuKmn_efr k EdlCacemøIyBiessén (E) ebIGnuKmn_ y = k CacemøIy Biessén (E) enaHeK)an x

x

2x

(k )' '−4(k )'+2k = 4

2k = 4 ⇒ k = 2

dUcenH y

p

=2

CacemøIyBiessén (E) . - 147 -

CMBUkTI5

smIkarDIepr:g;Esül

x>edaHRsaysmIkar y' '−4y'+2y = 4 tag y CacemøIyén y' '−4y'+2y = 0 eK)an y = y + y CacemøIyrbs;smIkar y' '−4y'+2y = 4 . smIkar y' '−4y'+2y = 0 mansmIkarsmÁal; λ − 4λ + 2 = 0 c

c

p

2

Δ' = 4 − 2 = 2 ⇒ λ 1 = 2 + 2 , λ 2 = 2 − 2

eKTaj y = Ae + Be . K>rkcMelIyBiessén (E) EdlepÞogpÞat;lkçxNÐedIm eKman y = Ae + Be eK)an y' = (2 + 2 )Ae + ( 2 − 2 )Be eday y(0) = 2 2 , y' (0) = 0 enaHeK)an ( 2+ 2 ) x

( 2− 2 ) x

( 2+ 2 ) x

( 2− 2 ) x

( 2+ 2 ) x

( 2− 2 ) x

⎧A + B = 2 2 ⇒ A = −2 + 2 , B = 2 + 2 ⎨ ⎩( 2 + 2 )A + ( 2 − 2 )B = 0

dUcenH y = (−2 +

2 )e ( 2+

2 )x

+ ( 2 + 2 )e ( 2−

- 148 -

2 )x

CMBUkTI5

smIkarDIepr:g;Esül

lMhat;TI1 1>edaHRsaysmIkar g' ' (x) − 5g' (x) + 6g(x) = 0 (E) 2> kMnt;cMelIy g(x) mYyénsmIkar (E) Edl g(0) = 0 nig g' (0) = 1 . ¬RbFanRbLgqmasTI2qñaM2004¦ dMeNaHRsay 1> edaHRsaysmIkar g' ' (x) − 5g' (x) + 6g(x) = 0 mansmIkarsMKal; r − 5r + 6 = 0 eday Δ = 25 − 24 = 1 nMa[manb¤s

(E)

2

r1 =

5+1 5−1 = 2 , r2 = =3 2 2

tamrUbmnþ g(x) = A.e

r1x

+ B.e r2 x , A , B ∈ IR

dUcenHcMelIysmIkar g(x) = A.e - 149 -

2x

+ B.e 3 x , A, B ∈ IR

CMBUkTI5

smIkarDIepr:g;Esül

2> kMnt;cMelIy g(x) mYyénsmIkar (E) eKman g(x) = A.e + B.e naM[ g' (x) = 2A.e + 3B.e 2x

3x

2x

3x

tambMrab;eKman ⎧⎨gg'(0(0))==01 smmUl ⎧⎨2AA++B3=B0= 1 ⎩

naM[



⎧ A = −1 ⎨ ⎩B = 1

dUcenH g(x) = −e + e . lMhat;TI2 edaHRsaysmIkarDIepr:g;Esül (E) : y' '−3y'+2y = 0 2x

3x

edaydwgfa y(0) = 1 , y' (0) = 0 . dMeNaHRsay edaHRsaysmIkarDIepr:g;Esül³ (E) : y' '−3y'+2y = 0 - 150 -

CMBUkTI5

smIkarDIepr:g;Esül

mansmIkarsMKal; r

2

− 3r + 2 = 0

eday a + b + c = 0 naM[ r

1

tamrUbmnþ y = Ae

r1x

y = A.e x + B.e 2 x

= 1 , r2 =

+ Be r2 x

nig

eK)an

y' = A.e x + 2B.e 2 x , A, B ∈ IR

edaytambMrab;eKman ⎧⎨yy'(0(0))==10 b¤ ⎩

naM[

c =2 a

⎧A + B = 1 ⎨ ⎩ A + 2B = 0

⎧A = 2 ⎨ ⎩ B = −1

dUcenH y = 2e − e CacMelIysmIkar . lMhat;TI3 eK[smIkarDIepr:g;Esül x

2x

(E) : y' '−4y'+4y = 4x 2 − 24x + 34

k-kMnt;cMnYnBit a, b nig c edIm,I[ y (x) = ax CacMelIyedayBiessmYyrbs;smIkar (E) .

2

P

- 151 -

+ bx + c

n

CMBUkTI5

smIkarDIepr:g;Esül

x-bgðajfaGnuKmn_ y = y (x) + y (x) CacMelIyTUeTArbs; (E) enaHGnuKmn_ y (x )CacMelIyrbs;smIkarGUmU:Esn (E') : y' '−4y'+4y = 0 . K-edaHRsaysmIkar (E')rYcrkcMelIyTUeTArbs;smIkar (E). dMeNaHRsay k- kMnt;cMnYnBit a, b nig c P

c

c

(E) : y' '−4y'+4y = 4x 2 − 24x + 34

edIm,I[GnuKmn_ y (x) = ax + bx + c CacMelIyedayBiess mYyrbs;smIkar (E)luHRtEtGnuKmn_ y (x ), y' (x ) nig y' ' (x ) epÞógpÞat;nwgsmIkar (E ) . eK)an (E) : y' ' (x) − 4y' (x) + 4y (x) = 4x − 24x + 34 2

P

p

p

p

2

p

eday

P

⎧ y P (x ) = ax 2 + bx + c ⎪ ⎨ y'p (x ) = 2ax + b ⎪ ⎩ y' 'p (x ) = 2a - 152 -

p

CMBUkTI5

smIkarDIepr:g;Esül

eK)an (2a ) − 4(2ax + b ) + 4(ax 2 + bx + c ) = 4x 2 − 24x + 34

naM[ 4ax 2 + (4b − 8a )x + (2a − 4b + 4c ) = 4x 2 − 24x + 34

eKTaj)an

⎧4a = 4 ⎪ ⎨4b − 8a = −24 ⎪ 2a − 4b + 4c = 34 ⎩

naM[

⎧a = 1 ⎪ ⎨b = − 4 ⎪c = 4 ⎩

dUcenH a = 1 , b = −4 , c = −4 nig y (x) = x − 4x + 4 = (x − 2) . x-karbgðaj GnuKmn_ y = y (x) + y (x) CacMelIyrbs; (E) luHRtaGnuKmn_ y, y' , y' 'epÞógpÞat;smIkar (E) . edayeKman y' = y' (x) + y' (x) nig y' ' = y' ' (x) + y' ' (x) enaHeK)an ³ 2

2

P

P

c

p

p

c

c

- 153 -

CMBUkTI5

[y' ' [y' '

smIkarDIepr:g;Esül

] [

] [

]

2 + y ' ' − 4 y ' + y ' + 4 y + y = 4 x − 24x + 34 p c p c p c

]

2 [ ] − 4 y ' + 4 y + y ' ' − 4 y ' + 4 y = 4 x − 24x + 34 (1) p p p c c c

tamsRmayxagelIeKman y' 'p (x ) − 4y' P (x ) + 4y p (x ) = 4x 2 − 24x + 34 (2 )

¬ eRBaH y (x) CacMelIyrbs;smIkar (E) ¦ . tamTMnak;TMng ¬! ¦ nig ¬@¦ eKTaj)an ³ p

4x 2 − 24x + 34 + [y' ' c − 4y'c +4y c ] = 4x 2 − 24x + 34

naM[eKTaj)an y' ' (x) − 4y' (x) + 4y (x) = 0 TMnak;TMngenHbBa¢ak;faGnuKmn_ y (x) CacMelIyrbs; smIkar (E') : y' '−4y'+4y = 0 . K-edaHRsaysmIkar (E')³ y' '−4y'+4y = 0 smIkarsMKal; r − 4r + 4 = 0 , Δ' = 4 − 4 = 0 naM[smIkarmanb¤sDúb r = r = r = 2 c

c

c

h

2

1

- 154 -

2

0

CMBUkTI5

smIkarDIepr:g;Esül

dUcenHcMelIysmIkar (E') CaGnuKmn_ y c (x ) = (Ax + B ).e 2 x , A, B ∈ IR

.

TajrkcMelIyTUeTArbs;smIkar (E)³ tamsMrayxagelIcMelIysmIkar (E) KWCaGnuKmn_TMrg; y = y p (x ) + y c (x )

edayeKman y

p

(x ) = (x − 2 ) 2

nig y (x) = (Ax + B).e

dUcenH y = (x − 2) + (Ax + B).e CacMelIyrbs;smIkar (E). 2

- 155 -

c

2x

, A, B ∈ IR

2x

CMBUkTI5

smIkarDIepr:g;Esül

lMhat;TI4 eK[smIkarDIepr:g;Esül (E) : y'−4y = −4x + 10x − 6 k-kMnt;cMnYnBit a, b nig c edIm,I[ y (x) = ax + bx + c CacMelIyedayBiessmYyrbs;smIkar (E) . x-bgðajfaGnuKmn_ y = y (x) + y (x) CacMelIyTUeTArbs; (E ) enaHGnuKmn_ y (x ) CacMelIyrbs;smIkarGUmU:Esn (E') : y'−4y = 0 . K-edaHRsaysmIkar (E')rYcrkcMelIyTUeTArbs;smIkar (E). dMeNaHRsay k- kMnt;cMnYnBit a, b nig c 2

2

P

P

h

h

(E ) : y'−4y = −4x 2 + 10x − 6

edIm,I[GnuKmn_ y (x) = ax + bx + c CacMelIyBiess mYyrbs;smIkar (E)luHRtEtGnuKmn_ 2

P

- 156 -

CMBUkTI5

smIkarDIepr:g;Esül

y p (x ), y'p (x )

eK)an (E) : y' eday

P

nig y' '

p

(x ) epÞógpÞat;nwgsmIkar (E ) .

(x ) − 4y p (x ) = −4x 2 + 10x − 6

⎧⎪ y P (x ) = ax 2 + bx + c ⎨ ⎪⎩ y'p (x ) = 2ax + b

eK)an (2ax + b ) − 4(ax + bx + c) = −4x + 10x − 6 naM[ − 4ax − (4b − 2a)x + (b − 4c) = −4x + 10x − 6 2

2

2

eKTaj)an

2

⎧ − 4a = −4 ⎪ ⎨4b − 2a = −10 ⎪b − 4c = −6 ⎩

naM[

⎧a = 1 ⎪ ⎨b = − 2 ⎪c = 1 ⎩

dUcenH a = 1 , b = −2 , c = 1 nig y (x) = x − 2x + 1 = (x − 1) . x-karbgðaj GnuKmn_ y = y (x) + y (x) CacMelIyrbs; (E) luHRtaGnuKmn_ y, y'epÞógpÞat;smIkar (E) . edayeKman y' = y' (x) + y' (x) enaHeK)an ³ 2

2

P

P

h

p

h

- 157 -

CMBUkTI5 [y' [y'

smIkarDIepr:g;Esül p

(x ) + y'h (x )] − 4[y p (x ) + y h (x )] = −4x 2 + 10x − 6

p

(x ) − 4y p (x )] + [y'h (x ) − 4y h (x )] = −4x 2 + 10x − 6 (1)

tamsRmayxagelIeKman y' P (x ) − 4y p (x ) = −4x 2 + 10x − 6 (2 )

¬ eRBaH y (x) CacMelIyrbs;smIkar (E) ¦ . tamTMnak;TMng ¬! ¦ nig ¬@¦ eKTaj)an ³ p

− 4x 2 + 10x − 6 + [y'h (x ) − 4y h (x )] = −4x 2 + 10x − 6

naM[eKTaj)an y' (x) − 4y (x) = 0 . TMnak;TMngenHbBa¢ak;faGnuKmn_ y (x) CacMelIyrbs; smIkar (E') : y'−4y = 0 . K-edaHRsaysmIkar (E')³ y'−4y = 0 eday a = 4 dUcenHcMelIysmIkar (E') CaGnuKmn_ h

h

h

y h (x ) = k .e 4 x , k ∈ IR

.

- 158 -

CMBUkTI5

smIkarDIepr:g;Esül

TajrkcMelIyTUeTArbs;smIkar (E)³ tamsMrayxagelIcMelIysmIkar (E) KWCaGnuKmn_TMrg; y = y p (x ) + y h (x )

edayeKman y

p

(x ) = (x − 1)2 nig y h (x ) = k .e 4x

dUcenH y = (x − 1)

2

+ k .e 4 x , k ∈ IR

- 159 -

.

Mathe Grade 12 A.pdf

Whoops! There was a problem loading more pages. Retrying... Mathe Grade 12 A.pdf. Mathe Grade 12 A.pdf. Open. Extract. Open with. Sign In. Main menu.

2MB Sizes 4 Downloads 206 Views

Recommend Documents

TVL_Animal Production_Slaughtering Operation Grade 12 12 01.20 ...
relevant regulations. LO 1. Restraining animals. 1.1. Restrain animal humanely. and safely in accordance. with the Animal Welfare Act. 1.2. Restrain animal with.

PM_Brockhaus_Lehrwerk Mathe für Gymnasien.pdf
Whoops! There was a problem loading more pages. Retrying... Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. PM_Brockhaus_Lehrwerk Mathe für Gymnasi

TVL_Fish Production_Fish Processing Grade 11-12 12 01.20.2014.pdf ...
TVL_Fish Production_Fish Processing Grade 11-12 12 01.20.2014.pdf. TVL_Fish Production_Fish Processing Grade 11-12 12 01.20.2014.pdf. Open. Extract.

Grade 12 Maths BOOK.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Grade 12 Maths ...

TVL_Fish Production_Fish Processing Grade 11-12 12 01.20.2014.pdf ...
Retrying... Whoops! There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. TVL_Fish Production_Fish Processing Grade 11-12 12 01.20.2014.pdf. TVL_Fish Production_F

CHEMISTRY-GRADE 12.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item.

Econ Grade 12 Book.pdf
Page 3 of 285. Econ Grade 12 Book.pdf. Econ Grade 12 Book.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Econ Grade 12 Book.pdf. Page 1 of ...

Grade 9-12 MCAS.pdf
June 5-6 MCAS Science. Page 1 of 1. Grade 9-12 MCAS.pdf. Grade 9-12 MCAS.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Grade 9-12 ...

Final TVL_HE - Food and Beverages Grade 12 01.09.14.pdf ...
on established service standard. TLE_HEFB12BS- IIe-f-3. Page 3 of 11. Final TVL_HE - Food and Beverages Grade 12 01.09.14.pdf. Final TVL_HE - Food and ...

Grade 12 Courses 2016-17.pdf
Page 1 of 1. MT. MANSFIELD UNION HIGH SCHOOL. Grade 12 Course Registration for 2016–2017. INTERDISCIPLINARY. 2500 Interdisciplinary Learning. through Complex Systems. Analysis. ENGLISH. 1010 12 AP English Lit & Comp. 1020 12 Senior Lit & Comp (1⁄

Royal college,Colombo-Grade 12 - 2nd term-Combined maths.pdf ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Royal college ...

TVL_Fish Production_Fish Nursery Operation Grade 11-12 01.20 ...
TVL_Fish Production_Fish Nursery Operation Grade 11-12 01.20.2014.pdf. TVL_Fish Production_Fish Nursery Operation Grade 11-12 01.20.2014.pdf. Open.

Final ICT_Medical Transcription Grade 11-12.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Final ICT_Me ... de 11-12.pdf. Final ICT_Med ... ade 11-12.pdf.

TVL_Agri Crop Production_Rice Machinery Operations Grade 11-12 ...
TVL_Agri Crop Production_Rice Machinery Operations Grade 11-12 01.20.2014.pdf. TVL_Agri Crop Production_Rice Machinery Operations Grade 11-12 ...

Final TVL_HE - Food and Beverages Grade 12 01.09.14.pdf ...
Attend telephone calls promptly. and courteously in accordance. with customer service. TLE_HEFB12RS- IIIa-b-7. Page 5 of 11. Final TVL_HE ... 01.09.14.pdf.

TVL_Fish Production_Fish or Shrimp Grow Out Operation Grade 12 ...
TVL_Fish Production_Fish or Shrimp Grow Out Operation Grade 12 01.20.2014.pdf. TVL_Fish Production_Fish or Shrimp Grow Out Operation Grade 12 ...

man-40\grade-12-geography-data-handling-task-one-mpumalanga ...
man-40\grade-12-geography-data-handling-task-one-mpumalanga.pdf. man-40\grade-12-geography-data-handling-task-one-mpumalanga.pdf. Open. Extract.

2018-19 Grade 12 Scheduling PPT.pdf
Page 1 of 23. FHS Scheduling 2018 – 19. for Current 11th Graders. Today's. Agenda. • Graduation Requirements. • Curriculum Guide. • Teacher Recommendation. Worksheet. • Course Requests. • Application, Audition & IB. Courses. • Next Step

PDF Download Study Master Accounting Grade 12 Learner s ... - Sites
... s Book Android, Download Study Master Accounting Grade 12 Learner s Book ... with set marks and times * case studies and projects, which deal with issues ...