Nonlinear Fin Patterns Keep Cold Plates Cooler By Ralph Remsburg, Chief Engineer, Amulaire Thermal Technology, San Diego Altering the fin geometry of liquid-cooled cold plates improves their thermal efficiency.

S

pecialists in electronic cooling are focusing more on the problems of the power electronics industry than ever before. Much of this attention is directed at power semiconductor ICs and integrated power electronic modules (IPEMs), such as those based on IGBTs. Built on embedded power technology, IPEMs offer 3-D packaging of electronic components in a small and compact volume, largely replacing the traditional individually packaged ICs in applications such as front-end power factor correction (PFC) and motor drives. Even though IGBTs typically operate with 98% efficiency, the 2 kW of waste heat from a 100-kW converter will overwhelm most cooling solutions. The advent of 3-D multilayered packaging of these modules can help achieve better reliability and lower electrical noise and lower costs. However, as the electronic chips are placed closer together, heat flux (W/cm2) and heat density (W/cm3) problems become insurmountable using standard air-cooled solutions. Because the desired junction temperature of an IPEM IC should not normally exceed 120°C, current heat fluxes of 300 W/cm2 are even challenging for most liquid-cooling solutions. To address this challenge, a new cold-plate manufacturing technology allows the creation of nonlinear fin structures that alter fluid-flow patterns and improve the efficiency of heat removal from IPEMs.

����

������������������������������������������������������

����

����

����

����

����

����

���� ��

�����

�����

�����

����

���������������

Fig. 1. This figure-of-merit comparison reveals that straight fins become a relative benchmark for the other configurations shown when heat transfer and pressure drop are critical factors.

Interpreting Previous Research While there have been many studies of single-cooling-fin geometry parameters, the conclusions often conflict or can only be applied over a narrow range of variables. A review of the literature reveals that most studies of single-fin geometry neglect the importance of pressure drop, which for most real-world liquid-cooling systems is directly related to the thermal performance of the pump flow curve. Even when applicable, the research on single-fin geometries becomes distorted when multiple identical fin-flow Power Electronics Technology February 2007

�������� ������������� ����������� ��������� �������������

fields interact within a fin array. For example, research shows that each row of a pin fin array has a lower heat transfer coefficient to about the fifth row; thereafter, the row coefficients are roughly equal. A pin fin’s performance is also greatly affected by the length of the fin. Shorter pins are affected by the velocity distributions caused by the heatsink baseplate. James Marthinuss and George Hall[1] reviewed published 22

www.powerelectronics.com

ELECTRONIC COOLING data for air-cooled heatsinks, primarily from Compact Heat Exchangers by William M. Kays and A.L. London[2], and concluded that for identical fin arrays consisting of circular and rectangular passages including circular tubes, tube banks, straight fins, louvered fins, strip or lanced offset fins, wavy fins and pin fins, the optimum heatsink is a compromise among heat transfer, pressure drop, volume, weight and cost. Marthinuss and Hall presented Fig. 1 as a comparison of the published data for straight, louvered, wavy-offset and pin-fin heatsinks when heat transfer and pressure drop are most important. Fig. 2 shows their comparison when heatsink volume, indicated by heat transfer by unit height, is of primary concern. Comparisons and conclusions become even more difficult when nonlinear fin arrays are considered. Nonlinear fin arrays are a recent development resulting out of costeffective nontraditional manufacturing methods such as metal-injection molding. In a nonlinear fin array, each fin is individually designed for maximum performance while simultaneously accounting for the performance flow fields of the fins adjacent to it in the array.

�����

�������� ������������� ����������� ��������� �������������

�����

�������������������������������

�����

�����

�����

�����

�����

�����

��

�����

�����

�����

����

���������������

A New Direction

Fig. 2. Figures of merit for heat transfer versus heatsink volume, as indicated by unit height, show that straight fins transfer heat relatively inefficiently for a given amount of heatsink material.

Further improvements in thermal performance can be achieved by using flow patterns outside the normal cross flow (x-y) plane, such as impingement flow. When a coolant flows parallel to a surface, a nearly stagnant boundary layer of fluid forms on the surface. The thickness of the boundary layer increases as the fluid moves along the plate. There is a velocity boundary layer (V) and a thermal boundary layer (TH). The stagnant fluid within the layer inhibits thermal transport from the solid surface to the fluid. Turbulent flow reduces the thickness of the boundary layer and can result in higher performance. The thickness of the velocity boundary layer can be found by: 5X δV = , where Re X

� ������ ������ ������ ������ � �� ����������� ����

ρUL Fig. 3. This diagram shows the physical layout of larger IGBTs and , µ smaller diodes on the water-cooled cold plate, as well as the thermal where X is the linear distance of fluid flow along the contours. heatsink surface,  is the density of the fluid (kg/m3) Thermal and µ is the absolute viscosity (Ns/m2). The thermal x y z R conductivity Layer Material boundary layer thickness is found by: (m) (m) (m) (°C/W) (W/m K)  δV  1 Silicon 0.016 0.0127 0.0000889 120 3.65E-03 δ TH = 0.975  1 / 3  ,  Pr  2 Solder 0.016 0.0127 0.000127 60 1.04E-02 C µ where the Prandtl number (Pr) is Pr= r= P , 3 Copper 0.016 0.0127 0.0003048 390 3.85E-03 k with CP being the specific heat of the fluid (J/kg K) 4 AlN 0.016 0.0127 0.000635 200 1.56E-02 and k being the thermal conductivity (W/m K). 5 Copper 0.016 0.0127 0.0003048 390 3.85E-03 When turbulent coolant flow impinges on a surface 6 Solder 0.016 0.0127 0.0002032 60 1.67E-02 that is perpendicular to the flow, the boundary layer is 7 Cu Base 0.016 0.0127 0.0039624 390 5.00E-02 minimized. The highest values for single-phase heat1.04E-01 transfer coefficient can be achieved by impingement, Total Table 1. IGBT material stack thermal resistance. directing flow in the Z axis, thereby breaking down the Re X =

Power Electronics Technology February 2007

24

www.powerelectronics.com

ELECTRONIC COOLING ��������������

������ ���

���������������� ���

Type Round tube Machined fins Stacked fins Square fins Round fins Elliptical fins Nonlinear fins

������ ��

���������������� ���

Fin count —

Characteristic dimension (mm) 10

Total surface area (cm2) 15.7

20

1

225

41 798 798 798

0.2 0.786 1 0.5

435 275 275 275

782

0.5

194

Table 2. Fin geometry comparison.

������ ��

������������������ ���������������������������� ��������������������������������� ���������������������������� ����������������������� ������������������������������������ ���������������������

���

������������������������

������ ���

������� ������ ������ ���������������� ������ ������

��� ��� ��� ��� ��� ��

��

��

��

��

��

���

��

����������������������������������

����

Fig. 6. This comparison of IGBT cold-plate fin configurations indicates the relatively superior thermal performance of nonlinear impingement water cooling.

injection molding, impingement cold plates with optimized fin patterns can be molded that allow the coolant to extract the maximum amount of heat from all the surfaces in the flow path. Fig. 3 shows a model of an IGBT layout to which thermal cooling will be applied. Three 300-W IGBT chips, each being 16 mm  12.7 mm, and three 60-W diodes, with the dimensions of 8.8 mm  12.7 mm, are attached to a 50-mm  50-mm cold plate, 13 mm thick. The various material layers and thermal resistance chain of the complete assembly is detailed in Table 1 and Fig. 4. However, the values do not include the effects of heat spreading. Thermally insulated virtual partitions were added to the cold-plate model to demonstrate entrance and exit effects of lateral fluid flow, as shown in curved traces in Fig. 5. For each simulation, the ambient-air temperature and the water-inlet temperature is 80oC. Radiation effects are not included in the analysis. The heat from the 1080-W IGBT/ diode assembly was transferred to the water coolant through multiple heatsink structures. These included a round tube, machined plate fins, stacked fins, machined square pins, round pins, elliptical pins and a unique nonlinear fin array using impingement. The steady-state temperature distribution for each configuration was recorded as the volumetric

Fig. 4. A comparison of the thermal-resistance layers in the IGBT cold plate reveals copper baseplate is the greatest contributor to the overall thermal resistance of the stack. ���������������� ������� ������ ������ ������ � �� ����������� � ������ ������ ������ ������ ��

Fig. 5. The fluid flow through a machined-fin cold plate includes thermally insulated structures that simulate entrance and exit effects.

boundary layer almost completely. Outside this impingement zone, the coolant contacts the surface and flows away from the impingement point parallel to the surface, allowing the boundary layer to reform. With a process such as metalPower Electronics Technology February 2007

26

www.powerelectronics.com

ELECTRONIC COOLING for attachment. The performance of the machined-plate fin heatsink was restricted by the limits of the machining operation. The square, round and elliptical pins had similar performance at low velocities. As the velocity increased, the elliptical pins outperformed the round pins, and the square pin performance fell to roughly the level of the machinedplate fin heatsink. Fig. 7 shows an impingement design using a nonlinear fin array. Each fin is individually designed to take advantage of the existing direction of fluid flow, minimizing pressure drop while offering a larger heat-transfer surface area. The nonlinear design, while having less surface area, benefited from the physics of impingement flow and a combination of round and elliptical fins having optimized aspect ratios and orientation. As shown in Fig. 6 and Table 2, these advantages gave the nonlinear design the greatest thermal performance among the several heatsink configurations tested. PETech

����������� ���� � ������ ������ ������ ������ � ��

Fig. 7. This nonlinear fin pattern is optimized for impingement flow.

References

flow rate was increased from 1 liter per minute (LPM) to 12 LPM. The results for the simulations are shown in Table 2 and Fig. 6. The round tube, having significantly less surface area, and a low heat transfer coefficient yielded high die temperatures, indicating failure of the electronics. The performance of thin-stacked fins, while having a large surface area, was significantly degraded due to the solder layer, which is required

1. Marthinuss, James, and Hall, George, “Air Cooled Compact Heat Exchanger Design for Avionics Thermal Management Using Published Test Data,” Proceedings of InterPACK03, International Electronic Packaging Technical Conference and Exhibition, July 6-11, 2003. 2. Kays, William M., and London, A.L., Compact Heat Exchangers, Krieger Publishing Co., 3rd edition, January 1998.

· Thin Fin Technology · Twice the Number of Fins · Air Flow Option

DC/DC Heatsinks

Quarter Brick, Half brick, and Full Brick Sizes

·

Unbeatable Aspect Ratio for Pin Fins

· Omni-Directional Cooling Buy on-line at: www.radianstore.com

web: www.radianheatsinks.com tel: 800-689-2802

·

fax: 408-988-0683

Radian Heatsinks is a division of Intricast Company Inc.

www.powerelectronics.com

27

Power Electronics Technology February 2007

Nonlinear Fin Patterns Keep Cold Plates Cooler

Cu Base 0.016 0.0127 0.0039624. 390. 5.00E-02. Total. 1.04E-01 .... from the physics of impingement flow and a combination of round and elliptical fins having ...

4MB Sizes 0 Downloads 215 Views

Recommend Documents

Non-Linear Fin Patterns in Cold Plates for Liquid Cooling
experimented with heat transfer and flow around an elliptical cylinder ... elliptical pin fins in low air flow environments. For .... Volumetric Water Flow Rate (l/min).

Copious copies keep out the cold - Nature
May 27, 2009 - Life in the sub-zero temperatures of the Southern Ocean requires special adaptation to extreme cold, and the notothenioid fish radiation—which dominates the biomass and species diversity of Antarctic fish—has provided textbook exam

Copious copies keep out the cold - Nature
May 27, 2009 - variation (CNV) here supports the mi- croarray ... systems, multiple gene copies are known to influence ... classic system of adaptive radiation in.

Copious copies keep out the cold - Nature
Heredity (2009) 103, 281–282; doi:10.1038/hdy.2009.59; published online 27 May 2009. Life in the ... variation (CNV) here supports the mi- .... Rogers J et al.

Structure for removable cooler
Jan 20, 2005 - Cited by examiner. Reissue of: Primary ExamineriMichael Datskovsky. (64) Patent N05. 6,775,139. (74) Attorney, Agent, or FirmiBever, ...

unit 7 cold war : meaning, patterns and dimensions - UPSC Success
The First World War (1914-18) ended with the birth of a new system, the socialist .... December 1951 the USA came forward with European recovery programme, ...

PDF NewAir WCD-200W Hot and Cold Water Cooler ...
You may run the heating or cooling elements separately as the seasons call for to save energy. *The unit can be run without power as a room temperature water ...

water cooler central storage unit_new.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. water cooler ...

FIN II.pdf
computer science, management studies, mathematics and basic ... as National Agro- Forestry & ... Rajya Sabha has passed the Indian Institute of Information.

G.O.No.402 Fin
G.O.No.402, Dated 10th October 2013. (Vijaya, Purattasi-24, Thiruvalluvar Aandu 2044). Ad-hoc Increase – CONSOLIDATED PAY / FIXED PAY / HONORARIUM ...

vinoteca-outdoor-cooler-caso-germany.pdf
Page 1 of 1. Page 1 of 1. vinoteca-outdoor-cooler-caso-germany.pdf. vinoteca-outdoor-cooler-caso-germany.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying vinoteca-outdoor-cooler-caso-germany.pdf. Page 1 of 1.

water cooler filter bottle_new.pdf
Check Valve. APT Aqua Pure. www.aptaquapure.com.au. [email protected]. Tel: 02 42575656. Page 2 of 2. water cooler filter bottle_new.pdf.

'fin UT'?
404. \. Variability. Analysis. 406. \. Select Data points. “x L. Compute Variability. Parameter. 41 0\. L ...... differences such as altered statistical properties of the fre.

43/2010/Fin - Finance Department
31.07.2010 and the belated applications will not be entertained. Separate statement should be furnished in respect of each advance. K.BABU. ADDITIONAL ...

editable name plates 4.pdf
Page 1 of 9. Second Grade Rocks ! Page 1 of 9. Page 2 of 9. Kindergarten Rocks ! Page 2 of 9. Page 3 of 9. First Grade Rocks ! Page 3 of 9. editable name ...

High Security Registration Plates Scheme.pdf
necessary to refer to the factual matrix of the case which led. to the filing ... The amended scheme of ... Displaying High Security Registration Plates Scheme.pdf.

fin+büt.pdf
01.06.2017 15.06.2017 12:00 C1-104. Doç. Dr. Uğur Şirin. BB102 - Temel Bitki Fizyolojisi. AG01. 31.05.2017 14.06.2017 11:00 C1-Z01. Prof. Dr. Gonca Günver ...

BAC of Fin - André Gaumond
SHORT at the Queens World Film Festival, USA, BEST LGBT SHORT at the Golden .... CHEZ SOI ", documentary, 16mm film, 20 minutes, Concordia University.

Can Fin Homes Limited - NSE
Oct 9, 2017 - Sub : Change in ISIN - Can Fin Homes Limited. Members of the Exchange are hereby informed that the ISIN code for the equity shares of the following company shall be changed w.e.f. October 13, 2017, being the record date. Sr. No. Symbol.

FIN AL REPO RT - GitHub
Oct 18, 2012 - TRC4000/1 Final Year Project, Semester 2, 2012 Hadi Michael. Department of ... network serves as a testing ground for the project since it is a ...... service on that route -‐ provided the rail segment is outside the City Loop.