Online Appendix to Factor Specificity and Real Rigidities∗ Carlos Carvalho Central Bank of Brazil and PUC-Rio Fernanda Nechio Federal Reserve Bank of San Francisco August, 2016

Abstract We develop a multisector model in which capital and labor are free to move across firms within each sector, but cannot move across sectors. To isolate the role of sectoral specificity, we compare our model with otherwise identical multisector economies with either economy-wide or firm-specific factor markets. Sectoral factor specificity generates within-sector strategic substitutability and tends to induce across-sector strategic complementarity in price setting. Our model can produce either more or less monetary non-neutrality than those other two models, depending on parameterization and the distribution of price rigidity across sectors. Under the empirical distribution for the U.S., our model behaves similarly to an economy with firm-specific factors in the short-run, and later on approaches the dynamics of the model with economy-wide factor markets. This is consistent with the idea that factor price equalization might take place gradually over time, so that firm-specificity may serve as a reasonable short-run approximation, whereas economy-wide markets are likely a better description of how factors of production are allocated in the longer run. JEL classification codes: E22, J6, E12 Keywords: factor specificity, multisector model, heterogeneity, monetary non-neutrality



The views expressed in this paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of San Francisco, the Federal Reserve System or the Central Bank of Brazil. E-mails: [email protected], [email protected]. Corresponding author: [email protected].

1

A

Online Appendix

A.1

First-order conditions for model with sectoral factor markets

The first-order conditions for consumption and labor are: Ct−σ β l Pt , −σ = Θt,l Pt+l Ct+l Ws,t γ = ωs Ns,t Ctσ , ∀ s. Pt Consumers’ allocation of sectoral investment Is,t and capital Ks,t+1 yields: ( Qs,t = βEt

−σ Ct+1 Ct−σ

"   2 #!) Zs,t+1 I I s,t+1 s,t+1 + Qs,t+1 (1 − δ) − Φ0 , Pt+1 Ks,t+1 Ks,t+1      Is,t Is,t Is,t 0 Qs,t Φ +Φ = 1, Ks,t Ks,t Ks,t

where Qs,t denotes Tobin’s q for sector s. In all models, the solution must also satisfy a transversality condition: lim Et [Θt,l Bl ] = 0.

l→∞

A.2

First-order conditions for model with firm-specific factors

The first-order conditions for consumption and labor are now: β l Pt Ct−σ , −σ = Θt,l Pt+l Ct+l Ws,j,t γ = Ns,j,t Ctσ , ∀ s, j. Pt Consumers’ allocation of investment and capital to firm j in sector s is such that: ( Qs,j,t = βEt

−σ Ct+1 Ct−σ

"   2 #!) Zs,j,t+1 I I s,j,t+1 s,j,t+1 + Qs,j,t+1 (1 − δ) − Φ0 , Pt+1 Ks,j,t+1 Ks,j,t+1 

0

Qs,j,t Φ



Is,j,t Ks,j,t



Is,j,t +Φ Ks,j,t

2



Is,j,t Ks,j,t

 = 1,

where Qs,j,t denotes Tobin’s q of firm j in sector s. Optimal price setting implies:

Xs,j,t

θ Et = θ−1

P∞

l=0

1−χ χ−1 Θt,t+l (1 − αs )l Λs,t+l χKs,j,t+l Ns,j,t+l P l Et ∞ l=0 Θt,t+l (1 − αs ) Λs,t+l

where:  Λs,t =

1 Ps,t

−θ 

Ps,t Pt

−1

Ws,j,t+l

,

−η Yt .

(A.1)

From cost-minimization, real marginal costs can be expressed as: M Cs,j,t

1 = χχ (1 − χ)1−χ



Ws,j,t Pt

χ 

Zs,j,t Pt

(1−χ) .

(A.2)

Note that marginal costs are now firm-specific. This is a direct implication of the assumption of firm-specific capital and labor markets.

A.3

First-order conditions for model with economy-wide factor markets

The first-order conditions for consumption and labor are: Ct−σ β l Pt , = −σ Θt,l Pt+l Ct+l Wt = Ntγ Ctσ . Pt

(A.3)

Consumers’ allocation of investment It and capital Kt+1 yields: 

0

Qt Φ ( Qt = βEt

−σ Ct+1 Ct−σ



It Kt



It +Φ Kt



It Kt

 = 1,

"   2 #!) Zt+1 I I t+1 t+1 + Qt+1 (1 − δ) − Φ0 , Pt+1 Kt+1 Kt+1

where Qt denotes Tobin’s q. Optimal price setting implies:

Xs,j,t

θ Et = θ−1

P∞

l 1−χ χ−1 l=0 Θt,t+l (1 − αs ) Λs,t+l χKs,j,t+l Ns,j,t+l P l Et ∞ l=0 Θt,t+l (1 − αs ) Λs,t+l

3

−1

Wt+l

,

where:  Λs,t =

1 Ps,t

−θ 

Ps,t Pt

−η Yt .

(A.4)

From cost-minimization, real marginal costs can be expressed as: M Cs,j,t

1 = M Ct χχ (1 − χ)1−χ



Wt Pt

χ 

Zt Pt

(1−χ) .

(A.5)

Note that marginal costs are equalized across firms and sectors. This is a direct implication of the assumption of economy-wide capital and labor markets.

A.4

Firm-specific model solution

To solve the model, we follow Woodford (2005) and generalize his solution method for a multisector economy. A.4.1

Rewriting the marginal cost equation

The loglinear versions of the marginal cost, consumption/labor decision, and production function equations are given by, respectively:1 d mcs,j,t = ws,j,t − pt − (1 − χ) ks,j,t − (χ − 1) ns,j,t ,

ws,j,t − pt = σct + γns,j,t , ys,j,t = (1 − χ) ks,j,t + χnds,j,t .

(A.6) (A.7) (A.8)

Equations (A.6)-(A.8) yield: ks,j,t = ns,j,t + (ws,j,t − pt ) − (zs,j,t − pt ) .

(A.9)

The marginal cost can be rewritten as a function of capital and labor by replacing (A.9) into (A.8), isolating for ns,j,t , and replacing for equation (A.7) and (A.8) to obtain: mcs,j,t = σct + γns,j,t − (1 − χ) ks,j,t − (χ − 1) ns,j,t . From the production function (A.8): ns,j,t = 1

1 [ys,j,t − at − (1 − χ) ks,j,t ] . χ

Lower-case letters denote log deviations from steady state.

4

(A.10)

Substituting for ns,j,t in equation (A.10) and rearranging yields:  mcs,j,t = σct +

γ − (χ − 1) χ

 ys,j,t −

(1 − χ) (1 + γ) ks,j,t . χ

(A.11)

(1 − χ) (1 + γ) ks,t , χ

(A.12)

Integrating across all firms in sector s:  σct = mcs,t −

γ − (χ − 1) χ

 ys,t +

which we can replace at equation (A.11) to obtain: mcs,j,t = mcs,t +

(1 − χ) (1 + γ) γ − (χ − 1) (ys,j,t − ys,t ) − (ks,j,t − ks,t ) . χ χ

(A.13)

The final firm’s problem yields demand for goods produced by firm j in sector s: ys,j,t = ys,t − θ (ps,j,t − ps,t ) , which can be substituted at equation A.13 to obtain: mcs,j,t = mcs,t − θ A.4.2

γ − (χ − 1) (1 − χ) (1 + γ) (ps,j,t − ps,t ) − (ks,j,t − ks,t ) . χ χ

(A.14)

Capital equation

From the consumers’ maximization problem, the capital and investment allocations yield: ( κδ (is,j,t − ks,j,t ) = Et

−σ (ct+1 − ct ) + [1 − (1 − δ) β] (zs,j,t+1 − pt+1 ) + (1 − δ) βκδ (is,j,t+1 − ks,j,t+1 ) + κδ 2 β (is,j,t+1 − ks,j,t+1 )

) . (A.15)

Using the law of motion for capital stocks and using equations (A.7)-(A.8) to replace for zs,j,t+1 , one obtains:   !       ys,j,t+1   1+γ       χ   −σ (ct+1 − ct ) + [1 − (1 − δ) β]   − (1 − χ) k s,j,t+1   κ (ks,j,t+1 − ks,j,t ) = Et .   +σc − k   t+1 s,j,t+1         +κβ (ks,j,t+2 − ks,j,t+1 )

5

Integrating across all firms in sector s yields:   !       −θ (ps,j,t+1 − ps,t+1 )   1+γ       χ   [1 − (1 − δ) β]   − (1 − χ) (k − k ) s,j,t+1 s,t+1   , κ [ks,j,t+1 − ks,t+1 − (ks,j,t − ks,t )] = Et   − (k − k )   s,j,t+1 s,t+1         +κβ [ks,j,t+2 − ks,t+2 − (ks,j,t+1 − ks,t+1 )] where we used again the final-firms demand for goods produced by firm j in sector s. Defining p˜s,j,t = ps,j,t − ps,t ,

(A.16)

k˜s,j,t = ks,j,t − ks,t ,

(A.17)

we can rewrite the previous equation as: h

i

κ k˜s,j,t+1 − k˜s,j,t = Et

 h  [1 − (1 − δ) β]

1+γ χ





−θp˜s,j,t+1 − (1 − χ) k˜s,j,t+1 i h +κβ k˜s,j,t+2 − k˜s,j,t+1



− k˜s,j,t+1

i  

.

 (A.18)

A.4.3

Pricing rule

The intermediate-firm optimization problem yields the optimal price-setting equation: xs,j,t = (1 − β (1 −

αs )) Etj

∞ X

β m (1 − αs )m (pt+m + mcs,j,t+m )

m=0

Note that because each firm can have a different capital-accumulation history, expectations may vary from one form to another, and hence, Et , the usual expectations at time-t operator, differs from Etj . Rewriting equation (A.14) at t + m, and using equations (A.16) and (A.17) yields: mcs,j,t+m = mcs,t+m − θ

γ − (χ − 1) (1 − χ) (1 + γ) ˜ p˜s,j,t+m − ks,j,t+m , χ χ

which can be replaced in the optimal pricing equation above to obtain:

xs,j,t = (1 − β (1 −

αs )) Etj

∞ X m=0

m

m

β (1 − αs )

pt+m + mcs,t+m − θ γ−(χ−1) (˜ xs,j,t − Σm i=1 Et πs,t+i ) χ − (1−χ)(1+γ) k˜s,j,t+m χ

6

! ,

where we used the fact that definitions (A.16) and (A.17) imply: Etj p˜s,j,t+m = p˜s,j,t − Σm i=1 Et πs,t+i k˜s,j,t+m = ks,j,t+m − ks,t+m Taking ps,t from both sides of the price equation above, using the fact that ps,t = ps,t+m − Σm i=1 Et πs,t+i ,

and rewriting yields:

 mcs,t+m + pt+m − ps,t+m   ∞ i X  h θ (γ − (χ − 1)) m γ−(χ−1) j m 1+ x˜s,j,t = (1 − β (1 − αs )) Et β (1 − αs )  + 1 + θ χ Σm i=1 Et πs,t+i χ m=0 (1−χ)(1+γ) ˜ − ks,j,t+m . χ

   

Note that the only term in the above expression that depends on firm-j expectations is the one associated with capital stocks. Hence, we can rewrite the above expression as:     ∞ X pt+m + mcs,t+m − ps,t+m γ − (χ − 1)   1+θ x˜s,j,t = (1 − β (1 − αs )) Et β m (1 − αs )m   γ−(χ−1) m χ E π Σ + 1 + θ t s,t+i i=1 χ m=0 ∞ X (1 − χ) (1 + γ) j − (1 − β (1 − αs )) Et β m (1 − αs )m k˜s,j,t+m . χ m=0

A.4.4

Guessing a solution

Equation (A.18) can be rewritten as: n o Et Q (L) k˜s,j,t+2 = Ξ1 Et p˜s,j,t+1

(A.20)

where: Q (L) = β − AL + L2     χ + (1 + γ) (1 − χ) −1 A = β + [1 − (1 − δ) β] κχ θ (1 + γ) Ξ = [1 − (1 − δ) β] , κχ and we could factor the Q (L) so to obtain two real roots (see Woodford, 2005). Because consumer j’s decision problem is locally convex, the first-order condition characterizes a locally unique optimal plan, and at the time of price adjustment, the chosen price must depend only on j’s relative capital stock and its own sector’s state. Hence, j’s pricing decision must take the form: x˜s,j,t = gs,t − ψs k˜s,j,t ,

7

(A.21)

(A.19)

where gs,t depends only on the sectoral state and aggregate variables, and the coefficient ψs is to be determined. Sectoral prices are such that: Z (xs,i,t − ps,t ) di − (1 − αs ) πs,t = 0.

(A.22)

I

Given that optimizing firms are chosen at random at each time, and that k˜ is a gap relative to the sectoral capital:

Z

k˜s,i,t di = 0.

(A.23)

I

Hence, replacing (A.21) and (A.23) into (A.22) yields: gs,t =

1 − αs πs,t . αs

Calvo price setting implies that: Et p˜s,j,t+1 = (1 − αs ) Et (˜ ps,j,t − πs,t+1 ) + αs Et x˜s,j,t+1 . Using equation (A.21) and gs,t , we obtain: Et p˜s,j,t+1 = (1 − αs ) p˜s,j,t − αs ψs k˜s,j,t+1 .

(A.24)

Extending Woodford (2005)’s insight for multisector economies, the optimal quantity of investment in any period must depend only on j’s relative capital stock, its relative price, and the economy’s aggregate state. Thus, k˜s,j,t+1 can be represented as a function of k˜s,j,t , p˜s,j,t . Hence, a firm j individual expectation (Etj ) only involves periods at which the firm is not readjusting. We guess (and verify) that: k˜s,j,t+1 = κ1,s k˜s,j,t − κ2,s p˜s,j,t , where the parameters κ1,s , κ2,s , ψs and function gs,t are to be determined. Using equation (A.24), this guess on capital implies that: Et k˜s,j,t+2 = (κ1,s + κ2,s αs ψs ) k˜s,j,t+1 − κ2,s (1 − αs ) p˜s,j,t .

8

(A.25)

Using this last expression and equation (A.24) to substitute for (A.20) yields: "

β (κ1,s + κ2,s αs ψs ) − A +αs ψs [1 − (1 − δ) β]

θ(1+γ) κχ

#

" k˜s,j,t+1 = −k˜s,j,t +

(1 − αs ) [1 − (1 − δ) β] θ(1+γ) χκ +κ2,s (1 − αs ) β

# p˜s,j,t .

Comparing with guess (A.25), we have: "

#

β (κ1,s + κ2,s αs ψs ) − A

κ1,s = −1

+αs ψs [1 − (1 − δ) β] θ(1+γ) κχ " −

#

β (κ1,s + κ2,s αs ψs ) − A +αs ψs [1 − (1 − δ) β] θ(1+γ) κχ

" κ2,s =

(A.26)

(1 − αs ) [1 − (1 − δ) β] θ(1+γ) χκ +κ2,s (1 − αs ) β

# . (A.27)

Note that the system of dynamic equations (A.24) and (A.25) implies: "

# # " #" (1 − αs ) + αs ψs κ2,s −αs ψs κ1,s Et p˜s,j,t Et p˜s,j,t+1 . = k˜s,j,t k˜s,j,t+1 −κ2,s κ1,s

And we have both eigenvalues of the matrix inside the unit circle if and only if: κ1,s < (1 − αs )−1 κ1,s < 1 − κ2,s ψs αs κ1,s > −1 − κ2,s ψs . 2 − αs A.4.5

Optimal pricing rule

The optimal pricing equation (A.19) includes the term Etj

P∞

m=0

β m (1 − αs )m k˜s,j,t+m , which

varies according to each firm’s capital accumulation history. Using our solution guesses (A.21) and (A.25), we can rewrite this term as: Etj

∞ X

β m (1 − αs )m k˜s,j,t+m = (1 − (1 − αs ) βκ1,s )−1 k˜s,j,t

m=0

−κ2,s +κ2,s

β (1 − αs ) p˜s,j,t (1 − β (1 − αs )) (1 − β (1 − αs ) κ1,s ) ∞ X (1 − αs ) β (1 − β (1 − αs )) (1 − β (1 − αs ) κ1,s )

9

k=1

β k (1 − αs )k Et πs,t+k .

where we also used the fact that for any firm that doesn’t readjust between times t and t + m: p˜s,j,t+m = x˜s,j,t − πs,t+m − ... − πs,t+1 . Hence, the optimal pricing equation (A.19) implies: φs x˜s,j,t = (1 − β (1 − αs )) Et

∞ X

β m (1 − αs )m (pt+m + mcs,t+m − ps,t+m )

m=0

  ∞ γ − (χ − 1) κ2,s (1 − χ) (1 + γ) β (1 − αs ) X k + 1+θ − β (1 − αs )k Et πs,t+k χ χ (1 − β (1 − αs ) κ1,s ) k=1 −

(1 − χ) (1 + γ) (1 − β (1 − αs )) ˜ ks,j,t , χ (1 − (1 − αs ) βκ1,s )

where:

 φs =

γ − (χ − 1) κ2,s (1 − χ) (1 + γ) β (1 − αs ) 1+θ − χ χ (1 − β (1 − αs ) κ1,s )

 .

The term φs is (an important component) of the coefficients of the firm-specific Phillips curve. Recall that our guesses (A.21) and (A.25) take the form: x˜s,j,t = gs,t − ψs k˜s,j,t k˜s,j,t+1 = κ1,s k˜s,j,t − κ2,s p˜s,j,t . Hence, the solution for the pricing equation above implies that: φs gs,t = (1 − β (1 − αs )) Et

∞ X

β m (1 − αs )m (pt+m + mcs,t+m − ps,t+m )

m=0

+φs

∞ X

β k (1 − αs )k Et πs,t+k ,

k=1

where ψs satisfies: φs ψs =

(1 − χ) (1 + γ) (1 − β (1 − αs )) . χ (1 − (1 − αs ) βκ1,s )

(A.28)

Note that this last equation can be solved for ψs as a function of κ1,s and κ2,s . Equation (A.28) along with equations (A.26) and (A.27) form a system of 3 equations and

10

3 unknowns, ψs , κ1,s and κ2,s : (1 − χ) (1 + γ) (1 − β (1 − αs )) = φs ψs χ (1 − (1 − αs ) βκ1,s ) [β (κ1,s + κ2,s αs ψs ) − A + αs ψs Ξ] κ1,s = −1 − [β (κ1,s + κ2,s αs ψs ) − A + αs ψs Ξ] κ2,s = [Ξ (1 − αs ) + κ2,s (1 − αs ) β] , where:   γ − (χ − 1) κ2,s (1 − χ) (1 + γ) β (1 − αs ) − , φs = 1+θ χ χ (1 − β (1 − αs ) κ1,s )     χ + (1 + γ) (1 − χ) A = β + [1 − (1 − δ) β] −1 , κχ θ (1 + γ) Ξ = [1 − (1 − δ) β] . κχ The coefficients κ1,s and κ2,s are obtained from the solution to the nonlinear system of 3 equations and 3 unknowns ψs , κ1,s and κ2,s : Note that in a version of the model without capital accumulation, χ = 1, φs simplifies to φ = (1 + θγ) – which is familiar from new Keynesian DSGE models. Details of the derivation of these equations are available upon request.

References Calvo, Guillermo. 1983. “Staggered Prices in a Utility Maximizing Framework.” Journal of Monetary Economics, 12: 383–398. Woodford, Michael. 2005. “Firm-Specific Capital and the New Keynesian Phillips Curve.” International Journal of Central Banking, 1(2).

11

Online Appendix - Federal Reserve Bank of San Francisco

with either economy-wide or firm-specific factor markets. Sectoral ... time, so that firm-specificity may serve as a reasonable short-run approximation, whereas.

235KB Sizes 3 Downloads 290 Views

Recommend Documents

Online Appendix to - Federal Reserve Bank of San Francisco
May 4, 2012 - 3. Calculate the OLS estimates on bootstrap sample b and denote it by ˆθ∗ b . 4. ... call this a “constant-bias-correcting” (CBC) estimator. ... We now detail our algorithm, which provides a fast and reliable way to calculate th

Federal Reserve Bank of Chicago
credit cards may lose business to other merchants that do. ...... 14For a discussion of credit card interchange fees, see Evans and Schmalensee (1999) and Balto ...

Majority Voting - Federal Reserve Bank of Cleveland
(South Korea) to high (Norway) in terms of overall levels, and also vary ... There is little correlation between the rates within a country as well. ...... could account for the choices using the observed differences in wage and wealth distributions.

Majority Voting - Federal Reserve Bank of Cleveland
There is little correlation between the rates within a country as well. Similar ... those currently with high labor income do not want to tax it either. Interestingly ..... set U is of interest because it contains policies that can survive under agen

Federal Reserve Bank of Minneapolis
... standardtheory predicts that the economy will display the business cycle phenomena. ..... for the wage w,= w(k, z,) and the rental price of capital r, = r(k, z,), ...

Director: San Francisco Bay National Estuarine Research Reserve ...
Oct 9, 2014 - through meaningful science, education, and coastal management; and national ... Applicants must possess an advanced degree in marine or ...

Director: San Francisco Bay National Estuarine Research Reserve ...
Oct 9, 2014 - Both sites have been largely protected from development and alteration and are widely recognized for their expansive tidal marshes and ...

The Value of Loyal Customers - Federal Reserve Bank of Philadelphia
20%. 25%. 30%. 35%. Share of sales revenues spent on selling activities. Above-average ... to profit from the position—not beneficial from a social welfare point of view. ..... “Valuing 'Free' Media in GDP: An Experimental Approach,”. Federal .

Megan Williams - Federal Reserve Bank of Kansas City
Apr 11, 2014 - outlook appears favorable for 2014. • Oklahoma's economy also continues to grow, and conditions remain better than the nation. Summary ...

A Story of Financial Underdevelopment - Federal Reserve Bank of ...
In our model economy, it is possible for countries hold a positive savings position in which ... the domestic and international interest rates would equilibrate in the ...

Credit Cards and Payment Efficiency - Federal Reserve Bank of ...
Aug 10, 2001 - 1 The views expressed here are not necessarily those of this ... services in 1999.6 Currently, credit cards account for almost 20 percent of all noncash .... acquire more merchants and thus expand the network, bank card ...

Megan Williams - Federal Reserve Bank of Kansas City
Apr 11, 2014 - Associate Economist and Manager, Oklahoma City Branch. Federal Reserve .... Since last year, federal jobs fell across the state, but some ...

Bank Liquidity Hoarding and the Financial Crisis - Federal Reserve Bank
generated by subprime mortgage-related securities. Previous work finds that a measure of off-balance sheet liquidity risk for commercial banks, such as the fraction of unused loan commitments to their lending capacity, is a key determinant of bank li

Federal Reserve Bank of Minneapolis Research ...
39.2. 2009–2014. Korea. 3.0. 1.4. 23.4. *Results have been adjusted to be comparable with the results from the five-year windows using the calibrated model.

Rubén Hernández-Murillo - Federal Reserve Bank of Cleveland
http://research.stlouisfed.org/wp/2014/2014-036.pdf .... E. M. Dinlersoz and R. Hernández-Murillo, “The diffusion of electronic business in the. 2005 ..... Federal Reserve Bank of St. Louis National Economic Trends, Oct. 2001 ... January 31, 2016.

Federal Reserve Bank of St. Louis Review
Recent developments in financial markets have renewed ... banks is framed in terms of simple interest rate .... input into a particular variety of the special good.

Gross Worker Flows over the Business Cycle - Federal Reserve Bank ...
good job of accounting for the key features of fluctuations in gross worker flows between the three ... In this section we document the business cycle facts for gross worker flows. A model ...... To deal with this problem, Abowd and Zellner (1985) an

city & county of san francisco san francisco public works request for ...
Sep 16, 2016 - San Francisco Public Works (“Public Works”) announces a Request for Qualifications (“RFQ”) inviting interested parties to submit their ...

Introduction - San Francisco Estuary Partnership
by fish kills, waste buildup, and the stench at the shoreline. ... report build on TBI's efforts. ..... Bay on our website (www.sfestuary.org) and at the San Fran-.

Introduction - San Francisco Estuary Partnership
managers make decisions about how to best allo- ..... Goals are standards set by the State of California for concentrations of chemical pollutants in water,.

See you in San Francisco!
marketing, human resources and cultural training firm in the greater. Detroit area ... translator, and has served as an ATA certification program grader for over a ...

Spartina Treatment Monitor Internships, San Francisco Estuary ...
Interns will also be trained in the use of desktop-based. ArcPad and/or ... Must be willing to conduct field surveys during and directly adjacent to application of.