

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

www.ietdl.org Published in IET Computers & Digital Techniques Received on 23rd January 2013 Revised on 15th July 2013 Accepted on 22nd July 2013 doi: 10.1049/iet-cdt.2013.0010

ISSN 1751-8601

Optimising the SHA-512 cryptographic hash function on FPGAs George S. Athanasiou1, Harris E. Michail2, George Theodoridis1, Costas E. Goutis1 1

Electrical and Computer Engineering Department, University of Patras, Greece Electrical Engineering, Computer Engineering, and Informatics Department, Cyprus University of Technology, Cyprus E-mail:

2

Abstract: In this study, novel pipelined architectures, optimised in terms of throughput and throughput/area factors, for the SHA-512 cryptographic hash function, are proposed. To achieve this, algorithmic- and circuit-level optimisation techniques such as loop unrolling, re-timing, temporal pre-computation, resource re-ordering and pipeline are applied. All the techniques, except pipeline are applied in the function’s transformation round. The pipeline was applied through the development of all the alternative pipelined architectures and implementation in several Xilinx FPGA families and they are evaluated in terms of frequency, area, throughput and throughput/area factors. Compared to the initial un-optimised implementation of SHA-512 function, the introduced ﬁve-stage pipelined architecture improves the both the throughput and throughput/area factors by 123 and 61.5%, respectively. Furthermore, the proposed ﬁve-stage pipelined architecture outperforms the existing ones both in throughput (3.4× up to 16.9×) and throughput/area (19.5% up to 6.9×) factors.

1

Introduction

Nowadays, since security services have become an inseparable feature of almost all e-transactions, high-throughput designs of security schemes are needed. A crucial module of these schemes is authentication, which is performed using a cryptographic hash function. Hash functions are widely used as sole cryptographic modules or incorporated in hash-based authentication mechanisms like the Hashed Message Authentication Code [1]. Additionally, applications that employ hash functions include the Internet Security Protocol [2] that is a mandatory feature of the Internet Protocol version 6 (IPv6), the Public Key Infrastructure [3], Secure Electronic Transactions [4] and communication protocols (e.g. SSL [5]). Also, hash functions are included in digital signature algorithms, which are used in many applications (e.g. electronic mail, funds transfers and data interchange). In previous years, the most-widely used hash function was the SHA-1 [6]; however, security problems have been discovered [7]. Although these problems are considered as non-crucial, the SHA-1 function is being replaced by the newest SHA-2 hash family, which include the SHA-224, SHA-256, SHA-348 and SHA-512 functions. Moreover, a new SHA-3 hash algorithm has been recently announced (October 2012) by the U.S. National Institute of Standards and Technology (NIST) [8]. However, as it is known, the transition to a new standard does not happen immediately. Hence, as also reported by NIST experts, the SHA-2 family is expected to continue being used in near- and medium-future applications [9, 10]. In fact, many administrators have not make the jump from SHA-1 to 70

& The Institution of Engineering and Technology 2014

SHA-2 yet [9, 10]. Also, as the SHA-512 function uses 64-bit words in its operation, it is the strongest among the functions of the SHA-2 family in terms of collision and pre-image resistance [11] and for this reason it is expected to be used widely. To meet the real-time constraints of modern applications, hash functions are mainly implemented in hardware. Thus, many works dealing with the development of hardware architectures for the SHA-512 have been proposed [12–26]. Among them, only two works propose ASIC implementations [25, 26], whereas the remaining ones deal with FPGA implementations [12–24]. The majority of these implementations aim at improving the throughput and the throughput/area factors applying several optimisation techniques, such as loop unrolling, pipelining and re-timing. In this paper, novel pipelined architectures for SHA-512 hash function are proposed, which are optimised in terms of throughput and throughput/area factors. To achieve this, a set of optimisation techniques is applied systematically, which include algorithmic-level techniques, (loop unrolling, temporal pre-computation, re-timing), as well as circuit-level techniques, such as resource re-arrangement and usage of special circuit modules (e.g. Carry-Save Adders). Moreover, in order to achieve the best values of throughput/area, the number of the applied pipeline stages is thoroughly studied through the developing and evaluating all the efﬁcient pipelined architectures. For this reason, the architectures were implemented in many Xilinx FPGA technologies and experimental results in terms of frequency, area and throughput were gathered. Based on this study, it is derived that the ﬁve-stage pipeline architecture is the best in terms of throughput/area. Finally, compared with existing IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

www.ietdl.org Table 1 SHA-512 characteristics Input message block (k bits) 1024

Word length (w bits)

Hash value (n bits)

Iterations (tmax)

64

512

80

FPGA implementations of the SHA-512 hash function, the proposed ﬁve-stage pipelined architecture achieves signiﬁcant improvements in terms of throughput (3.4× up to 16.9×) and throughput/area (19.5% up to 6.9×) factors. The rest of the paper is organised as follows. Section 2 describes the SHA-512 function, whereas in Section 3, the proposed architectures are presented in details along with the applied optimisation procedure and the pipeline exploration. In Section 4, the experimental results and the comparisons with existing FPGA implementations are presented, whereas conclusions are provided in Section 5.

2

Hash functions are iterative algorithms that perform a number of iterations called ‘transformation rounds’ or ‘operations’, which include identical or slightly varying arithmetic and logical computations. A hash function, H(M), operates on an arbitrary-length message, M, and returns a ﬁxed-length output, h, which is called ‘hash value’ or ‘message digest’ of M. The aim of H is to provide a ‘signature’ of M that is unique. Given M it is easy to compute h if H(M) is known. However, given h, it is hard to compute M such that H(M) = h, even when H(M) is known. The SHA-512 hash function is one of the four functions (SHA-224, SHA-256, SHA-384 and SHA-512) that are included in SHA-2 family. In fact, the SHA-224 and SHA-384 functions are the same with the SHA-256 and SHA-512 ones, respectively, differing only in their truncated output (224 and 384 bits, respectively). Table 1 presents the main characteristics of SHA-512. These include the number of the iterations of the algorithm (transformation rounds), and the length of: (a) the input message block, (b) the word on which the processing is performed and (c) the hash value. In SHA-512 function, a number of non-linear functions (NLFs) are applied on the w-bit words that are represented as x, y, and z (1)–(6) and the result is also a w-bit word Ch(x, y, z) = xy ⊕ xz

(1)

Maj(x, y, z) = xy ⊕ xz ⊕ yz

(2)

(x) =ROTR28 (x) ⊕ ROTR34 (x) ⊕ ROTR39 (x)

(3)

(x) = ROTR14 (x) ⊕ ROTR18 (x) ⊕ ROTR41 (x)

(4)

0 512 1

(5)

19 61 6 s512 1 (x) = ROTR (x) ⊕ ROTR (x) ⊕ SHR (x)

(6)

3 are used in each Eighty 64-bit constants K03 , K13 , …, K79 transformation round of SHA-512 function. Concerning the initial values, SHA-512 use eight 64-bit ones, H1(0) , H2(0) , …, H7(0) . The above constants and initial values are provided by the standard [6].

Mt(i) 0 ≤ t ≤ 15 s1 (Wt−2)⊕ s0 (Wt−15)⊕Wt−7 ⊕Wt−16 16 ≤ t ≤ tmaxj −1 (7)

Step 2: Initialisation of the working variables The SHA-512 algorithm uses eight variables a, b, c, d, e, f, g and h, which are initialised as follows (0) (0) (0) (a, b, ..., h) = H0 , H1 , ..., H7 . Step 3: Transformation round The transformation round is iterated 80 times and the computations of each iteration are shown in Fig. 1. Step 4: Computation of the ith intermediate hash value H (i) H (i) = a + H0(i−1) b + H1(i−1) · · ·h + H7(i−1)

(8)

After repeating these steps N times (i.e. after processing M (N) message block) the computed H (N) is the message digest h of message M.

3 Optimisation procedure and proposed architectures In this section, the optimisation procedure, which was followed to derive the proposed architectures, is presented in details. Since the critical path (darker blocks in Fig. 1) lies in the transformation round [12–26], the optimisation mainly focuses on this module. Then, the message scheduling operation is modiﬁed appropriately to correctly support the optimised transformation round. 3.1

1 8 7 s512 0 (x) = ROTR (x) ⊕ ROTR (x) ⊕ SHR (x)

IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

Step 1: Message schedule preparation Wt =

SHA-512 hash function

512

Initially, the input message, M, is padded and parsed. The padding is a procedure where extra bits are added to M so that its size in bits to be a multiple of 1024 [6]. Since padding is a simple procedure, it is usually implemented in software without affecting the security level of the implementation. During parsing, the padded massage in separated in N 1024-bit blocks denoted as M 1, M 2,…, MN. Since the 1024-bit block can be expressed as sixteen 64-bit words, the ﬁrst 64-bit of the message block i are denoted as M0(i) , (i) the next 64 bits denoted as M1(i) , and so on up to M15 . The computation stage includes the ‘message schedule’, the initialisation of the working variables, the ‘transformation round’ and the ‘computation of the message digest’ steps, which are applied as follows. For i = 1 to N do

Transformation round’s optimisation

3.1.1 Loop unrolling: The ﬁrst applied technique is the loop unrolling. Speciﬁcally, the transformation round is unfolded and a number of replicas are placed consequently producing a ‘mega-round’. This allows detecting independent computations that, even though they are performed in different iterations, they can be computed in parallel improving the computation time and throughput; however, it results in signiﬁcant area increase. 71

& The Institution of Engineering and Technology 2014

www.ietdl.org

Fig. 1 Computations of SHA-512 transformation tound

Applying loop unrolling in the design of Fig. 1, the best throughput/area value is achieved when the unrolling factor equals to 2. Thus, two consecutive rounds are combined together forming the mega-round (Fig. 2), which realises one ‘mega-operation’ per iteration, where the values (at+1– ht+1) are computed based on the (at−1–ht−1) values. The critical path is now longer (six additions and a Maj function are needed to compute the at value) than that of Fig. 1 (four additions); however, the iterations are reduced from 80 to 40. It must be pointed out that assuming ripple carry implementations, the delay of n cascaded adders equals to (n–1)tADD_1 + tADD_64, where tADD_1 and tADD_64 are the delays of the 1-bit and 64-bit adder, respectively. Taking also into account that in Fig. 1 the third and fourth additions are performed in parallel, the critical path is 3tADD_1 + tADD_64. Another thing that has to be pointed out is that the delay of a 2 to1 multiplexer (needed for the feed-back because of algorithm’s iterations) is included in the critical path, but for clarity reasons is omitted by the analysis of the following techniques. 3.1.2 Retiming and data pre-fetching: Studying the mega-round of Fig. 2, it is derived that the output values ct+1, dt+1, gt+1, and ht+1 equal to the input values at−1, bt−1, et−1, and ft−1, respectively. This property allows pre-computing some intermediate values, which will be used in the next mega-operation, during the execution of the current mega-operation. This can be achieved by placing the registers to a proper positions (re-timing) to store these intermediate values (tmp1, tmp2,..., tmp5 in Fig. 3). The resulted mega-round (Fig. 3) is divided into two stages, which are: (a) the pre-computation stage, which is 72

& The Institution of Engineering and Technology 2014

responsible for the pre-computation of the values which are needed in the next mega-operation, and (b) the post-computation stage, which is responsible for the ﬁnal computations of each mega-operation. The critical path (darker blocks in Fig. 3) includes four additions and two NLFs (almost equal to 5tADD_1 + tADD_64) and is slightly shorter than the one of Fig. 2, which includes six additions and one NLF (almost equal to 6tADD_1 + tADD_64). As shown in Section 2, the NLFs perform simple logical operations and their delay is small; it is almost equal to the delay of one-bit adder. In Fig. 2, the external inputs of the mega-round are the constant values (Kt−1, Kt) and the values that are produced by the message scheduling (Wt−1, Wt). These inputs are fed in two adders and the produced results are used in the forthcoming operations. For these inputs, the data pre-fetching technique is applied. Particularly, instead of calculating the additions in the mega-round, they are calculated outside one clock cycle before and feed the mega-round with the computed results. The same approach can be also followed for the second ‘Ch’ function of Fig. 2 (circle 1 in Fig. 2) which is transferred from the post-computation to the pre-computation stage of Fig. 3 (circle 4). Thus, the produced mega-round is presented in Fig. 3. It must be noticed that the data pre-fetching technique does not improve the critical path of the mega-round module. However, it reduces its area and enables the application of the temporal pre-computation technique. 3.1.3 Temporal pre-computation: As mentioned in Section 3.1.2, some outputs (variables) in the mega-round are produced directly from the inputs. Also, among them, IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

www.ietdl.org

Fig. 2 Mega-roundround resulted by unrolling-by-2

there are variables that are computed and remain intact for a number of iterations. This means that their values are known several iterations (i.e. clock cycles) before their consumption, allowing their pre-computation several clock cycles before. This property can be exploited to further optimise the mega-round module. To clarify the application of the temporal pre-computation technique, the following notations are used. Let Zt be the conjunction of the 8, (at–ht), primary outputs (variables) at the tth mega-operation. Then, at the t + 1th mega-operation, the value Zt+1 is computed using as inputs the Zt−1, Wt, Wt+1 values and the constant values Kt and Kt+1. Thus, in the post-computation stage of Fig. 3, the current value of the variable tmp2 equals to the value ft+1 at the next mega-operation. Also, the value ht+3 equals to the value ft+1. Hence, the value ht+3 is the same as the value of variable tmp2 two mega-operations before. The same also holds for the values et−1 and dt+3. Thus, the following equations hold tmp2 = ft+1 = ht+3 IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

(9)

et+1 = gt+3

(10)

tmp1 + tmp3 = bt+1 = dt+3

(11)

Based on the above, instead of performing the addition [(Wt−1 + Kt−1) + ht−1] (circle 1 of Fig. 3b), the addition [[(Wt+3 + Kt+3) + tmp2] takes place two mega-operations (i.e. 4 clock cycles) before. The corresponding adder is shown inside the circle 3 of Fig. 4a (adder 3.1). The result of this addition is temporarily stored in the register (variable) A 2 at the next mega-operation. Then, in the post-computation stage of the next mega-operation, the value of variable A 2 remains unchanged, while it is renamed to A. Finally, in the pre-computation stage of the second following mega-operation (two clock cycles after the pre-computation of the aforementioned sum) it is consumed with no extra delay (adder in circle 2 of Fig. 4a). The above procedure is also applied for the additions [(Wt−1 + Kt−1) + ht−1 + dt−1] (circle 2 of Fig. 3) and [(Wt + Kt) + gt−1] (circle 3 of Fig. 3). The produced results are temporarily stored in registers (variables) G 2 and S 2, respectively. 73

& The Institution of Engineering and Technology 2014

www.ietdl.org

Fig. 3 Resulted mega-round after re-timing and data pre-fetching

The produced mega-round is shown in Fig. 4a. Owing to the above modiﬁcations, the adders of circles 1, 2 and 3 of Fig. 3 are replaced by the adders 3.1, 3.2 and 3.3, respectively, of circle 3 in Fig. 4a; thus, the area is reduced by one adder. Although, the critical path does not change, these modiﬁcations allow the application of the circuit-level optimisations, which follow. 3.1.4 Resources rearrangement and circuit-level optimisations: In the ﬁnal step, two techniques are applied. First, a rearrangement of the architecture’s components takes place. Speciﬁcally, applying resources rearrangement in the mega-round of Fig. 4a, a new mega-round module is produced (Fig. 4b). In particular, the four addition and the Σ1 blocks were moved from the post-computation stage (circles 4 and 5 in Fig. 4a) to the pre-computation stage (circles 1 and 2 in Fig. 4b). It can be easily veriﬁed that this transformation does not change the functionality of the mega-round. Also, the delay of the new module remains the same (four adders and two non-linear functions – darker blocks of Fig. 4b). However, in the new mega-round (Fig. 4b) speciﬁc circuit-level optimisations (data compression) can be applied. The last optimisation technique is a circuit-level one and it corresponds to the data-compression. Since the critical path includes multi-operand additions, data-compression is applied by using carry-save adders (CSAs). Speciﬁcally, in cases where more than two values are added, CSAs are used improving in that way the critical path’s delay [27–29]. 74

& The Institution of Engineering and Technology 2014

Applying the above technique, the ﬁnal mega-round module (Fig. 5) includes six CSAs. The CSA1 replaces the adders of circles 2 and 4 in Fig. 4b, whereas CSA2 and CSA3 replace the three addition blocks of circle 1 in Fig. 5. Similarly, CSA5 and CSA4 replace the addition circuitry of circle 3 in Fig. 4b. Finally, the CSA6 is placed in the post-computation stage of Fig. 5 and it is responsible to perform the addition of circle 5 of Fig. 4b. The ﬁnal critical path consists of two CSA blocks and two non-linear functions (darker blocks of Fig. 5). 3.2

Message scheduling and initialisation units

As described in Section 2, the message scheduling consists of two non-linear functions (σ0 and σ1), rotations, and simple logical gates (XORs). Also, the algorithm imposes the production of a new Wt value per clock cycle. However, because of the applied loop unrolling, the optimised mega-round requires two Wt values per clock cycle, namely the Wt+4 and Wt+3 (Fig. 5). Thus, a proper Message Scheduling Unit must be developed to support the optimised mega-round. The Message Scheduling Unit, which is depicted in Fig. 6a, consists of one 16 × 64-bits shift-register and the Wnext Logic block to perform the computations. Initially, a parallel load of the parsed 1024(16 × 64)-bit input block into the shift register is performed. Then, in every clock cycle, two Wt values are produced by the Wnext ‘Logic’ block and stored serially into the shift register. At the same IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

www.ietdl.org

Fig. 4 Resulted mega-round after a Temporal pre-computation b After applying resource rearrangement

IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

75

& The Institution of Engineering and Technology 2014

www.ietdl.org

Fig. 5 Final optimised mega-round of SHA-512, after data-compression

time, the two Wt values are fed in the mega-round from the serial output of the shift register. In order not to lose the clock cycle of the parallel load of the input block, the ﬁrst two Wt values of the input block, which are produced by the parsing procedure, are fed directly to the mega-round bypassing the shift register. This is achieved through a 4 to 2 multiplexer (circle 1, Fig. 6a). Speciﬁcally, the control signal Load/Shift of the multiplexer is set to the low logic value to bypass the shift register, whereas for the rest clock cycles it is set to the high logic value to transmit the outputs of the shift register. In addition, as shown in Fig. 5, because of the combination of the loop unrolling and temporal pre-computation, the ﬁrst four W values of the input message block (W0, W1, W2 and W3) are used before the mega-round starts its operation. Thus, their corresponding computations along with some additional ones have to be performed before the mega-round unit starts its operation. The results of these computations correspond to the initial values of signals G, A, S, G 2, A 2 and S 2. For this reason, an additional module (‘initialisation unit’) that performs these computations is included in the general pipelined architecture (Fig. 6b). Its computations are described by the following equations

76

G = ht−1 + Kt + Wt + dt−1

(12)

A = ht−1 + Kt + Wt

(13)

S = Kt−1 + Wt−1 + gt−1

(14)

G2 = bt−1 + ft−1 + Kt+2 + Wt+2

(15)

& The Institution of Engineering and Technology 2014

A2 = ft−1 + Kt+2 + Wt+2

(16)

S 2 = Kt+1 + Wt+1 + et−1

(17)

Apart from feeding the mega-round with the initial values of the above signals, it also provides the initial values that are 0 0 given by the standard H1 − H7 . The above initialisation procedure takes place while the system is still receiving the message block and ends in less than one clock cycle. Thus, it does not introduce any delay in the mega-round’s operation. 3.3

Pipeline study and developed architectures

At this point, an optimised mega-round unit and the required Message Schedule Unit have been developed. The next step is to determine the best number of the pipeline stage in terms of throughput/area. To do this, we developed all the efﬁcient alternative pipeline architectures. As it is clear, the number of applied pipeline stages depends on the number of iterations of the algorithm. If the number of iterations is divisible without remainder by the number of pipeline stages, then all the pipeline stages are fully exploited without occurring pipeline stalls. Hence, only these pipelined architectures must be studied because in all other versions, there will be in certain time instances idle pipeline stages, leading to severe performance degradation. As it has been mentioned, the SHA-512 algorithm requires 80 iterations of the transformation round to compute the hash value. However, the optimised mega-round is unrolled by 2, hence the number of iterations has been reduced to 40. IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

www.ietdl.org

Fig. 6 Overall Architecture a Message scheduling unit for optimised mega round b Initialisation unit c General pipelined architectures for optimised SHA-512 mega-round d Pipeline registers inside the mega-rounds because of re-timing

IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

77

& The Institution of Engineering and Technology 2014

www.ietdl.org Thus, eight versions with 1, 2, 4, 5, 8, 10, 20 and 40 pipeline stages were studied. Fig. 6c shows the general pipelined architecture of SHA-512 including the optimised mega-round. It consists of n ‘slices’ each one including a ‘mega-round unit’ i (i = 1, 2, .., n), which corresponds to the optimised mega-round (Fig. 5), a W unit (Fig. 6a) for producing the Wt values, a constant memory (registers), Ki, to store the constant values, and the initialisation unit, INIT UNIT, (Fig. 6b). Pipeline registers exist inside of each mega-round unit, placed in the proper position as described in the re-timing subsection above (see Fig. 6d – they are omitted in Fig. 6c for clarity reasons). When the number of pipeline stages is smaller than the number of algorithm’s iterations, each stage executes more than one iterations. Thus, multiplexers are used in front of each stage to feed back the output of the current stage or to receive the output of the previous one. Also, eight 64-bit adders are used to add the result of the nth pipeline stage with the initial values as implied by the standard. The control logic includes a set of counters each of which is used for addressing the corresponding constant memory, controlling the multiplexer in front of the next-stage mega-round unit, and activating the counter of the next stage. Depending on the pipeline version and the implemented hash function, a counter in pipeline stage i counts up to the value required for each mega-round unit to complete its computations. When the computations of stage i have been executed, the tcround_i and tcccount_i signals are generated to trigger the next pipeline stage and the counter is deactivated. Analysing the architecture of Fig. 6c, the critical path consists of two CSAs, two non-linear functions and a multiplexer (in front of each mega-round).

4

Experimental results and comparisons

The above pipelined architectures were captured in VHDL, synthesised and implemented in several Xilinx FPGAs. Speciﬁcally, old (mainly for comparison reasons), which include the Virtex (xcv1000-6FG680), Virtex-E (xcv3200e-8FG1156), Virtex-II (xc2v6000-6FF1517), Virtex-IIPRO (xc2vp70) and modern (Virtex-6 (xc6vlx365t-FF1759) and Virtex-7 (xc7v855t-3FFG1157)), FPGA families were selected. The Xilinx ISE Design Suite (version 13.1) was used for mapping the architectures to the above FPGAs, whereas, the correct functionality of the implementations was veriﬁed through post-place and route (Post-P&R) simulation via the Mentor-Graphics ModelSim

simulator. Apart from the ofﬁcial known-answer tests, a large set of test vectors was also used for this purpose. Thereafter, downloading to FPGA development boards and additional functional and timing veriﬁcation were performed. The studied design metrics are: frequency (MHz), area (slices) and throughput (Mbps or Gbps). Similarly to previous studies dealing with hardware implementations of hash functions, throughput is calculated by the following equation Throughput =

(#bits) × f c

(18)

where f and c correspond to the frequency and the consumed clock cycles, respectively, while #bits denotes the data bits that are processed in each cycle. In our case #bit = 1024 and c = 40/n, where n is the number of pipeline stages. 4.1

Evaluation of the optimisation procedure

Initially, the evaluation of the applied optimisation procedure takes place. For that reason, after the application of an optimisation technique, the design and implementation of the corresponding non-pipelined architecture took place. All these developed architectures that correspond to the described optimisation steps are compared to the initial/ un-optimised one. In Table 2, the implementation results and comparisons between the un-optimised design (complete hash core using the round of Fig. 1) and the (partially) optimised designs (complete hash core using the rounds of Figs. 2, 3, 4a, b and 5) are presented, along with the % improvements/ overheads of the ﬁnal optimised architecture compared to the basic (un-optimised) one. As it can be observed, the unrolling technique offers the most signiﬁcant beneﬁt regarding throughput and throughput/area. However, the application of the other ﬁve techniques cannot be considered as non-beneﬁcial. Speciﬁcally, by applying the loop unrolling, even though the frequency is decreased by almost 15% (on average), the resulted throughput and throughput/area were increased by 71.5 and 30.6%, respectively. From this point, moving further by applying the remaining ﬁve techniques leads to signiﬁcantly better results regarding throughput and throughput/area (29.7 and 23%, respectively). Furthermore, as it is shown, the optimisation procedure improves the frequency, throughput and throughput/area factors by 12, 123 and 61%, respectively. Even though the

Table 2 Evaluation of the optimisation procedure FPGA Virtex 6

Virtex 7

78

Architecture

Frequency, MHz

Area, slices

Throughput, Mbps

Throughput/area, Mbps/slice

initial/un-optimised (Fig. 1) unrolling (Fig. 2) re-timing and data pre-fetching (Fig. 3) temporal pre-computation (Fig. 4a) resource re-arrangement (Fig. 4b) CSAs – final optimised design (Fig. 5) % (final against initial) un-optimised (Fig. 1) unrolling (Fig. 2) re-timing and data pre-fetching (Fig. 3) temporal pre-computation (Fig. 4a) resource re-arrangement (Fig. 4b) CSAs – final optimised design (Fig. 5) % (final against initial)

160.2 ↓ 137.3 ↑ 151.2 ↑ 159.8 ↑ 162.1 177.9 +11.05% 177.3 ↓ 152.2 ↑ 167.6 ↑ 177.5 ↑ 180.7 198.4 +11.9%

712 ↑ 934 ↑ 943 ↑ 999 ↓ 991 986 +38.5% 740 ↑ 971 ↑ 983 ↑ 1039 ↓ 1030 1021 +38.1%

2,050.6 ↑ 3514.9 ↑ 3870.7 ↑ 4090.9 ↑ 4149.8 4,554.2 +122.1% 2,269.4 ↑ 3896.3 ↑ 4290.6 ↑ 4544 ↑ 4625.9 5,079.1 +123.8%

2.88 ↑ 3.76 ↑ 4.10 ↓ 4.09 ↑ 4.19 4.62 +60.5% 3.07 ↑ 4.01 ↑ 4.36 ▪ 4.37 ↑ 4.49 4.97 +62.1%

& The Institution of Engineering and Technology 2014

IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

www.ietdl.org the number of pipeline stages increases. Concerning the occupied area, there is also a linear relation with the pipeline stages although it is not strictly mathematical. This is explained taking into account the architecture of the FPGA devices. Speciﬁcally, each Xilinx FPGA slice contains LUTs, multiplexers and ﬂip-ﬂops. Thus, when more pipeline stages are used, the unused resources of the already employed slices are also used to implement the extra logic resulting in a non-strict linear increase. To make a fairer comparison, the throughput/area values of the studied pipelined versions are presented in Fig. 7. Compared to the non-pipelined design, the throughput/area is improved when more pipeline stages are used. However, compared to the ﬁve-stage architecture, the throughput/area ratio is decreased when eight or ten pipeline stages are used. This happens, because of the frequency reduction for the designs with more than ﬁve stages. Also, as in the case of frequency, the fully pipelined (40 stages) design achieves the highest throughput/area value. This happens because: (a) there is a non-linear increase of area, as discussed above, and (b) there are not multiplexers in front of the mega-rounds. Studding the plot lines of Figs. 7a and b, it is derived that for all FPGA families, the ﬁve-staged pipelined design is the best in terms of throughput/area value and it was chosen for the comparisons with existing designs. There is only one exception, namely the fully-pipelined architectures that achieve the highest throughput/area values. However, the area of the fully-pipelined architectures is prohibitive, as it cannot even ﬁt in ﬁve out of 8 FPGA families, while in those that ﬁts, it consumes a signiﬁcant portion of the total area (e.g. 29 013 of 56 880 slices (51%), in Virtex-6).

improvements in frequency are not that high, the improvements in throughput and throughput/area (which are the main targets) are signiﬁcant. 4.2 Pipeline investigation towards high throughput/area The experimental results of the architectures, which are studied, are shown in Table 3, where the darker cells correspond to the architectures that did not ﬁt in the FPGA device. It must be mentioned that values are obtained after downloading the designs to the development boards. Also, the optimisation effort (opt_level) constraint of the ISE synthesis tools was set to normal and the optimisation goal (opt_mode) was set to speed. Experiments were also performed with optimisation goal set to area, however, minor improvements on the area and frequency were achieved. In overall, the results for throughput/area factor were always better when the speed was used as the optimisation goal, whereas the trend of the throughput/area factor remained unchanged. As mentioned in Section 3, the critical path lies inside the mega-round unit and it would be constant regardless the number of pipeline stages. This is valid because the mega-round units are identical and the whole architecture is modular (Fig. 6b). However, small frequency variations are observed because of the different routing delays. Particularly, as the pipeline stages increase, the size of the design increases resulting in more routing overhead and consequently in a slight frequency decrease. An interesting fact is that the fully pipelined design (40 stages) achieves the best frequency among all. This happens because the multiplexer in front of each round unit is removed improving the critical path. On the other hand, the throughput increases almost linearly with the number of pipeline stages. This happens because the dominant factor in the calculation of the throughput is the number of clock cycles (18), which decreases linearly as

4.3

Comparisons with existing architectures

Many works dealing with optimising the SHA-512 in FPGAs have been presented in the past applying several optimisation techniques including pipeline. In Table 4, the implementation results and comparisons between the best one among the

Table 3 SHA-512 pipelined architectures V: Virtex, V-E: Virtex-E, V-II: Virtex-II, V-IIP: Virtex-IIP Pipeline stages

1 2 4 5 8 10 20 40

Frequency, MHz

Area (slices)

Throughput, Gbps

V

V-E

V-II

V-IIP

V

V-E

V-II

V-IIP

V

V-E

V-II

V-IIP

56.6 54.8 54.8 54.6 54.2

65.2 63.4 63.4 63.4 62.6 62.5

73.2 71.3 71.3 71.3 70.8 69.8 69.1

93.5 91.2 91.2 91.2 90.9 90.1 88.7

2122 3374 6056 7012 11 295

2141 3242 6156 7193 11 729 14 245

2169 3264 6107 7151 11 669 13 997 27 843

2174 3291 6123 7219 11 694 14 348 27 999

1.45 2.81 5.61 6.99 11.1

1.67 3.25 6.5 8.12 12.8 16

1.87 3.65 7.3 9.13 14.5 17.9 35.4

2.39 4.67 9.34 11.7 18.6 23.1 45.4

V-6: Virtex-6, V-7: Virtex-7 Pipeline stages

1 2 4 5 8 10 20 40

Frequency, MHz

Area (slices)

Throughput, Gbps

V-6

V-7

V-6

V-7

V-6

V-7

177.9 164.7 165.3 165.3 165 164.2 162.1 179.8

198.4 188.5 189.7 189.7 189.3 188.2 186.4 202.2

986 1664 3219 3887 6362 7928 15 689 29 013

1021 1729 3244 3966 6439 8051 15 994 28 845

4.54 8.43 16.9 21.2 33.8 42 83 184

5.08 9.65 19.4 24.3 38.7 48.1 95.4 207

IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

79

& The Institution of Engineering and Technology 2014

www.ietdl.org

Fig. 7 Throughput/area evaluation for SHA-512 pipelined architectures a Older FPGAs b Modern FPGAs, and c % Improvements over the 1-stage pipeline for modern FPGAs

proposed architectures (ﬁve-stage pipelined) and the previously-published architectures are presented. As it is shown, the proposed architecture outperforms all the existing ones in terms of throughput. Speciﬁcally, the improvements are from 3.4× (Zeghid et al. [14] – Virtex-II) up to 16.9× (McLoone and McCanny [17] – Virtex-E), while this does not always happen regarding frequency. Table 4 Implementation results and comparisons FPGA family

Reference

Frequency, MHz

Area (slices)

Throughput, Mbps

Virtex

[12] [13] [15] [18] [19] [22] [23] proposed [15] [16] [17] [20] proposed [12] [13] [14] [24] proposed [12] [13] proposed

70 70 67 53 N/A 75 69 54.6 72 60.5 38 38 63.4 121 121 81 65.9 71.3 141 141 91.2

1680 1680 3521 2385 N/A 2237 2545 7012 3517 2582 2914 2914 7151 1666 1666 1938 4107 7151 1667 1667 7219

889 889 929 1292 676 467 442 6989 1034 1550 479 479 9126 1534 1534 2074 1466 9126 1780 1780 11 674

Virtex-E

Virtex-II

Virtex-II PRO

80

& The Institution of Engineering and Technology 2014

However, it must be stressed that the frequency values of the proposed architecture are collected after downloading the design in the FPGA boards, in contrast to the values of the competitive designs that are mainly based on synthesis results. In addition, the proposed architecture consumes more area than the existing ones mainly because of the application of the loop unrolling and pipeline. Also, comparisons in terms of throughput/area values are provided in Fig. 8. The throughput/area is the fairer comparison factor, due to the fact that the existing architectures employ different optimisation techniques, different unrolling factors, as well as different number of pipeline stages. As it is shown, the proposed architecture achieves the highest value of throughput/area among all. Speciﬁcally, the improvements range from 19.5% (Zeghid et al. [14] – Virtex-II) up to 6.9 × (McLoone and McCanny [17] – Virtex-E). As presented, the proposed architecture outperforms all the existing ones in terms of throughput and throughput/area values. This is accomplished because of efﬁcient application of algorithmic- and circuit-level optimisation techniques as well as the special effort that was paid for efﬁcient FPGA implementation. Speciﬁcally, ﬁrstly the loop unrolling technique is applied. This choice offers both immediate decrease of the required clock cycles for a full hash process and more degrees of freedom to optimise the transformation round. Then, all the existing optimisation techniques for cryptographic hash functions (regarding the core of the hash process, i.e. the transformation round) are applied in an effective way, leading to a shorter critical path. within addition to the above, during the FPGA IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

www.ietdl.org

Fig. 8 Throughput/area comparisons with existing FPGA implementations a Xilinx Virtex b Xilinx Virtex-E c Xilinx Virtex-II and Xilinx Virtex-IIPRO

implementation, special effort was paid towards: (a) full exploitation of the internal logic of the FPGA’s slices (carry computation units, XOR gates, look-up-tables etc.), (b) careful placement (manually in several cases) for better area and delay results and (c) modular approach during optimisation to overcome routing delay issue of the FPGA, that is, a number of modules of the proposed architectures were developed as one unit and optimised separately by the synthesis tool, leading to reduced routing overhead.

5

Conclusions

In this paper, novel architectures, optimised in terms of throughput and throughput/area factors, for the SHA-512 cryptographic hash function, were proposed. Several (algorithmic and circuit-level) optimisation techniques were exploited for deriving optimised data-path in terms of the above factors. In addition, the pipelining optimisation technique was fully investigated towards the best possible throughput/area value by developing all the possible pipelined designs. Compared to the existing architectures implemented in FPGA technology, the introduced ﬁve-stage pipeline architecture outperforms signiﬁcantly both in terms of throughput and throughput/area.

6

References

1 NIST-FIPS 198: ‘The keyed-hash message authentication code (HMAC)’, 2006 2 NIST-SP800-77: ‘Guide to IPSec VPN’s’, 2005 3 NIST- SP 800-32: ‘Introduction to public key technology and the federal PKI infrastructure’, 2001 4 Loeb, L.: ‘Secure electronic transactions: introduction and technical reference’ (Artech House Publications, 1998) 5 Thomas, S.: ‘SSL & TLS essentials: securing the web’ (John Wiley and sons Publications, 2000) 6 NIST-FIPS 180-3: ‘Secure hash standard (SHS)’, 2008 7 Wang, X., Yin, Y.L., Yu, H.: ‘Finding collisions in the full SHA1’. Proc. Int. Conf. Crypto, Berlin/Heidelberg, 2005 (LNCS 3621), pp. 17–36 8 http://www.csrc.nist.gov/groups/ST/hash/sha-3/winner_sha-3.html, accessed January 2013 IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

9 Preneel, B.: ‘Cryptographic hash functions and the SHA-3 competition’, talk in Asiacrypt 2010, available at https://www.cosic.esat.kuleuven.be/ publications/talk-198.pdf, accessed January 2013 10 Ermert, M.: ‘Doubts over necessity of SHA-3 cryptography standard’, available at http://www.h-online.com/security/news/item/Doubts-overnecessity-of-SHA-3-cryptography-standard-1498071.html, accessed January 2013 11 NIST-SP800-107: ‘Recommendation for applications using approved hash algorithms’, 2011 12 Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: ‘Cost-efﬁcient SHA hardware accelerators’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2008, 16, (8), pp. 999–1008 13 Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: ‘Improving SHA-2 hardware implementations’. Proc. Cryptographic Hardware and Embedded Systems (CHES), 2006, pp. 298–310. 14 Zeghid, M., Bouallegue, B., Baganne, A., Machhout, M., Tourki, R.: ‘A reconﬁgurable implementation of the new secure hash algorithm’. Proc. Second Int. Conf. Availability, Reliability and Security, 2007 (ARES 2007), 10–13 April 2007, pp. 281–285 15 Lien, R., Grembowski, T., Gaj, K.: ‘A 1 Gbit/s partially unrolled architecture of hash functions SHA-1 and SHA-512’, in Okamoto, T. (Ed.): ‘Topics in Cryptology – CT-RSA 2004, (ser. LNCS, 2964) (Springer, 2004), pp. 324–338 16 Aisopos, F., Aisopos, K., Schinianakis, D., Michail, H., Kakarountas, A. P.: ‘A novel high-throughput implementation of a partially unrolled SHA-512’. IEEE Mediterranean Electrotechnical Conf., 2006 (MELECON 2006), 16–19 May 2006, pp. 61–65 17 McLoone, M., McCanny, J.V.: ‘Efﬁcient single-chip implementation of SHA-384 and SHA-512’. Proc. 2002 IEEE Int. Conf. Field-Programmable Technology, 2002 (FPT), 16–18 December 2002, pp. 311–314 18 Zeghid, M., Bouallegue, B., Machhoot, M., Bagagne, A., Tourki, R.: ‘Architectural design features of a programmable hgh throughput reconﬁgurable SHA-256 processor’, J. Inf. Assurance Sec., 2008, pp. 147–158 19 Grembowski, T., Lien, R., Gaj, K., et al.: ‘Comparative analysis of the hardware implementations of Hash functions SHA-1 and SHA-512’. Proc. Fifth Int. Conf., (ISC 2002), Sao Paulo, Brazil, September/ October 2002 (LNCS, 2433), pp. 75–89 20 McLoone, M., McCanny, J.V.: ‘Efﬁcient single-chip implementation of SHA-384 and SHA-512’. Proc. 2002 IEEE Int. Conf. Field-Programmable Technology, 2002 (FPT), 16–18 December 2002, pp. 311–314 21 Ahmad, I., Das, A.S.: ‘Hardware implementation analysis of SHA-256 and SHA-512 algorithms on FPGAs’, Comput. Electr. Eng., 2005, 31, (6), pp. 345–360 22 Sklavos, N., Koufopavlou, O.: ‘Implementation of the SHA-2 hash family standard using FPGAs’, J. Supercomput., 2005, 31, pp. 227–248 81

& The Institution of Engineering and Technology 2014

www.ietdl.org 23 Glabb, R., Imbertb, L., Julliena, G., Tisserandb, A., Charvillon, N.V.: ‘Multi-mode operator for SHA-2 hash functions’, J. Syst. Archit., 2007, 53, (2–3), pp. 127–138 24 McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: ‘Optimisation of the SHA-2 family of hash functions on FPGAs’. IEEE Computer Society Annual Symp. on Emerging VLSI Technologies and Architectures, 2006, 2–3 March 2006, pp. 6 25 Satoh, A., Inoue, T.: ‘ASIC-hardware-focused comparison for Hash functions MD5, RIPEMD-160, and SHS’, VLSI J. Integr., 2007, 40, (1), pp. 3–10 26 Dadda, L., Macchetti, M., Owen, J.: ‘An ASIC design for a high speed implementation of the hash function SHA-256 (384, 512)’. Proc. 14th

82

& The Institution of Engineering and Technology 2014

ACM Great Lakes Symp. VLSI (GLSVLSI ‘04), New York, NY, USA, 2004, pp. 421–425 27 Kim, T., Jao, W., Tjiang, S.: ‘Arithmetic optimization using carry-save-adders’. Proc. 35th Design Automation Conf. (DAC ‘98), New York, NY, USA, 1998, pp. 433–438 28 Ortiz, M., Quiles, F., Hormigo, J., Jaime, F.J., Villalba, J., Zapata, E.: ‘Efﬁcient implementation of carry-save adders in FPGAs’. Proc. 20th IEEE Int. Conf. Application-Speciﬁc Systems, Architectures and Processors (ASAP 2009), 2009, pp. 207–210 29 Hormigo, J., Vilalaba, J., Zapata, E.: ‘Multi-operand redundant adders on FPGAs’, IEEE Trans. Comput., 2012, 99, no. PrePrints (DOI: http://www.doi.ieeecomputersociety.org/10.1109/TC.2012.168)

IET Comput. Digit. Tech., 2014, Vol. 8, Iss. 2, pp. 70–82 doi: 10.1049/iet-cdt.2013.0010

[image: Attacking the Tav-128 Hash function - IIIT-Delhi Institutional Repository]
Attacking the Tav-128 Hash function - IIIT-Delhi Institutional Repository

[image: Presentation - Optimising the guidance on significant benefit ...]
Presentation - Optimising the guidance on significant benefit ...

[image: Attacking the Tav-128 Hash function]
Attacking the Tav-128 Hash function

[image: permutation grouping: intelligent hash function ... - Research at Google]
permutation grouping: intelligent hash function ... - Research at Google

[image: Implementation of Keccak hash function in Tree ...]
Implementation of Keccak hash function in Tree ...

[image: Learning to Hash on Structured Data]
Learning to Hash on Structured Data

[image: Optimal hash functions for approximate closest pairs on ...]
Optimal hash functions for approximate closest pairs on ...

[image: On Hash-Based Work Distribution Methods for Parallel ...]
On Hash-Based Work Distribution Methods for Parallel ...

[image: ZETA FUNCTION REGULARIZED LAPLACIAN ON THE ...]
ZETA FUNCTION REGULARIZED LAPLACIAN ON THE ...

[image: Optimal hash functions for approximate closest pairs on ...]
Optimal hash functions for approximate closest pairs on ...

[image: Optimising Typed Programs]
Optimising Typed Programs

[image: On network form and function]
On network form and function

[image: Sign changes of the Liouville function on some ...]
Sign changes of the Liouville function on some ...

[image: Proceedins of the Symposium on Geometric Function ...]
Proceedins of the Symposium on Geometric Function ...

[image: 1 New Hash Algorithm: jump consistent hash -]
1 New Hash Algorithm: jump consistent hash -

[image: On Default Correlation: A Copula Function Approach]
On Default Correlation: A Copula Function Approach

[image: on the security of goldreich's one-way function]
on the security of goldreich's one-way function

[image: On the Function of Normative Principles - Semantic Scholar]
On the Function of Normative Principles - Semantic Scholar

[image: On the Function of Normative Principles - Semantic Scholar]
On the Function of Normative Principles - Semantic Scholar

Optimising the SHA-512 cryptographic hash function on FPGA.pdf ...

Infrastructure [3], Secure Electronic Transactions [4] and. communication protocols (e.g. SSL [5]). Also, hash. functions are included in digital signature ...

 Download PDF

 1MB Sizes
 6 Downloads
 227 Views

 Report

Recommend Documents

[image: alt]

Attacking the Tav-128 Hash function - IIIT-Delhi Institutional Repository

Based RFID Authentication Protocol for Distributed Database Environment. In. Dieter Hutter and Markus Ullmann, editors, SPC, volume 3450 of Lecture Notes.

[image: alt]

Presentation - Optimising the guidance on significant benefit ...

Apr 25, 2017 - Industry stakeholder platform on research and development support. Presented by Matthias Hofer on 25 ... authorisation application. Page 2. Orphan environment after 16 years of EU orphan legislation. Recent developments ...

[image: alt]

Attacking the Tav-128 Hash function

Date: 28-July-2010. Abstract. Many RFID protocols use cryptographic hash functions for their security. The resource constrained nature of RFID systems forces the use of light weight ... weight primitives for secure protocols in Â§ 5. 2 Notation and .

[image: alt]

permutation grouping: intelligent hash function ... - Research at Google

The combination of MinHash-based signatures and Locality-. Sensitive Hashing ... of hash groups (out of L) matched the probe is the best match. Assuming [4] Cohen, E. et. al (2001) Finding interesting associations without support pruning.

[image: alt]

Implementation of Keccak hash function in Tree ...

opposition to host memory which resides on the host computer. The device global ... ing results of leaves in a serial way on the Host CPU. A leaf interleaving ...

[image: alt]

Learning to Hash on Structured Data

Computer Science Department, Purdue University. West Lafayette, IN 47907, US Wang, Kumar, and Chang 2012): Hamming Ranking and. Hash Lookup.

[image: alt]

Optimal hash functions for approximate closest pairs on ...

Oct 11, 2001 - hash functions for various metrics have been given: projecting an ... Here, on the other hand, we will call a region optimal for p if no region ... D. Gordon and P. Ostapenko are with the IDA Center for Communications Research, ...

[image: alt]

On Hash-Based Work Distribution Methods for Parallel ...

4-3 Load balance (LB) and search overhead (SO) on 100 instances of the 15- node in the domain transition graph above corresponds to a location of with infinite state spaces, Burns et al proposed SafePBNF, a livelock-free version.

[image: alt]

ZETA FUNCTION REGULARIZED LAPLACIAN ON THE ...

We used that Res(Î¶, 1) = limsâ†’1(s âˆ’ 1)Î¶R(s)=1= aâˆ’1 and the Laurent series reads. Î¶R(s) = âˆ‘. âˆž n=âˆ’1 an(s âˆ’ 1)n i.e. Î¶R(1 âˆ’ s) = âˆ’1 s. + Definition 3.1 (Zeta function regularized Laplacian). âˆ†Pâˆž(T1)E(Âµ) := lim aâ†’0. âˆ

[image: alt]

Optimal hash functions for approximate closest pairs on ...

Jan 30, 2009 - Use a different hash function, such as mapping n bits to codewords of an. [n, k] error-correcting code. GMO (IDA/CCR). Optimal hash functions.

[image: alt]

Optimising Typed Programs

Typed intermediate languages of optimising compilers are becoming increasingly recognised, mainly for two reasons. First, several type based optimisations and analyses have been suggested that cannot be done in an untyped setting. Such analyses and o

[image: alt]

On network form and function

network is determined assigning to each site i a drainage direction through ... dedicated to Per Bak, is to unveil some mechanisms on how Nature works [8]. 2.

[image: alt]

Sign changes of the Liouville function on some ...

degree of f(x) is at least 2, this seems an extremely hard conjecture. â€� Cassaigne et ... with a > 0 and ab = c, then Î»(f(n) changes sign infinitely often. Theorem 1.3.

[image: alt]

Proceedins of the Symposium on Geometric Function ...

Proceedins of the Symposium on. Geometric Function Theory. Organisors. A Gangadharan, V Ravichandran. Editors. V Ravichandran, N Marikkannan. Sri Venkateswara College of Engineering. Pennalur, Sriperumbudur 602 105, Tamil Nadu. December 2, 2002 ...

[image: alt]

1 New Hash Algorithm: jump consistent hash -

function mapping tuple to a segment. Its prototype is. Hash(tuple::Datum ... Big Context: To compute the Hash function, they both need a very big context to save.

[image: alt]

On Default Correlation: A Copula Function Approach

of default over the time interval [0,n], plus the probability of survival to the end of nth year and Figure 6: The Value of First-to-Default v. s. Asset Correlation. 0.1.

[image: alt]

on the security of goldreich's one-way function

on the right, and regular right-degree d, randomly choose a graph G. 2. From all predicates mapping {0,1}d to {0,1}, randomly choose a predi- cate P. 3. Based on the chosen graph G and predicate P, let f = fG,P be the function from {0,1}n to {0,1}m d

[image: alt]

On the Function of Normative Principles - Semantic Scholar

concept of normative analysis was undertaken. Keywords: normative analysis, descriptive analysis, prescriptive analysis, rationality. 1Send correspondence to ...

[image: alt]

On the Function of Normative Principles - Semantic Scholar

NORMATIVE ANALYSIS 1. Mandel, D. R. (2000). On the meaning and function of normative analysis: Conceptual blur in the rationality debate? Behavioral and ...

×
Report Optimising the SHA-512 cryptographic hash function on FPGA.pdf ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

