

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Neighborhood Cache for Mobile Ad-hoc Networks Abdul Quamar University of Maryland, College Park

ABSTRACT Distributed cache data placement in ad-hoc networks enables higher performance and better quality of service for mobile users. Prior work in the area has focused much of its effort for minimizing the cost of data access within an adhoc network by using different strategies for data placement, replication, and data access. Formation of such networks in common work places requires support for underlying technologies such as special routing protocols to enable data access across multiple-hops. This may not be possible in many day-to-day practical scenarios wherein only one-hop neighbors may be identifiable using existing technologies such as Wi-Fi, Bluetooth. We propose a neighborhood cache wherein each mobile node utilizes the cache of its one-hop neighbors to improve performance and quality of service in scenarios where the neighbors share common data access patterns and have a limited caching capacity. We have designed and implemented various flavors of a centralized and a decentralized algorithm for distributed cache data placement in support of a neighborhood cache which aims to minimize data access to frequently accessed items beyond the 1-hop neighborhood. Our experimental results show that our algorithms can provide significant benefits in caching data items for resource constrained devices without relying on support from additional technologies such as multi-hop ad-hoc routing protocols.

1.

INTRODUCTION

The prolific growth in the recent past in the use of mobile devices with the capability of delivering high speed data to users on the move has brought about a radical change in the way we communicate and access data/information in a dynamically changing networked environment. The spectrum of technologies that support such a mobile networked environment range from Bluetooth, Wi-Fi, to 4G cellular data networks such as LTE. Technologies such as Wi-Fi, Bluetooth support the formation of mobile ad-hoc networks

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Souvik Bhattacherjee University of Maryland, College Park

among the mobile devices over short ranges, while on the other hand cellular technologies enable seamless data connectivity across a much larger geographic region. Typical urban scenarios for mobile communication often use a mix of communication technologies wherein mobile devices remain quasi static in locations which afford the opportunity to communicate with each other using technologies such as Wi-Fi and Bluetooth such as offices and homes. The same devices use the cellular network for communication while on the move and in places which are devoid of other networking technologies. There is a cost factor involved which usually is substantially higher for the cellular network access as opposed to Wi-Fi or Bluetooth which are either free of cost or available at a much lower cost as compared to cellular network access. To minimize the cost of mobile network access users often use a mix of these network access technologies and try and minimize expensive cellular access. With mobile devices capable of accessing rich data content through various networking technologies, caching of frequently accessed data on the mobile devices can play a significant role in enhancing the quality of user experience as also minimizing expensive network access. However, resources such as memory, CPU and power are limited on mobile devices which restricts and often puts a hard limit on the amount of data that can be cached in memory on these devices as opposed to other devices such as laptops and desktop machines. A possible opportunity to enhance this caching capacity, that we have explored in this project, stems from the fact that groups of users in a quasi static network (for e.g. an ad-hoc network in the CS department of a university or a particular technology division in a company) tend to share a common mobile data access patterns. Thus, there seems to be an opportunity in utilizing a neighbor’s cache for frequently accessed items of common interest. In this project, have explored the concept of neighborhood cache wherein the caching capacity of individual mobile devices is enhanced by the utilization of a neighbor’s cache for access to items of common interest. A neighbor access would be on an ad-hoc network formed using a short range wireless technology such as Wi-Fi or Bluetooth. A mobile device would thus search for content in a three step process. First search its own local cache, second, search the caches of its immediate neighbors and third, get the content from the source, the most expensive option of network access. Such a data access pattern would enhance the opportunistic access of data available in the local neighborhood and save on ex-

pensive network access and optimize on the mobile device’s resource utilization. In this project, we focus on the problem of finding an optimal data placement of frequently accessed items by a group of users forming an ad-hoc network such that each user can find its frequently accessed data items in its one-hop neighborhood thereby minimizing expensive cellular network access and enhance the quality of user experience.

1.1

Challenges Involved

Designing a distributed cache placement algorithm without the support for complex ad-hoc routing protocols for data access is a fundamental challenge in this project. It involves placement of data items in the local caches based on limited neighborhood information (2-hop) while minimizing the data access outside the 1-hop neighborhood. The underlying problem of such a data placement is NP Hard [6] and as such would require an approximate solution for an optimized data placement among the distributed caches of the mobile nodes. Another challenge is to develop an asynchronous mechanism to run this distributed algorithm independently at each node to achieve a near optimal solution that could be achieved using a centralized algorithm that has complete knowledge of the entire network. Developing such a decentralized algorithm would involve optimal data placement for exploiting the neighborhood cache while simultaneously minimizing network resource utilization.

1.2

Contributions

Our major contributions in this project are: • We develop a set of centralized greedy algorithms for populating the neighborhood cache using an optimal placement strategy to minimize the data access outside the 1-hop neighborhood. • We develop a decentralized algorithm that runs the a local greedy algorithm on each node to achieve a placement close to the one achieved by the centralized algorithm. • We build and test of a prototype implementation of the concept of neighborhood cache with extensive experimentation to study the effect of various parameters on the performance and efficacy of the designed algorithms. • We propose mechanisms for bootstrapping, handling churn, cache replacement and optimizations to minimize computations for an optimal decentralized data placement. The rest of the report is organized as follows. Section 2 defines the problem formally and presents an overview of our approach to solving the same. Section 3 describes in detail our proposed centralized and decentralized algorithms for distributed cache data placement. Section 4 provides the results of the experimental evaluation of our prototype implementation. Section 5 compares our work with prior work in the area and finally Section 6 concludes the report.

2.

OUR APPROACH

This section first defines the problem that we address and then presents an overview of our approach to solving the problem.

2.1

Problem Definition

Given a set F = {1, 2, ...N } of frequently accessed items by a mobile node with Pa caching capacity |C|. We define network penalty P = pi , where pi is the number of data accesses outside the 1-hop neighborhood by node i. The problem is to find an optimal placement of these N data items among the caches of the M mobile users connected via an ad-hoc network such that P is minimized. In other words the majority of the frequently accessed items can be accessed within the 1-hop neighborhood of each user in the wireless ad-hoc network.

2.2

Overview

Our proposed centralized algorithm (Section 3.1) for placing the frequently accessed data items in the caches of mobile users, takes as input the list of frequently accessed data items of individual nodes (or users) and the underlying connection topology, the graph. The goal is to decide the list of data items which must be placed in the caches of the users so as to minimize the overall penalty for the network of mobile users. The algorithm visits each node to ascertain the common items of interest across its one-hop neighbors and uses this information to take a decision on the data placement once all the nodes are visited. We have designed and developed a decentralized algorithm (Section 3.2) that approximates the data placement of the centralized version of our data placement algorithm. We deploy a k-phase message exchange mechanism that provides each node with the information of about its k-hop neighborhood. The algorithm requires at least k-rounds of message exchanges for each node to have a view of its k-hop neighborhood. For our current implementation we find k=2 suffices to cover most of the nodes in the ad-hoc networks formed in common practical scenarios. Based on this information, each node in parallel executes a local greedy data placement algorithm which closely approximates the centralized algorithm. We also propose mechanisms for bootstrapping, handling churn and cache replacement without using a centralized authority in the ad-hoc networks. Further details of the same are discussed in Section 3.3. Our implementations have been evaluated over a baseline which assumes no sharing of data by the mobile nodes with their neighbors.

3.

SYSTEM DESIGN

This section describes our proposed cache placement algorithms. We first discuss our centralized algorithm and its variants, followed by our proposed distributed algorithm. Finally, we discuss the issues of bootstrapping, handling churn and cache replacement.

3.1

Centralized Algorithms

Weighted Single-Pass Cache Placement (Protocol 0): The weighted single pass cache placement algorithm (Ref. Algorithm 1) takes an input a graph G, where each vertex is associated with a set F of frequently accessed items and the

size of its cache. The algorithm computes for each vertex the common data items accessed in the neighborhood of the vertex. It chooses vertices greedily based on the degree of similarity of data access, and assigns data items to the entire cache. The algorithm begins with an initialization phase, which updates the frequency count of the accessed data items for each vertex. The frequency count α(f) of an item f is equal to the number of neighbors accessing the same items. It then computes a weighted sum W (v) of frequencies of data items accessed for each vertex. The cache placement algorithm iteratively chooses the unassigned vertices greedily based on their respective weights. For each chosen vertex, it places the top-k data items in the cache where k is the size of the cache and updates its neighbors to reflect the cache placement. Algorithm 1: Weighted Single-Pass Cache Placement Algorithm Input : A graph G with a set F associated with every vertex v and cache size C Output : A graph G with a list of cache items for every vertex v Initialization : for each v ∈ V in G do for each item f ∈ F do if f ∈ F of neighbor then increment the count of α(f); end end sort F in descending order based on α(f); compute the weight function W (v) = |F |α(f0) + (|F | − 1)α(f1) + . . . such that α(fi) > 0 ; end CachePlacement : while cache of every vertex v ∈ V is not allocated do select the vertex with the max(W (v)); for each cache location of v do select a valid f such that α(f) is maximum; allocate the cache location with f ; invalidate f ∈ F ; end invalidate the vertex v; if W (v) > 0 then UpdateNeighbors(v); end end UpdateNeighbors: for each neighbor vn of v do for each f placed in the cache of v do invalidate α(f) of vn ; end sort F in descending order based on α(f); compute the weight function W (v) = |F |α(f0) + (|F | − 1)α(f1) + . . . such that α(fi) > 0 ; end The placement by the above mentioned weighted single

pass algorithm may be sub-optimal as the entire cache is allocated in a single pass. To give an example (Ref. Figure 1), the single pass algorithm places data items 1 and 3 at vertex C which is not optimal as a higher degree of similarity at vertex I. The weighted multi-pass cache placement algorithm (Ref. Algorithm 2) takes care of this anomaly and places data items 1 and 3 at vertices C and I respectively. Weighted Multi-Pass Cache Placement (Protocol 1): Unlike Algorithm 1, the cache placement in Algorithm 2 does not allocate the cache in a single pass. In each iteration it chooses the vertex with the maximum weight and allocates a single data item with the highest access frequency and updates the neighbors accordingly. The algorithm would require |C| × N passes for complete allocation of caches of all vertices in G.

Algorithm 2: Weighted Multi-Pass Cache Placement Algorithm Input : A graph G with a set F associated with every vertex v and cache size C Output : A graph G with a list of cache items for every vertex v Initialization : for each v ∈ V in G do for each item f ∈ F do if f ∈ F of neighbor then increment the count of α(f); end end sort F in descending order based on α(f); compute the weight function W (v) = |F |α(f0) + (|F | − 1)α(f1) + . . . such that α(fi) > 0 ; end CachePlacement : while cache of every vertex v ∈ V is not allocated do select the vertex with the max(W (v)); select a valid f such that α(f) is maximum; allocate the cache location with f ; invalidate f ∈ F ; if cache is full then invalidate vertex v; end if W (v) > 0 then UpdateNeighbors(v); end end UpdateNeighbors: for each neighbor vn of v do for each f placed in the cache of v do invalidate f ∈ F of vn ; end sort F in descending order based on α(f); compute the weight function W (v) = |F |α(f0) + (|F | − 1)α(f1) + . . . such that α(fi) > 0 ; end

(a)

(b)

Figure 1: (a) Weighted single-pass data placement (b) Weighted multi-pass data placement The cache placement obtained by Algorithm 2 can be further enhanced in cases of high skew in frequently accessed data items. for e.g. (Ref. Figure 2), the weighted multipass data placement algorithm chooses I as the vertex with the highest weight and places data item 1 in its cache. This placement is however inferior as compared to the placement made by max frequency multi-pass algorithm (Ref. Algorithm 3), which places data item 1 at vertex C which has the highest degree of similarity. Max Frequency Multi-Pass Cache Placement (Protocol 2): Algorithm 3 uses the maximum frequency of a data item at a vertex as its weight. It selects vertices greedily based on this weight and assigns a single item to the vertex cache. The number of passes required by this algorithm are same as the weighted multi-pass algorithm.

3.2

Distributed Algorithm

A centralized algorithm involves a fair amount of overhead in terms of collection and dissemination of information in an ad-hoc network which may not be practical in many real world scenarios. In addition to this, the centralized algorithm requires a central authority or a leader to initiate and execute the algorithm which is seldom found and often hard to realize in a practical setting especially in the context of ad-hoc networks. In this section, we focus on a distributed approach for cache placement wherein each node runs a greedy algorithm locally to approximate the centralized version of the cache placement algorithm. We compute the k-hop neighborhood of every vertex via exchanging messages with its neighbors. We assume that a 2-hop neighborhood would provide sufficient information to a vertex about its neighborhood in a ad-hoc network. Therefore every vertex computes its 2-hop neighborhood via a two-pass message exchange mechanism. In the first pass, every vertex exchange messages containing its frequent item set F with its neighbors. The messages received by a node also contain the vertex information from where it originated. In the second pass, each vertex forwards all the information about its 1-hop neighbors that it has received in the first pass

Algorithm 3: Max. Frequency Multi-Pass Cache Placement Algorithm Input : A graph G with a set F associated with every vertex v and cache size C Output : A graph G with a list of cache items for every vertex v Initialization : for each v ∈ V in G do for each item f ∈ F do if f ∈ F of neighbor then increment the count of α(f); end end compute the weight function W (v) = max(α(f)); end CachePlacement : while cache of every vertex v ∈ V is not allocated do select the vertex with the max(W (v)); select a valid f such that α(f) is maximum; allocate the cache location with f ; invalidate f ∈ F ; if cache is full then invalidate vertex v; end if W (v) > 0 then UpdateNeighbors(v); end end UpdateNeighbors: for each neighbor vn of v do for each f placed in the cache of v do invalidate f ∈ F of vn ; end compute the weight function W (v) = max(α(f)) end

Algorithm 4: Distributed Cache Placement Algorithm Input : A vertex v with a set F and cache size C Output : A 2-hop neighborhood around v with a list of cache items for every vertex in that neighborhood InitialMessagePassing: for each neighbor vn of v do Send a message containing Fv ; end while wait for a message containing Fvn from the neighbors vn ∈ η do (a)

end for each neighbor vn of v do Send aggregate message about η \ vn ; end Construct the 2-hop neighborhood; Run a centralized cache placement algorithm;

3.3

(b) Figure 2: (a) Weighted multi-pass data placement (b) Max frequency multi-pass data placement

to all its neighbors (taking care to exclude the information about the neighbor to which it sends the message). After the 2-phase exchange, the vertices are able to construct their 2hop neighborhoods with the frequently accessed data item sets. Thereafter, each vertex executes one of the greedy centralized cache placement algorithms locally with its 2hop neighborhood information as an input and decides the items that it would cache locally. Since each node runs the same algorithm, it can make a fair estimate of its neighbor’s cache and based on this decides the contents of its own cache, that would minimize the data accesses outside the 1-hop neighborhood. Finally, as an optional step, the nodes can exchange metadata of the actual data items that they have cached to get an accurate information about its neighbors cache which would involve another round of message exchanges across its 1-hop neighbors. One advantage of this distributed computation is that once the 2-hop neighborhood of a vertex is constructed, every vertex can proceed independently (asynchronously) executing the cache placement algorithm. The distributed algorithm (Ref. 4) first obtains the 2-hop neighbor information in the initial message passing phase. η represents the 1-hop neighbor set for a node v. Thereafter each node executes one of the greedy algorithms locally to obtain its local cache placement.

Discussion

Bootstrapping: Bootstrapping the ad-hoc network in order to run the decentralized algorithm and populate the caches locally is an important issue which needs to be addressed. We propose a neighbor discovery phase wherein each node on initialization sends a hello packet to the nodes in its physical connection range (its one-hop neighbors). A response to the hello packet by its neighbors completes the neighbor discovery phase. Once neighbor discovery is complete each node initiates the 2-phase distributed cache placement algorithm to assign data items to its cache locally. Handling churn: The topology of ad-hoc networks is subject to change with time. Hence an important aspect of cache placement algorithm is to adapt with the change in network topology, i.e., handling churn. The recomputation of our proposed distributed cache placement algorithm at each vertex, is triggered in the following scenarios: • When the penalty of data access by a vertex increases beyond a threshold value. This could happen either due to topology change in the nodes neighborhood (a neighbor leaves its neighborhood), or a change in the vertex’s data access pattern. • When the neighborhood changes i.e. a new vertex joins providing an additional neighbor cache and hence an opportunity to reduce penalty of access outside the 1hop neighborhood. Cache replacement policies: Cached data items are subject to replacement on each re-run of the cache placement algorithm reflecting the changes in network topology or data access patterns. In addition to this, the cache data can be replaced in intermediate periods based on standard cache replacement policies such as LRU (Least Recently Used), LFU (Least Frequently Used). However, these policies would need to be modified to take into account the neighbor accesses of data items stored locally.

Optimizations: The distributed algorithm can be further enhanced to avoid duplicate computations in neighborhoods that form a clique. The optimized algorithm, the nodes with a common neighborhood in the clique, would elect a leader using a distributed consensus protocol. The leader would be responsible for the computation of the cache placement in the neighborhood and disseminate the same to its members.

4.

using our 2-phase message exchange mechanism. However, there is a substantial improvement over our baseline performance with the added benefit of no central authority.

EXPERIMENTAL EVALUATION

This section provides the details of the experimental evaluation of the prototype implementation of our cache placement algorithms. We first evaluate the effect of variation of frequently accessed items on the performance of the centralized and distributed algorithms. Subsequently we study the effect of variation of cache size on the performance of these algorithms. (a) Baseline: Our baseline is defined by the penalty that occurs when the vertices do not share their 1-hop neighborhood cache and resort to individual caching of data items. Dataset: We have generated synthetic graphs using a random graph generator and the frequently accessed items by each vertex in the graph have been generated using a random uniform distribution of data items accessed by each vertex. Implementation: We have implemented our prototype system using Java and C++. The centralized and distributed algorithms have been implemented in C++, the data sets for the graphs depicting the ad-hoc network connectivity and frequently accessed items have been implemented in Java using SDK 1.4. The prototype implementation has been evaluated using a shell script which integrates the various components of the system.

Figure 3: (a) Weighted multi-pass data placement (b) Max frequency multi-pass data placement

4.1

4.2

Effect of variation of number of frequently accessed items

Figure 3 shows the performance of the neighborhood cache in terms of % gain with the variation of the number of frequently accessed items with a fixed cache size of 25. The −P) × 100, where P is the percentage gain is defined as (RP RP total penalty of the network (total number of data accesses outside the 1-hop neighborhood) after cache placement by our proposed algorithms. RP denotes the raw penalty of the baseline. Figure 3(a) shows the variation in % gain with the change in the number of frequently accessed items. We see a gradual decrease in % gain as the number of frequently accessed items increases with the cache size remaining constant. We also notice that there is little variation in the performance of the three flavors of our centralized algorithm. This can be attributed to the almost uniform data distribution in the data access patterns. We leave the further extensive exploration of the performance of these algorithms with different data access patterns and network topologies as future work. Figure 3(b) compares the performance of the distributed algorithm with the centralized algorithm (Protocol 0). The performance of our proposed distributed algorithm follows the performance of our centralized algorithm very closely with a minor decrease in the %gain. This can be attributed to the partial topology information accessible to each node

(b)

Effect of cache size variation

Figure 4 shows the performance of the neighborhood cache in terms of % gain with the variation of the cache size of the vertices in the graph representing the network. The number of frequently accessed items were kept at a constant value of 100. Figure 4(a) shows the variation in % gain with the increase in the cache size of vertices. The %gain increases with the increase in cache size as it affords a greater opportunity to the cache algorithms to optimize data placement minimizing the penalty of data access outside the 1-hop neighborhoods. Here again we notice that there is little variation in the performance of the three flavors of our centralized algorithm. Figure 4(b) compares the performance of the distributed algorithm with the centralized algorithm (Protocol 0). Again, the performance of our proposed distributed algorithm follows the performance of our centralized algorithm very closely with a minor decrease in the %gain and a substantial improvement over our baseline performance.

5.

RELATED WORK

Mobile ad-hoc networks being an active area of research, there is a substantial amount of work in the literature which focuses on improvement of performance using data caching [8, 2, 1, 4]. Papadopouli et al. [5] propose a data dissemination system among mobile devices which enables sharing of

data placement in the local cache based on the 1-hop neighborhood. Our solution, on the other hand is more generic and allows for multi-hop information exchange enabling local data placement with a more global picture. Our current implementation caters for a 2-hop data exchange making a more informed choice while populating the local cache.

6.

(a)

(b)

CONCLUSION AND FUTURE WORK

In this project we have explored the opportunity of enhancing the caching capability of mobile devices by utilizing a 1-hop neighbor’s cache for frequently accessed items of common interest while at the same time minimize the cost of network access. We have designed and implemented the centralized and distributed versions of our proposed cache placement algorithm. Our experimental results show that there can be a substantial reduction in penalty (data access outside the 1-hop neighborhood) by using our cache placement algorithms. We have also proposed mechanisms for bootstrapping of the network, handling churn and cache replacement policies. We have discussed an optimization for minimizing redundant computations in neighborhoods that form a clique. As future work we intend to explore the variation of gain with varying overlaps in terms of graph topologies and data access patterns. Another interesting area for future work would be the study of effect of different cache replacement algorithms and strategies of handling churn on the performance of the distributed neighborhood cache.

Figure 4: (a) Weighted multi-pass data placement (b) Max frequency multi-pass data placement

7.

data among users experiencing intermittent data connectivity. The proposed system works by pre-fetching data from servers to meet user demands in periods of no connectivity and also has an on-demand mode to obtain data from one-hop neighbors. The paper however, does not address the issue of cache placement to minimize access outside the network. Yin et al. [7] propose a cooperative caching technique for ad-hoc networks to support data access from servers. They propose three schemes: Cache data which caches data at different places in the network; Cache path wherein the nodes cache the paths to data in the ad-hoc network and Hybrid cache which uses a mix of the former two schemes. Tang et al. [6] further build on previous work in the area and propose an approximation algorithm for cache placement to minimize the total data access cost in ad-hoc networks. They optimize data replication and placement within the ad-hoc network (to act as data caches) in order to minimize the total access cost of the network. In both the above mentioned works, the cache data placement optimizes the overall network cost to access data and requires a proper ad-hoc routing protocol in order to access data across multiple hops. We on the other hand, do not rely on multi-hop routing of data in the ad-hoc network and support access of data from onehop neighbors, simplifying the formation and requirements of such networks. In a more recent work, Fiore et al. [3] propose a distributed cache placement mechanism based on the probabilistic estimate of what is cached in the neighborhood. There is no exchange of control messages and their solution is restricted to

[1] Nikos Dimokas, Dimitrios Katsaros, Leandros Tassiulas, and Yannis Manolopoulos. High performance, low complexity cooperative caching for wireless sensor networks. Wirel. Netw., 2011. [2] Xiaopeng Fan, Jiannong Cao, and Weigang Wu. Contention-aware data caching in wireless multi-hop ad hoc networks. J. Parallel Distrib. Comput., 71(4):603–614, April 2011. [3] Marco Fiore, Francesco Mininni, Claudio Casetti, and Carla-Fabiana Chiasserini. To cache or not to cache? In INFOCOM, 2009. [4] Suk-Bok Lee, Starsky H. Y. Wong, Kang-Won Lee, and Songwu Lu. Content management in a mobile ad hoc network: Beyond opportunistic strategy. In INFOCOM, 2011. [5] Maria Papadopouli and Henning Schulzrinne. Effects of power conservation, wireless coverage and cooperation on data dissemination among mobile devices. In Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing, MobiHoc ’01, 2001. [6] Bin Tang, Himanshu Gupta, and Samir R. Das. Benefit-based data caching in ad hoc networks. IEEE Transactions on Mobile Computing, 7(3), March 2008. [7] Liangzhong Yin and Guohong Cao. Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing. [8] Jing Zhao, Ping Zhang, Guohong Cao, and Chita R. Das. Cooperative caching in wireless p2p networks: Design, implementation, and evaluation. IEEE Transactions on Parallel and Distributed Systems, page 2009.

REFERENCES

[image: P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc Networks]
P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc Networks

[image: Factors Influencing QoS in Mobile Adhoc Networks - IJRIT]
Factors Influencing QoS in Mobile Adhoc Networks - IJRIT

[image: Factors Influencing QoS in Mobile Adhoc Networks - International ...]
Factors Influencing QoS in Mobile Adhoc Networks - International ...

[image: P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc ... - Eurecom]
P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc ... - Eurecom

[image: A REVIEW PAPER ON SECURITY IN MOBILE ADHOC NETWORK_IJ ...]
A REVIEW PAPER ON SECURITY IN MOBILE ADHOC NETWORK_IJ ...

[image: Africatown Neighborhood Plan - City of Mobile]
Africatown Neighborhood Plan - City of Mobile

[image: Africatown Neighborhood Plan - City of Mobile]
Africatown Neighborhood Plan - City of Mobile

[image: P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc ... - Eurecom]
P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc ... - Eurecom

[image: Mobile Terrace Neighborhood Study Site - City of Mobile]
Mobile Terrace Neighborhood Study Site - City of Mobile

[image: Mobile Terrace Neighborhood Study Site - City of Mobile]
Mobile Terrace Neighborhood Study Site - City of Mobile

[image: 4G MOBILE NETWORKS]
4G MOBILE NETWORKS

[image: Reducing Cache Miss Ratio For Routing Prefix Cache]
Reducing Cache Miss Ratio For Routing Prefix Cache

[image: A multilevel study of neighborhood networks and ...]
A multilevel study of neighborhood networks and ...

[image: A multilevel study of neighborhood networks and suicide]
A multilevel study of neighborhood networks and suicide

[image: fine context, low-rank, softplus deep neural networks for mobile ...]
fine context, low-rank, softplus deep neural networks for mobile ...

[image: Stable Topology Control for Mobile Ad-Hoc Networks - IEEE Xplore]
Stable Topology Control for Mobile Ad-Hoc Networks - IEEE Xplore

[image: Mobility management for all IP mobile networks MIPv6 vs. proxy ...]
Mobility management for all IP mobile networks MIPv6 vs. proxy ...

[image: pdf-1833\evolutionary-algorithms-for-mobile-ad-hoc-networks ...]
pdf-1833\evolutionary-algorithms-for-mobile-ad-hoc-networks ...

[image: Scalable Routing Protocols for Mobile Ad Hoc Networks]
Scalable Routing Protocols for Mobile Ad Hoc Networks

[image: Wireless Mobile Ad-hoc Sensor Networks for Very ... - Semantic Scholar]
Wireless Mobile Ad-hoc Sensor Networks for Very ... - Semantic Scholar

[image: Wireless Mobile Ad-hoc Sensor Networks for Very ...]
Wireless Mobile Ad-hoc Sensor Networks for Very ...

[image: QoS routing for mobile ad hoc networks]
QoS routing for mobile ad hoc networks

[image: On-Demand Multipath Routing for Mobile Ad Hoc Networks Asis ...]
On-Demand Multipath Routing for Mobile Ad Hoc Networks Asis ...

[image: NCLAS Application form for Adhoc Training Course in Laboratory ...]
NCLAS Application form for Adhoc Training Course in Laboratory ...

Neighborhood Cache for Mobile Ad-hoc Networks

wireless technology such as Wi-Fi or Bluetooth. A mobile device would thus search for content in a three step process. First search its own local cache, second, ...

 Download PDF

 616KB Sizes
 0 Downloads
 248 Views

 Report

Recommend Documents

[image: alt]

P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc Networks

network area where user devices are equipped with a data cache and communicate according to an ad hoc networking paradigm. We assume that users create ...

[image: alt]

Factors Influencing QoS in Mobile Adhoc Networks - IJRIT

Abstractâ€”The major constraint in MANETs is to maintain the Quality of Service. ... Load balancing. This is scenario where, the load traffic is balanced in all the possible routes. Unbalanced network traffic may influence the high power ... followin

[image: alt]

Factors Influencing QoS in Mobile Adhoc Networks - International ...

it is mandatory to maintain and improve the QoS in such networks. In this paper, a survey has been made to ... serious issue, when MANETs are employed in defense and other high end security based networks. Because these compromised ... GLANCE OF VARI

[image: alt]

P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc ... - Eurecom

minimizing the information access cost or the query delay. ... apply the two mobility models and develop the dissemination we implemented a simple application that allows nodes to average and standard deviation of the Ï‡2 index.

[image: alt]

A REVIEW PAPER ON SECURITY IN MOBILE ADHOC NETWORK_IJ ...

A REVIEW PAPER ON SECURITY IN MOBILE ADHOC NETWORK_IJ.pdf. A REVIEW PAPER ON SECURITY IN MOBILE ADHOC NETWORK_IJ.pdf. Open.

[image: alt]

Africatown Neighborhood Plan - City of Mobile

international slave trade had been made illegal in the. United States in ... The residents of African Town built the first school in the area. ... These areas have a 1% chance of flooding every year. Zone X ... School and several local churches.

[image: alt]

Africatown Neighborhood Plan - City of Mobile

Alabama (Diouf), The Slave Ship Clotilda and the Making of. AfricaTown, USA: The illustration below shows a mixed-use redevelopment opportunity on the site of learning center located in Africatown could complement existing public ...

[image: alt]

P2P Cache-and-Forward Mechanisms for Mobile Ad Hoc ... - Eurecom

desired content distribution. We consider a tagged1 information content and we target two desirable distributions of information: the first uniform over the spatial ...

[image: alt]

Mobile Terrace Neighborhood Study Site - City of Mobile

OLD SHELL RD. SIXTH ST. THIRTEENTH ST. FIFTH ST ... Phone: 251.208.7943 â€“ Email: http://maps.cityofmobile.org. The City of Mobile ...

[image: alt]

Mobile Terrace Neighborhood Study Site - City of Mobile

CONtACt iNFORMAtiON. Prepared by: City of Mobile ... Do not make business or legal decisions based on this data before ... the U. S. Census Bureau. Source:.

[image: alt]

4G MOBILE NETWORKS

The key concern in security designs for 4G networks is flexibility. quality VoIP through various networks would enable free transmission services to absorb the ...

[image: alt]

Reducing Cache Miss Ratio For Routing Prefix Cache

Abstractâ€”Because of rapid increase in link capacity, an Internet router has to complete routing ... stores the most recent lookup result in a local fast storage in hope that it will be for providing free access to the trace data under Nationa

[image: alt]

A multilevel study of neighborhood networks and ...

multilevel data can such interactions between individual- and neighborhood- ... analysis: regardless of whether the attribute is a risk or a protective factor at the added benefits of having yet another neighbor similar to oneself will diminish.

[image: alt]

A multilevel study of neighborhood networks and suicide

social interactions, social networks, micro-macro links, and non-contagious levels of social integration and regulation will present a higher risk of suicide.

[image: alt]

fine context, low-rank, softplus deep neural networks for mobile ...

plus nonlinearity for on-device neural network based mobile ... translation. While the majority of mobile speech recognition application for speech recognition.

[image: alt]

Stable Topology Control for Mobile Ad-Hoc Networks - IEEE Xplore

Abstractâ€”Topology control is the problem of adjusting the transmission parameters, chiefly power, of nodes in a Mobile. Ad Hoc Network (MANET) to achieve a ...

[image: alt]

Mobility management for all IP mobile networks MIPv6 vs. proxy ...

Mobility management for all IP mobile networks MIPv6 vs. proxy MIPv6.pdf. Mobility management for all IP mobile networks MIPv6 vs. proxy MIPv6.pdf. Open.

[image: alt]

pdf-1833\evolutionary-algorithms-for-mobile-ad-hoc-networks ...

Try one of the apps below to open or edit this item. pdf-1833\evolutionary-algorithms-for-mobile-ad-hoc-networks-nature-inspired-computing-series.pdf.

[image: alt]

Scalable Routing Protocols for Mobile Ad Hoc Networks

While the infrastructured cellular system is a traditional model for mobile ... home agent), such a strategy cannot be directly applied. A considerable body of ...

[image: alt]

Wireless Mobile Ad-hoc Sensor Networks for Very ... - Semantic Scholar

proactive caching we significantly improve availability of sensor data in these extreme conditions ... farmers over the web interface, e-mail, or post and stored in a.

[image: alt]

Wireless Mobile Ad-hoc Sensor Networks for Very ...

{mvr, bzw}@cs.nott.ac.uk. T. Page 2. is typically archived in a powerful server geographically ... the pre-determined powerful servers in the labs e.g. The Great.

[image: alt]

QoS routing for mobile ad hoc networks

Abstractâ€”A Quality-of-Service (QoS) routing protocol is devel- oped for mobile ad hoc networks. It can establish QoS routes with reserved bandwidth on a per ...

[image: alt]

On-Demand Multipath Routing for Mobile Ad Hoc Networks Asis ...

Division of Computer Science ... A mobile, ad hoc network is an autonomous system of ... route set up and maintenance in a packet radio network with moderate ...

[image: alt]

NCLAS Application form for Adhoc Training Course in Laboratory ...

NCLAS Application form for Adhoc Training Course in Laboratory Animal Sciences.pdf. NCLAS Application form for Adhoc Training Course in Laboratory Animal ...

×
Report Neighborhood Cache for Mobile Ad-hoc Networks

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

