

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

On Extending Wand’s Type Reconstruction Algorithm to Handle Polymorphic Let⋆ Sunil Kothari and James L. Caldwell Department of Computer Science University of Wyoming Laramie, WY 82071-3315, USA {skothari,jlc}@cs.uwyo.edu

Abstract. We have extended Wand’s type reconstruction algorithm to polymorphic let by extending the constraint language and by using a multi-phase unification algorithm in the constraint solving phase. We show the correctness of our approach by extending the Wand’s soundness and completeness results. We have validated our approach against other popular type reconstruction algorithms by implementing OCaml prototypes and running them on non-trivial examples.

1

Introduction

The general type reconstruction problem can be formulated as: Given a well-formed term M without any types, does there exist a type τ and a type environment1 Γ such that a judgment Γ ⊢ M : τ is valid ? Type reconstruction is a popular feature in modern functional programming languages. Underlying any type reconstruction algorithm is a set of rules encoding a type system. One of the most widely used type systems is the HindleyMilner (HM) type system, first mentioned in [Mil78] by Milner, but discovered independently by Hindley [Hin69]. Various type reconstruction algorithms [Mil78, DM82, LY98] have been proposed to implement the HM type system. Many of these algorithms are characterized by intermittent constraint generation and constraint solving. But over the years, focus has shifted to algorithms having a clear separation of constraint generation and constraint solving phases [Hee05, PR05, Wan87]. This separation leads to better error messages [Hee05] when the constraint set is unsatisfiable (since a larger set of constraints is available to reason about the error). Moreover, the separation provides a clean ab⋆

1

This material is based upon work supported by the National Science Foundation under Grant No. NSF CNS-0613919. We assume the initial type environment is empty since we are dealing with closed terms.

straction of the various substitution-based algorithms2 since most well known algorithms are specific instances of various constraint solving strategies. The type inference involving polymorphic let construct is a non-trivial problem. In fact, in the worst case, it is a DEXPTIME3 -complete and PSPACEhard problem [PJ89, Mai89] in the level of nested lets. Moreover, the literature on constraint-based type reconstruction is sparse and uneven. For example, Pierce’s book [Pie02] has no references on how to handle ML-Let construct in constraint-based algorithms, HM(X) [SOW97, PR05] requires specialized knowledge, whereas Aiken and Wimmers [AW93] use subtyping constraints. Furthermore, none of the literature, in our view, describes it as a direct extension to well known Wand’s algorithm [Wan87]. The Helium compiler [HLI03] is known for giving good quality error messages and a very simple constraint representation is used for handling the let construct4 . This paper describes an approach where Helium’s constraint representation is used to handle let polymorphism. Our approach builds upon Wand’s algorithm, and our proofs rely on the soundness and completeness of Wand’s algorithm. We have validated our approach with some of the known type reconstruction algorithms [Kot07]. In summary, our contributions are: 1. A new algorithm extending Wand’s algorithm [Wan87] to include polymorphic let. 2. New soundness and completeness proofs for Wand’s system and the extended system using a novel desugaring of polymorphic lets. The rest of this paper is organized as follows: Section 2 reviews the previous methods for inferring the type of the let construct. Section 3 introduces the concepts and terminologies needed for this paper. Section 4 gives an overview of Wand’s algorithm and states soundness and completeness theorems. Section 5 describes the changes needed for the extension. Section 6 gives an overview of the correctness proofs. Section 7 summarizes our current work.

2

Literature Review

We review some of the constraint-based algorithms in their handling of the let construct. A detailed survey of substitution-based algorithms is available in [Kot07]. Wand [Wan87] looked at the type inference problem as a type-erasure: whether it is decidable that a term of the untyped lambda calculus is the image under type-erasing of a term of the simply typed lambda calculus, and presented a type reconstruction algorithm. This was the first successful attempt at separating constraint generation from constraint solving phase. However, extending the algorithm to handle the let construct remained a future work5. Heeren 2

3 4 5

Throughout this paper we term substitution-based algorithms as those algorithms which intermix constraint generation and constraint solving, whereas algorithms with a clear separation are termed constraint-based algorithms. O(1) DTIME(2n) Personal communication from Bastiaan Heeren. Personal communication from Mitchell Wand.

2

[Hee05] suggested three constraint representations to handle the let construct; each equally expressive but differing in constraint solving. Approach 1. Qualification of type constraints: Type schemes contain a constraint component as part of its type as shown by the following grammar: − α .σ | C ⇒ τ σ ::= ∀→

For example, an expression λx.x can be assigned a type τ1 → τ2 under the constraint τ1 ≡ τ2 . So the type of the expression is ∀τ1 , τ2 .τ1 ≡ τ2 ⇒ τ1 → τ2 . In many ways, this approach is similar to HM(X)[SOW97], Pottier and R´emy’s account of ML type inference [PR05], and Jones’s qualified types [Jon95]. Approach 2. Type scheme variables as placeholders: The type constraint language is extended to take into account generalization and instantiation of type schemes by means of type scheme variables. The constraint language is given by the following grammar: C ::= τ1 ≡ τ2 | σ := GEN (Γ, τ) | τ := IN ST (σ)

Our approach uses a slightly modified version of the above constraint representation. We know of no published account of the constraint solving phase for this representation, although Heeren does mention in his thesis that a special substitution that maps type scheme variables to type schemes is needed for this representation. Our algorithm does not require any such substitution. Approach 3. Using implicit instance constraints: This approach merges the generalization and instantiation constraints in the above approach. The constraint language is given by the following grammar: C ::= τ1 ≡ τ2 | τ1 ≤M τ2

This representation is described, in detail, in Heeren’s thesis [Hee05].

3

Preliminaries

In this paper, we assume familiarity with the notion of types, functional programming and the lambda calculus. The terms considered here are pure untyped lambda terms given by the following grammar: Λ ::= x | M N | λx.M

We follow the usual conventions for lambda calculus: arrow types associate to the right, function applications associate to the left and application binds more tightly than abstraction. The types for untyped lambda terms is given by the following grammar: τ ::= α | τ1 → τ2

The type is either a type variable or a function type. We call any expression formed by following the above grammar as a type expression. We follow the convention that α, β denote type variables, whereas τ denotes a type expression. A type environment, denoted by Γ , maps type variables to type expressions. The set of free type variables of a type expression τ is denoted by FTV(τ) and those of a type environment Γ is denoted by FTV(Γ). A term and its type is related by an assertion, denoted by Γ ⊢ M : τ , where M is a term, τ is a type and Γ is a type environment. We denote type environment where x is not in the domain of Γ by Γ \x. A derivation of an assertion Γ ⊢ M : τ is a finite tree of assertions, 3

where the root is Γ ⊢ M : τ . Every interior node in the tree is related to its parent by an instance of one of the non-axiom type rules and every leaf node is an instance of an axiom type rule. In this paper, we consider three different type systems: the Hindley-Milner type system illustrated in Fig. 1, Wand’s system illustrated in Fig. 2, and the extended Wand system illustrated later in Section 5. We denote a judgment in a particular system by a subscript. For example, Γ ⊢HM M : τ is a HM judgment. (HM-Var)

where x : τ ∈ Γ

Γ ⊢HM x : τ Γ \x ∪ {x : τ1 } ⊢HM M : τ0 Γ ⊢HM λx.M : τ1 → τ0 Γ ⊢HM M : τ1 → τ Γ ⊢HM N : τ1 Γ ⊢HM M N : τ

(HM-Abs) (HM-App)

Fig. 1. Hindley-Milner type system

where x : τ ∈ Γ and α is fresh

e

Γ, {α = τ } ⊢W x : α (Γ \x) ∪ {x : α}, E ⊢W M : β

where α, β are fresh

e

Γ, E ∪ {τ = α → β} ⊢W λx.M : τ Γ, E1 ⊢W M : α → τ Γ, E2 ⊢W N : α Γ, E1 ∪ E2 ⊢W M N : τ

where α is fresh

(W-Var) (W-Abs) (W-App)

Fig. 2. Wand’s type system

A substitution is a mapping from type variables to type expressions. Let ρ1 , ρ2 be two substitutions then substitution composition ρ1 ◦ρ2 is defined extensionally def as ∀α.(ρ1 ◦ ρ2)α = ρ1 (ρ2 α), where α is a type variable. Substitution composition is associative but non-commutative. A substitution ρ is idempotent if ρ ◦ ρ = ρ. We treat all the substitutions as idempotent substitutions. A type τ ′ is a substitution instance of a type τ if and only if τ ′ = ρτ , for some substitution ρ. Substitution application to a type environment Γ , denoted by ρΓ , is defined as {x : ρτ | x : τ ∈ Γ }. In Wand’s system, constraints plays a central role. Specifically, Wand’s algorithm generates equality constraints, referred to as e-constraints, and are denoted e e by τ1 = τ2 , where τ1 , τ2 are type expressions. An e-constraint τ1 = τ2 is solvable if there exists a substitution ρ such that ρτ1 = ρτ2 . More formally, we denote e solvability of a constraint by |= (read solve). We write ρ |= τ1 = τ2 , if ρτ1 = ρτ2 . A type judgment in Wand’s system is given as Γ, E ⊢W M : α, where E denotes a constraint set. Sometimes we elide the constraint component of the judgment to simplify the presentation. In that case, we denote a judgment by Γ ⊢W M : τ , where E is implicit and so there is a substitution generated by solving E such that ρα = τ . 4

4

Wand’s Algorithm

Next we briefly discuss Wand’s algorithm [Wan87] and state the soundness and completeness theorems. Central to Wand’s algorithm is the notion of action table, which takes as input a type system and a term and generates equational constraints. For untyped lambda calculus, the type system is shown in Fig. 2. Let G denote a set of assertions (also called goals) and E a set of equational constraints. Then the algorithm sketch is given as: Input. A term M0 of Λ. Initialization. Set E = ∅ and G = {(Γ0 , M0 , α0)}, where α0 is a fresh type variable and Γ0 is an empty environment. Loop Step. If G = ∅ then return E else choose a sub-goal (Γ, M, τ) from G, delete the sub-goal from G and add to E and G new verification conditions and subgoals generated by the action table6 . Solve Constraints. Unify constraints in E.

We can now describe the soundness and completeness results as stated by Wand, but before that we introduce some terminology. We denote a goal by a 3-tuple, i.e. (Γ, M, τ), and we write ρ |= g i.e. ρ |= (Γ, M, τ) if and only if ρΓ ⊢HM M : ρτ . We write ρ |= G if and only if ∀g ∈ G. ρ |= g. Similarly, if E is a set of e-constraints, we write ρ |= E if and only if ∀e ∈ E. ρ |= e. Finally, we say ρ solves (E, G), where (E,G) result from applying Wand’s algorithm, if and only if ρ |= E and ρ |= G. (Soundness) ∀ρ. ρ |= (E, G) ⇒ ρΓ0 ⊢HM M0 : ρτ0 (Completeness) Γ ⊢HM M0 : τ ⇒ (∃ρ. ρ |= (E, G) ∧ Γ = ρΓ0 ∧ τ = ρτ0)

We have reformulated Wand’s statement of completeness and soundness and made them more abstract (by eliminating the goal set). The reformulated theorems are used later in the proofs of soundness and completeness of the extended proof system. Our statement of the soundness and completeness are given below: Theorem 1 (Soundness). If there is a derivation of Γ0 , E ⊢W M0 : τ0 generating constraint set E then, for any ρ such that ρ |= E, ρΓ0 ⊢HM M0 : ρτ0 is derivable. Theorem 2 (Completeness). If there is a derivation of Γ ⊢HM M0 : τ , then for any ρ, τ0 , Γ0 , such that dom(ρ) = (F T V (Γ0) ∪ {τ0 }), ρΓ0 = Γ , and ρτ0 = τ then there exists a derivation of Γ0 , E ⊢W M0 : τ0 , and there exists a substitution ρ′ such that ρ ⊆ ρ′ and ρ′ |= E. Both these theorems are proved in [KC07].

5

Extended Wand’s Algorithm

In this section we describe the changes needed to incorporate the let construct. First, we enrich our term and type language. We call the extended language Core-ML [MH88], and it is defined as: Core-ML ::= x | M N | λx.M | let x = M in N 6

See Section 5 for action table behavior for untyped lambda calculus.

5

The let expression let x = M in N is not merely a syntactic sugar for (λx.N)M . For instance, the term let i = λx.x in i i is typable but the desugared term (λi.i i)(λx.x) is not typable. This is true for both Haskell and ML type reconstruction algorithms. To handle polymorphic types introduced by let-expressions, the type syntax is extended with type scheme variable and type scheme as shown below: − σ ::= α∗ | ∀→ α .τ

→ A type scheme, denoted by ∀− α .τ , is a type where zero or more type variables are universally quantified. We denote a type scheme variable by annotating a type variable with a “*”. Generalizing a type τ with respect to a type environment Γ entails quantifying over the free variables of τ that are not free in Γ . def → → Thus gen(Γ, τ) = ∀− α .τ , where − α = F T V (τ) − F T V (Γ). On the other hand, instantiation of a type scheme involves replacing the quantified variables by fresh def → type variables and is given by inst(∀− α .τ) = τ [α1 := β1 , . . . , αn := βn], where β1 , . . . , βn are fresh type variables. Next, we extend the constraint language C to include two other kinds of constraints as shown below: C ::=

e

s

i

τ =τ | τ =Γ α∗ | α∗ = τ (e-constraint) (s-constraint) (i-constraint)

s

A s-constraint τ =Γ α∗ expresses the fact that α∗ denotes a type scheme obtained by generalizing a type τ with respect to the environment Γ . An i-constraint i α∗ = τ expresses the fact that τ is constrained to be an instantiated value of the type scheme denoted by α∗ . Wand’s type system is now extended with two rules to account for i&s-constraints. The new type system is called extended Wand’s system and a judgment in the extended system is denoted by the subscript W + . (W-Var-i)

where x : τ ∈ Γ

i

Γ, {α∗ = τ } ⊢W + x : α∗

(W-Let)

(Γ \x) ∪ {x : α2 ∗ }, E2 ⊢W + N : τ

Γ, E1 ⊢W + M : α1 s

Γ, E1 ∪ E2 ∪ {α1 =Γ α2 ∗ } ⊢W + let x = M in N : τ

where α1 , α∗ 2 are fresh

Apart from extending the type rules, we also had to extend the notion of satisfiability and substitution application to a constraint. First, we describe some notations used in the description of satisfiability. We use the notation Eα∗ to denote a s set of i-constraints related7 to a s-constraint τ0 =Γ α∗ . From this point onwards, s we think of a s-constraint and related i-constraint as a pair (τ0 =Γ α∗ , Eα∗); the first component being the s-constraint and the second component being the list of related i-constraint(s). We use the symbol ≤ to express the notion of an instance. Specifically, τ ≤ σ expresses the fact that τ is an instance of σ in the sense that τ is obtained by instantiating all the bound variables of σ. This notion can then be used to express the satisfiability of i&s constraints. We say 7

A s-constraint is related to an i-constraint if they share the same type scheme variable.

6

i

s

ρ satisfies (τ0 =Γ α∗ , Eα∗) if ∀(α∗ = τ1) ∈ Eα∗ . ρ τ1 ≤ ρ(gen(Γ, τ0)). Substitution application to a pair of s-constraint and related i-constraints is defined as: s def s i i ρ(τ0 =Γ α∗ , Eα∗) = (ρτ0 =ρΓ α∗ , {ρτ = α∗ | (τ = α∗) ∈ Eα∗ }). Next, we sketch the constraint generation phase8 for Core-ML. The algorithm sketch remains the same except that E now is a list9 of equational constraints instead of a set. The behavior of action table for Core-ML is same as that for untyped lambda calculus except for the variable (a slight modification) and the let case as shown below: Case (Γ, x, τ0). If x is bound to a type scheme variable α∗ in Γ , i.e. x : α∗ ∈ Γ , then i e add α∗ = τ0 to E else add τ0 = τ1 (where x : τ1 ∈ Γ) to E. Case (Γ, M N, τ0). Let α be a fresh type variable. Generate subgoals (Γ , M, α → τ0) and (Γ, N, α), and add to G. Case (Γ, λx.M, τ0). Let α and β be two fresh type variables. Generate equation e τ0 = α → β and sub-goal ((Γ \x) ∪ {x : α}, M, β), and add to E & G respectively. Case (Γ,let x = M in N, τ0). Let α1 , α∗2 be fresh type variables. Append10 s El @[α1 =Γ α∗2]@Er to list E, where El , Er are obtained by recursively calling the extended algorithm on (Γ, M, α1) and ((Γ \x) ∪ {x : α∗2 }, N, τ0) respectively.

The next few paragraphs highlight the constraint solving phase. This phase consists of two distinct unification phases: Phase I and Phase II. We first give an informal description of both the phases and follow it with a formal description. In the first phase, e-constraints are unified. Note that if there are no i&s-constraints, i.e. the term is a pure lambda term, then our Phase I mirrors the constraint solving phase for Wand’s algorithm. In the second phase, a s-constraint and related i-constraints are chosen and transformed to e-constraints and unified using the Phase I unification. Let E = Ee @Ei&s be the constraint list obtained from the constraint generation phase, where Ee denotes a list containing econstraints, Ei&s denotes a list containing i&s-constraints. The constraint solving algorithm, SOLVE, integrates the two unification phases as follows: SOLVE(E) = let ρ1 = unif y1 Ee in ρ1 ◦ (unif y2 ρ1 (Ei&s))

The first phase, unif y1 is defined as: unif y1 (E) = unif y1 unif y1 unif y1 unif y1 unif y1

8 9 10

e

((α = β) :: E) e ((α = τ) :: E) e ((α = τ) :: E) e ((τ = α) :: E) e ((τ1 → τ2 = τ3 → τ4) :: E)

= = = = =

if α = β then unif y1 E if α occurs in τ then raise Failure (α 7→ τ) ◦ unif y1 (E[α := τ]) e unif y1 ((α = τ) :: E) e e unif y1 ((τ1 = τ3) :: ((τ2 = τ4) :: E))

We denote this constraint generation phase by W and+ in Fig. 3. This is needed to preserve the order of s-constraints. This will ensure that we solve the leftmost innermost let first.

7

The second phase, unif y2, is defined as: unif y2 (E ′ @E) = let ρ1 = unif y1 E ′′ in ρ1 ◦ unif y2 (ρ1 E) e i where E ′′ = {inst(gen(Γ, τ1)) = τ2 | (α∗ = τ2) ∈ Eα∗ } s and E ′ = [(τ0 =Γ α∗),Eα∗] unif y2 [] = Id

The first phase of our constraint solving algorithm is very similar to the algorithm proposed by Martelli and Montanari [MM82], which is known to be exponential11 in the size of the input in the worst case [BS01]. Therefore, the first phase of the unification is linear while our implementation, which does not use the efficient DAG representation, is exponential in the size of the input in the worst case. The second phase of the algorithm involves calling Phase I algorithm as many times as the number of s-constraints, i.e., the number of let-bound variables and there can be only O(n) of those. Therefore, in the worst case, the total time required by the algorithm is O(2n), where n is the size of the term.

6

Extension Correctness

For the correctness result, we need a function to transform polymorphic lets to pure lambda terms since Wand’s type system has no notion of let. We call this function ptol. Note that ptol is a type and value preserving transformation [KC07]. We introduce two additional notations before formally describing ptol. First, we use N [x] to denote one hole (denoted by []) in a context (denoted by N) filled with the let-bound variable (x in this case). Second, we use the notation |F V (N)|x to denote the count12 of free occurrence of x in N . Notice that we transform only the body of the let since we assume the let-binding is let-free. This assumption is strictly not necessary since there is a type and value preserving transformation mentioned by Mairson[Mai89], which can make a letbinding let-free. We use the assumption to simplify our proofs but its certainly not a restriction on our algorithm. With the above notations, we describe ptol below: ptol(x) ptol(λx.M) ptol(M N) ptol(let x = M in N [x])

= = = =

x λx. ptol(M) (ptol(M) ptol(N)) let N1 = ptol(N) in if | F V (N) |x ≤ 1 (λx. N1 [x])M ptol(let x = M in N [x]) = let N1 = ptol(N) in if | F V (N) |x > 1 ptol(let x1 = M in let x = M in N1 [x1]) where x1 is a fresh variable. 11

12

Linear if the input and output are represented as directed acyclic graph (DAG) [PW76]. We use the conservative notion of occurrence of a let-bound variable rather than the actual types to differentiate between a monomorphic and polymorphic let.

8

The correctness is given by the proof sketch in Fig. 3. The most complicated proof was showing that the extended type system was sound and complete with respect to the Hindley-Milner type system via Wand’s type system. The detailed arguments involved in the correctness, the proofs of various theorems and lemmas, and a detailed discussion on the novel desugaring of polymorphic lets to pure lambda terms can be found in [KC07]. Constraint Generation → − W and (Γ, M, α) = E ⇔ Γ, E ⊢W + M : α is derivable +

Extended Type System

B

B

Constraint Solving

Γ, E ⊢W + M : α is derivable ⇒ B − → − B SOLVE(→ E)Γ ⊢HM ptol(M) :SOLVE(E)α B is derivable B B ? B -NB Main Result

Γ, E ⊢W + M : α is derivable ⇔ Γ, E ⊢W ptol(M) : α is derivable ⇔ Γ ⊢HM ptol(M) : τ is derivable

W and+ (Γ, M, α) infers the principal type for M under Γ

Fig. 3. Correctness proof overview

7

Conclusions and Future Work

The extension of Wand’s algorithm is a non-trivial extension and requires careful handling of constraints. Our algorithm is a direct extension of Wand’s algorithm and our soundness and completeness proofs rely on completeness and soundness of Wand’s algorithm. The main idea behind our algorithm is to preserve the order of generated s-constraints (as described in the action table for Core-ML) and use a multi-phase unification, while preserving this order, in the constraint solving phase. We have validated our approach by running the examples mentioned in this paper on Alg. W [Mil78, DM82], Alg. M [LY98] and Alg. J [Mil78]. An implementation of our algorithm and other popular type reconstruction algorithms in OCaml is available online at http://www.cs.uwyo.edu/ ∼skothari. We are working on a formalization of the proofs in CoQ.

Acknowledgments Thanks to Bastiaan Heeren for a detailed response to author’s query regarding the constraint representations mentioned in his thesis. We also want to thank anonymous referees for their detailed comments and suggestions (on an earlier draft of this paper), which greatly improved the presentation of this paper. 9

References [AW93]

A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In Functional Programming Languages and Computer Architecture, pages 31–41, 1993. [BS01] F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532. Elsevier Science, 2001. [DM82] L. Damas and R. Milner. Principal type-schemes for functional programs. In POPL ’82, pages 207–212, New York, 1982. ACM Press. [Hee05] B. Heeren. Top Quality Type Error Messages. PhD thesis, Universitiet Utrecht, 2005. [Hin69] J. R. Hindley. The principal type-scheme of an object in combinatory logic. Trans. American Math. Soc, 146:29–60, 1969. [HLI03] B. Heeren, D. Leijen, and A. IJzendoorn. Helium, for learning haskell. In Haskell ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages 62–71, New York, NY, USA, 2003. ACM Press. [Jon95] M. P. Jones. Qualified types: theory and practice. Cambridge University Press, New York, NY, USA, 1995. [KC07] S. Kothari and J. L. Caldwell. Wand’s Algorithm Extended for the Polymorphic ML-Let. Technical report, University of Wyoming, 2007. [Kot07] S. Kothari. Type Reconstruction Algorithms: A Survey. Technical report, University of Wyoming, 2007. [LY98] O. Lee and K. Yi. Proofs about a folklore let-polymorphic type inference algorithm. ACM Transactions on Programming Languages and Systems (TOPLAS), 20(4):707–723, 1998. [Mai89] H. G. Mairson. Deciding ML typability is complete for deterministic exponential time. In Proc. of the 16th ACM Sym. Principles of Programming Languages, pages 382–401, 1989. [MH88] J. C. Mitchell and R. Harper. The essence of ML. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 28–46, 1988. [Mil78] R. Milner. A theory of type polymorphism in programming. Journal of computer and system sciences, pages 348–375, 1978. [MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans. Program. Lang. Syst., 4(2):258–282, 1982. [Pie02] B. C. Pierce. Types and Programming Languages. MIT Press, 2002. [PJ89] P.C.Kanellakis and J.C.Mitchell. Polymorphic unification and ML typing. In 6th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 105–115. ACM Press, 1989. [PR05] F. Pottier and D. R´emy. The essence of ML type inference. In Benjamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489. MIT Press, 2005. [PW76] M. S. Paterson and M. N. Wegman. Linear unification. In STOC ’76: Proceedings of the eighth annual ACM symposium on Theory of computing, pages 181–186, New York, NY, USA, 1976. ACM. [SOW97] M. Sulzmann, M. Odersky, and M. Wehr. Type inference with constrained types. In Fourth International Workshop on Foundations of Object-Oriented Programming (FOOL 4), 1997. [Wan87] M. Wand. A simple algorithm and proof for type inference. Fundamenta Informaticae, 10:115–122, 1987.

10

[image: A Fast and Simple Surface Reconstruction Algorithm]
A Fast and Simple Surface Reconstruction Algorithm

[image: A Fast Bresenham Type Algorithm For Drawing Circles]
A Fast Bresenham Type Algorithm For Drawing Circles

[image: Extending Design Environments to Software ...]
Extending Design Environments to Software ...

[image: A Fast Bresenham Type Algorithm For Drawing Ellipses]
A Fast Bresenham Type Algorithm For Drawing Ellipses

[image: Serviceable Reactive Programming on Vulnerable Data Type]
Serviceable Reactive Programming on Vulnerable Data Type

[image: Information on Vitogate 200 type EIB - Groups]
Information on Vitogate 200 type EIB - Groups

[image: On the Evolution of Geometrical Reconstruction as a ...]
On the Evolution of Geometrical Reconstruction as a ...

[image: Road Surface 3D Reconstruction Based on Dense Subpixel ...]
Road Surface 3D Reconstruction Based on Dense Subpixel ...

[image: CopperDroid - On the Reconstruction of Android Malware ... - GitHub]
CopperDroid - On the Reconstruction of Android Malware ... - GitHub

[image: Parameter optimization in 3D reconstruction on a large ...]
Parameter optimization in 3D reconstruction on a large ...

[image: High-Speed Compressed Sensing Reconstruction on ...]
High-Speed Compressed Sensing Reconstruction on ...

[image: The Effect of Recombination on the Reconstruction of ...]
The Effect of Recombination on the Reconstruction of ...

[image: Towards Real Time 3D Tracking and Reconstruction on ...]
Towards Real Time 3D Tracking and Reconstruction on ...

[image: Extending the Entity-grid Coherence Model to ...]
Extending the Entity-grid Coherence Model to ...

[image: Extending Command and Control Infrastructures to Cyber Warfare ...]
Extending Command and Control Infrastructures to Cyber Warfare ...

[image: From Modelling Domain Knowledge to Metacognitive Skills: Extending ...]
From Modelling Domain Knowledge to Metacognitive Skills: Extending ...

[image: Extending Modern PaaS Clouds with BSP to Execute ...]
Extending Modern PaaS Clouds with BSP to Execute ...

[image: Extending Bayesian Networks to the Open-Universe Case]
Extending Bayesian Networks to the Open-Universe Case

[image: Extending Command and Control Infrastructures to ...]
Extending Command and Control Infrastructures to ...

[image: Extending the UTAUT model to understand the ...]
Extending the UTAUT model to understand the ...

[image: RTTI reconstruction - GitHub]
RTTI reconstruction - GitHub

[image: Extending BDI Plan Selection to Incorporate Learning ...]
Extending BDI Plan Selection to Incorporate Learning ...

On Extending Wand's Type Reconstruction Algorithm to ...

The general type reconstruction problem can be formulated as: Given a C ::= Ï„1 â‰¡ Ï„2 | Ïƒ := GEN(Î“, Ï„) | Ï„ := INST(Ïƒ) Wand's Algorithm Extended for the Poly-.

 Download PDF

 165KB Sizes
 0 Downloads
 153 Views

 Report

Recommend Documents

[image: alt]

A Fast and Simple Surface Reconstruction Algorithm

Jun 17, 2012 - Octree decomposition. Root cell smallest bounding cube of P. Splitting rule split a splittable leaf cell into eight children. Balancing rule split a leaf cell C if it has a neighbor C/ s.t. lC < lC /2. Apply the two rules alternately u

[image: alt]

A Fast Bresenham Type Algorithm For Drawing Circles

once the points are determined they may be translated relative to any center that is not the origin (,). ... Thus we define a function which we call the V+.3?=I

[image: alt]

Extending Design Environments to Software ...

However, in building the Argo software architecture While working on the architecture of the basic KLAX game, the architect places the TileArtist ... server-side Spelling component might be too slow in a future multi-player product, so he or ..

[image: alt]

A Fast Bresenham Type Algorithm For Drawing Ellipses

We define a function which we call the which is an refer to the ellipse's center point coordinates and its horizontal and vertical radial values. So. \V+.3?= Å“ +.

[image: alt]

Serviceable Reactive Programming on Vulnerable Data Type

Abstract. Serviceable Reactive Programming (SRP) is an approach to reactive programming where systems are structured as networks of functions operating on signals. SRP is based on the synchronous data-flow paradigm and supports both continuous time a

[image: alt]

Information on Vitogate 200 type EIB - Groups

Service. Group. Data point read/write Data p.lengthÂ¹ min. value2 max. value2 VS-Adress1. Operation HC1. Operating data HC1. Operating data write. 1-Byte. 0.

[image: alt]

On the Evolution of Geometrical Reconstruction as a ...

An extensive list of works on geometrical computer tools (and Graphical User Interfaces are no ex- ception to View labeling for automated interpretation.

[image: alt]

Road Surface 3D Reconstruction Based on Dense Subpixel ...

and computer vision have been increasingly applied in civil. Rui Fan is with the ... e.g., stereo vision, are more capable of reconstructing the 3D Road Surface 3D Reconstruction Based on Dense Subpixel Disparity Map Estimation .pdf.

[image: alt]

CopperDroid - On the Reconstruction of Android Malware ... - GitHub

Oct 11, 2014 - Android apps written (mostly) in Java and run in a Java-like. (Dalvik) VM as THE BINDER PROTOCOL. IPC/RPC. The Binder protocol enables fast inter-process communication between Apps or between Apps and the system. It also allows ..

[image: alt]

Parameter optimization in 3D reconstruction on a large ...

Feb 20, 2007 - File replication allows a single file to be replicated to multiple storage ... Data are then replicated from that SE to other two SEs and so on.

[image: alt]

High-Speed Compressed Sensing Reconstruction on ...

tion algorithms, a number of implementations on graphics processing ... Iterative thresholding algorithms, such as AMP, are another class of algorithms that refine the estimation in each iteration by a thresholding step. We chose OMP and AMP as two o

[image: alt]

The Effect of Recombination on the Reconstruction of ...

Jan 25, 2010 - Guan, P., I. A. Doytchinova, C. Zygouri and D. R. Flower,. 2003 MHCPred: a server for quantitative prediction of pep- tide-MHC binding. Nucleic ...

[image: alt]

Towards Real Time 3D Tracking and Reconstruction on ...

the GPU rather than the CPU, is that the GPU has several computing units, that can run ... algorithm and a reference implementation that works in real time on cloud so the displacement of its projections is similar to the optical flow of the ..

[image: alt]

Extending the Entity-grid Coherence Model to ...

API (Strube & Ponzetto, 2006). 1 Introduction ... quired to evaluate the output of a NLG system is expensive ... for any other text-to-text generation system with a.

[image: alt]

Extending Command and Control Infrastructures to Cyber Warfare ...

as additional cyber information, requires that command ... Infrastructures, Information Awareness control hierarchy must plan a cyber warfare campaign [5].

[image: alt]

From Modelling Domain Knowledge to Metacognitive Skills: Extending ...

constraint-based tutors, COLLECT-UML represents the domain knowledge as a set of constraints. However, it is the first system to also represent a higher-level ...

[image: alt]

Extending Modern PaaS Clouds with BSP to Execute ...

Extending Modern PaaS Clouds with BSP to Execute Legacy. MPI Applications. Hiranya Jayathilaka, Michael Agun. Department of Computer Science. UC Santa Barbara, Santa Barbara, CA, USA. Abstract. As the popularity of cloud computing continues to in- cr

[image: alt]

Extending Bayesian Networks to the Open-Universe Case

dependency statements, although we use a syntax based loosely on Blog [...... Another important thread goes under the name of probabilistic programming.

[image: alt]

Extending Command and Control Infrastructures to ...

information, requires that command and control infrastructures be updated to incorporate battle maps; e.g., through visualization techniques. The cyber war.

[image: alt]

Extending the UTAUT model to understand the ...

Mar 17, 2017 - Design/methodology/approach â€“ A conceptual framework was developed through extending the unified theory of acceptance and use of ...

[image: alt]

RTTI reconstruction - GitHub

Mobile. Consumer. Cmd. Consumer. Munch. Sniffer. FileFinder. FileCollect. Driller ... o Custom data types: âœ“ wrappers ... Identify Custom Type Operations ...

[image: alt]

Extending BDI Plan Selection to Incorporate Learning ...

Apr 10, 2010 - and recursion and modify our previous approach to decision tree [17] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and.

×
Report On Extending Wand's Type Reconstruction Algorithm to ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

