

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Optimization of Pattern Matching Algorithm for Memory Based Architecture Cheng-Hung Lin

Yu-Tang Tai

Shih-Chieh Chang

National Tsing Hua University, Taiwan, R.O.C

National Tsing Hua University, Taiwan, R.O.C

National Tsing Hua University, Taiwan, R.O.C

The primary function of an intrusion detection system is to perform matching of attack string patterns. However, string matching using the software-only approach can no longer meet the high throughput of today’s networking. To speed up string matching, many researchers have proposed hardware improvements which can be classified into two main approaches, the logic [1][2][3][4] and the memory architectures [6][7][8][9] [10].

ABSTRACT Due to the advantages of easy re-configurability and scalability, the memory-based string matching architecture is widely adopted by network intrusion detection systems (NIDS). In order to accommodate the increasing number of attack patterns and meet the throughput requirement of networks, a successful NIDS system must have a memory-efficient pattern-matching algorithm and hardware design. In this paper, we propose a memory-efficient pattern-matching algorithm which can significantly reduce the memory requirement. For total Snort string patterns, the new algorithm achieves 29% of memory reduction compared with the traditional Aho-Corasick algorithm [5]. Moreover, since our approach is orthogonal to other memory reduction approaches, we can obtain substantial gain even after applying the existing state-of-the-art algorithms. For example, after applying the bit-split algorithm [9], we can still gain an additional 22% of memory reduction.

In terms of re-configurability and scalability, the memory architecture has attracted a lot of attention because it allows on-the-fly pattern update on memory without re-synthesis and re-layout. The basic memory architecture works as follows. First, the (attack) string patterns are compiled to a finite state machine (FSM) whose output is asserted when any substring of input strings matches the string patterns. Then, the corresponding state table of the FSM is stored in memory. For instance, Figure 1 shows the state transition graph of the FSM to match two string patterns “bcdf” and “pcdg”, where all transitions to state 0 are omitted. States 4 and 8 are the final states indicating the matching of string patterns “bcdf” and “pcdg”, respectively. Figure 2 presents a simple memory architecture to implement the FSM. In the architecture, the memory address register consists of the current state and input character; the decoder converts the memory address to the corresponding memory location, which stores the next state and the match vector information. If the match vector is “0”, it is not a final state; otherwise, the match vector indicates the matched pattern. For example, suppose the current state is in state 7 and the input character is g. The decoder will point to the memory location which stores the next state 8 and the match vector 2. Here, the match vector 2 indicates the pattern “pcdg” is matched.

Categories and Subject Descriptors C.2.0 [Computer Communication Networks]: General-Security and protection (e.g., firewalls)

General Terms Algorithms, Design, Security

Keywords Pattern matching, intrusion detection, DFA

1. INTRODUCTION The purpose of a network intrusion detection system is to prevent malicious network attacks by identifying known attack patterns. Due to the increasing complexity of network traffic and the growing number of attacks, an intrusion detection system must be efficient, flexible and scalable.

~b || ~p

b b

0

b

1

b

c p p

p

5

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. ANCS’07, December 3–4, 2007, Orlando, Florida, USA. Copyright 2007 ACM 978-1-59593-945-6/07/0012...$5.00.

p

2

6 p

b

3

f p

p b

c

b d

d p

b

4 b

g

8

7 p

Figure 1: DFA for matching “bcdf” and “pcdg”

11

next state 1

memory address

…

input g

4

1

…

…

decoder

current state 7

match vector 0

…

text input

the character causes a valid transition. Consider an example when an AC machine is in state 1 and the input character is p. As shown in Figure 4, the AC state table shows that there is no valid transition from state 1 with the input character p. Therefore, the AC machine takes a failure transition to state 0. Then in the next cycle, the AC machine re-considers the input character p in state 0 and finds a valid transition to state 5.

memory

8

Besides, the double-circled nodes indicate the final states of patterns. In Figure 3, state 4, the final state of the first string pattern “bcdf”, stores the match vector {P2P1} = {01} and state 8, the final state of the second string pattern “pcdg”, stores the match vector of {P2P1} = {10}. Except the final states, the other states store the match vector {P2P1} = {00}.

2 output Latch

Figure 2: Basic memory architecture Due to the increasing number of attacks, the memory required for implementing the corresponding FSM increases tremendously. Because the performance, cost, and power consumption of the memory architecture is directly related to the memory size, reducing the memory size has become imperative.

b

0

We observe that many string patterns are similar because of common sub-strings. However, when string patterns are compiled into an FSM, the similarity does not lead to a small FSM. Consider the same example in Figure 1 where two string patterns have the same sub-string “cd”. Because of the common sub-string, state 2 (state 3) has “similar” state transitions to those of state 6 (state 7). Still, state 2 (state 3) and state 6 (state 7) are not equivalent states and cannot be merged directly. We call a state machine merging those non-equivalent “similar” states, merg_FSM.

1

p

5

c

c

2 6

d

d

3

f

4

g

7

8

Figure 3: State diagram of an Aho-Corasick machine input State 0: State 0: State 1: State 2: State 3: State 5: State 6: State 7:

In this paper, we propose a state-traversal mechanism on a merge_FSM while achieving the same purposes of pattern matching. Since the number of states in merg_FSM can be significantly smaller than the original FSM, it results in a much smaller memory size. We also show that hardware needed to support the state-traversal mechanism is limited. Experimental results show that our algorithm achieves 29% of memory reduction compared with the traditional AC algorithm for total Snort string patterns. In addition, since our approach is orthogonal to other memory reduction approaches, we can obtain substantial gain even after applying the existing state-of-the-art algorithms. For example, after applying the bit-split algorithm [9], we can still gain an additional 22% of memory reduction.

Next state

failure

b 1 0 p 5 0 c 2 0 d 3 0 f 4 0 c 6 0 d 7 0 g 8 0 Figure 4: Aho-Corasick state table

match vector 00 00 00 00 01 00 00 10

3. BASIC IDEA Due to the common sub-strings of string patterns, the compiled AC machine has states with similar state transitions. Despite the similarity, those similar states are not equivalent and cannot be merged directly. In this section, we first show that functional errors can be created if those similar states are merged directly. Then, we propose a mechanism that can rectify those functional errors after merging those similar states.

2. REVIEW OF THE AHO-CORASICK ALGORITHM In this section, we review the Aho-Corasick (AC) algorithm [5]. Among all memory architectures, the AC algorithm has been widely adopted for string matching in [6][7][8][9][10] because the algorithm can effectively reduce the number of state transitions and therefore the memory size. Using the same example as in Figure 1, Figure 3 shows the state transition diagram derived from the AC algorithm where the solid lines represent the valid transitions while the dotted lines represent a new type of state transition called the failure transitions from [5].

Note that two states are equivalent if and only if their next states are equivalent. In Figure 3, state 3 and state 7 are similar but not equivalent states because for the same input f, state 3 takes a transition to state 4 while state 7 takes a failure transition to state 0. Similarly, state 2 and state 6 are not equivalent states because their next states, state 3 and state 7, are not equivalent states. We have the following definitions. Definition: Two states are defined as pseudo-equivalent states if they have identical inputs, failure transitions, and outputs.

The failure transition is explained as follows. Given a current state and an input character, the AC machine checks to see whether the input character causes a valid transition; otherwise, the machine jumps to the next state where the failure transition points. Then, the machine recursively considers the same input character until

In Figure 3, state 2 and state 6 are pseudo-equivalent states because they have identical input c, identical failure transition to state 0 and identical output 00. Also, state 3 and state 7 are

12

pseudo-equivalent states. Note that merging pseudo-equivalent states results in a functional error FSM. For the same example, Figure 5 shows an FSM that merges the pseudo-equivalent states 2 and 6 to become state 26, and merges the pseudo-equivalent states 3 and 7 to become state 37. Again, we refer to the FSM that merges the pseudo-equivalent states as the merg_FSM. Given an input string “pcdf”, the merg_FSM reaches the erroneous state 4 which indicates the pattern “bcdf” is matched while the original AC state machine (in Figure 3) goes back to state 0. This shows the merg_FSM may causes false positive results.

00

b

0

00

c

1

p

00

00 26

00 d

37

f

In a traditional AC state machine, a final state stores the corresponding match vector which is one-hot encoded. For example in Figure 3, state 4, the final state of the first string pattern “bcdf”, stores the match vector {P2P1} = {01} and state 8, the final state of the second string pattern “pcdg”, stores the match vector of {P2P1} = {10}. Except the final states, the other states store {P2P1} = {00}. One-hot encoding for a match vector is necessary because a final state may represent more than one matched string pattern [5]. Therefore, the width of the match vector is equal to the number of string patterns. As shown in Figure 4, the majority of memories in the column “match vector” store the zero vectors {00} simply to express that those states are not final states.

01 4 10 8

g

c

differentiate all merged states. In the following, we discuss how the precedent path vector can be retained during the state traversal in the merg_FSM.

5

In our design, we re-use those memory spaces storing zero vectors {00} and match vectors to store useful path information called pathVec. First, each bit of the pathVec corresponds to a string pattern. Then, if there exists a path from the initial state to a final state, which matches a string pattern, the corresponding bit of the pathVec of the states on the path will be set to 1. Otherwise, they are set to 0. Consider the string pattern “bcdf” whose final state is state 4 in Figure 7. The path 0->1->26->37->4 matches the first string pattern “bcdf”. Therefore, the first bit of the pathVec of the states on the path, {state 0, state 1, state 26, state 37, and state 4}, is set to 1. Similarly, the path 0->5->26->37->4 matches the second string pattern “pcdg”. Therefore, the second bit of the pathVec of the states on the path, {state 0, state 5, state 26, state 37, and state 8}, is set to 1. Finally, the pathVec of all states are shown in Figure 7. In addition, an additional bit, called ifFinal, is added to each state to indicate whether the state is a final state. As shown in Figure 7, each state stores the pathVec and ifFinal as the form of “pathVec_ ifFinal”.

Figure 5: Merging non-equivalent states The merg_FSM is a different machine from the original FSM but with a smaller number of states and state transitions. A direct implementation of merg_FSM has a smaller memory than the original FSM in the memory architecture. Our objective is to modify the algorithm so that we store only the merg_FSM table in memory while the overall system still functions in the same way as the original FSM did. The overall architecture of our state traversal machine is shown in Figure 6 where the state traversal mechanism guides the state machine to traverse on the merg_FSM and provides correct results as the traditional AC state machine. In section 4, we first discuss the state traversal mechanism. Then, in section 5, we discuss how the state traversal machine is created in our algorithm.

0

b

1

p

c

26

d

37

c 5

f

4

11_0

g

merg_FSM

01_0 b

0

8

p

1

10_0

5

State Traversal Mechanism Figure 6: The architecture of the state traversal machine

11_0 c

26

c

11_0 d

f

37 g

01_1

4 10_1

8

Figure 7: New State diagram of merg_FSM

4. STATE TRAVERSAL MECHANISM ON A MERG_FSM

In addition, we need a register, called preReg, to trace the precedent pathVec in each state. The width of preReg is equal to the width of pathVec. Each bit of the preReg also corresponds to a string pattern. The preReg is updated in each state by performing a bitwise AND operation on the pathVec of the next state and its current value. By tracing the precedent path entering into the merged state, we can differentiate all merged states. When the final state is reached, the value of the preReg indicates the match vector of the matched pattern. During the state traversal, if all the bits of the preReg become 0, the machine will go to the failure mode and choose the failure transition as in the AC algorithm. After any failure transition, all the bits of the preReg are reset to 1.

In the previous example, state 26 represents two different states (state 2 and state 6) and state 37 represents two different states (state 3 and state 7). To have a correct result, when state 26 (state 37) is reached, we need a mechanism to understand in the original FSM whether it is state 2 or state 6 (state 3 or state 7). In this example, we can differentiate state 2 or state 6 if we can memorize the precedent state of state 26. If the precedent state is state 1 when reaching state 26, we know that in the original FSM, it is state 2. On the other hand, if the precedent state is state 5, the original is state 6. This example shows that if we can memorize the precedent path entering into the merged states, we can

13

5. CONSTRUCTION OF THE STATE TRAVERSAL MACHINE

Consider an example in Figure 8 where the string “pcdf” is applied. Initially, in state 0, the preReg is initiated to {P2P1} = {11}. After taking the input character p, the merg_FSM goes to state 5 and updates the preReg by performing a bitwise AND operation on the pathVec {10} of state 5 and the current preReg {11}. The resulting new value of the preReg will be {P2P1} = {10 AND 11} = {10}. Then, after taking the input character c, the merg_FSM goes to state 26 and updates the preReg by performing a bitwise AND operation on the pathVec {11} of state 26 and the current preReg {10}. The preReg remains {P2P1} = {11 AND 10} = {10}. Further, after taking the input character d, the merg_FSM goes to state 37 and updates the preReg by performing a bitwise AND operation on the pathVec {11} of state 37 and the current preReg {10}. Still, the preReg remains {P2P1} = {11 AND 10} = {10}. Finally, after taking the input character f, the merg_FSM goes to state 4. After performing a bitwise AND operation on the pathVec {01} of state 4 and the current preReg {10}, the preReg becomes {P2P1} = {01 AND 10} = {00}. According to our algorithm, during the state traversal, if all the bits of the preReg become 0, the machine will go to the failure mode and choose the failure transition as in the AC algorithm. Therefore, the machine takes the failure transition to state 0 instead of state 4. We would like to point out that the same string applied to the merg_FSM, using the traditional state traversal algorithm in Figure 5, leads to an erroneous result.

The construction of a state traversal machine consists of (1) the construction of valid transition, failure transition, pathVec, and ifFinal functions and (2) merging pseudo-equivalent states. In the first step, the states and valid transitions are created first. And then, the failure transitions are created. The construction of pathVec and ifFinal begins in the first step and completes in the second step. For a set of string patterns, a graph is created for the valid transition function. The creation of the graph starts at an initial state 0. Then, each string pattern is inserted into the graph by adding a directed path from initial state 0 to a final state where the path terminates. Therefore, there is a path, from initial state 0 to a final state, which matches the corresponding string pattern. For example, consider the three patterns, “abcdef”, “apcdeg”, and “awcdeh”. Adding the first pattern “abcdef” to the graph, we obtain: 001_0

0

a

001_0

b

1

001_0

2

c

001_0

3

d

001_0

4

e

001_0

5

f

001_1

6

The path from state 0 to state 6 matches the first pattern “abcdef”. Therefore, the pathVec of all states on the path is set to {P3P2P1} = {001}, and the ifFinal of state 6 is set to 1 to notify the final state where the path terminates.

state 0 5 26 37 0 input char p c d f f pathVec 11 10 11 11 01 preReg 11 10 10 10 00 ifFinal 0 0 0 0 1 Figure 8: State transitions of the input string “pcdf”

Adding the second pattern “apcdeg” into the graph, we obtain: 011_0

0

a

011_0

b

1 p

001_0

2 010_0

The algorithm of our state traversal pattern-matching machine is shown in Figure 9.

7

c

c

001_0

3

d

4 010_0

010_0

8

001_0

d

9

e

e

001_0

5 010_0

10

f

g

001_1

6 010_1

11

Note that when the pattern “apcdeg” is added to the graph, because there is already an edge labeled a from state 0 to state 1, the edge is reused. Therefore, the pathVec of states 0 and 1 is set to {P3P2P1} = {011} and the pathVec of other states, {state 7, state 8, state 9, state 10, state 11}on the path is set to {P3P2P1} = {010}. Besides, the ifFinal of state 11 is set to 1 to indicate the final state for the second pattern. Similarly, when the third pattern “awcdeh” is added to the graph, the edge labeled a from state 0 to state 1 is also reused. Therefore, the pathVec of states 0 and 1 is set to {P3P2P1} = {111}. The pathVec of other states {state 12, state 13, state 14, state 15, and state 16} on the path is set to {P3P2P1} = {100}. The ifFinal of state 16 is set to 1 to indicate the final state of the third pattern. Finally, Figure 10 shows the directed graph consisting only of valid transitions.

Algorithm: State traversal pattern matching algorithm Input: A text string x=a1a2…an where each ai is an input symbol and a state traversal machine M with valid transition function g, failure transition function f, path function pathVec and final function ifFinal. Output: Locations at which keywords occur in x. Method: begin state ← 0 preReg ← 1….1 //all bits are initiated to 1. for i ← until n do begin preReg = preReg & pathVec(state) while g(state, ai) == fail || preReg == 0 do begin state ← f (state) preReg ← 1….1 end state ← g(state, ai) if ifFinal(state) = 1 then begin print i print preReg end end end

111_0

0

a

111_0

b

1

001_0

2

p

010_0

w

7 100_0

12

Figure 9: State traversal pattern matching algorithm

c

c

c

001_0

3

d

100_0

13

4 010_0

010_0

8

001_0

d

d

9 100_0

14

e

e

e

001_0

5 010_0

10 100_0

15

f

g

h

Figure 10: Construction of pathVec and ifFinal

14

001_1

6 010_1

11 100_1

16

In the second step, our algorithm extracts and merges the pseudo-equivalent states. Note that merging pseudo-equivalent states includes merging the failure transitions and performing the union on the pathVec of the merged states. Consider the same example as in Figure 10. We can find that state 3, state 8, and state 13 are pseudo-equivalent states because they have identical input c, identical failure transitions to state 0 and identical ifFinal 0. Similarly, state 4, state 9, and state 14 are pseudo-equivalent states and state 5, state 10, and state 15 are pseudo-equivalent states. As shown in Figure 11, these pseudo-equivalent states are merged into states 3, 4 and 5. The pathVec of state 3 is modified to be {P3P2P1} = {001} || {010} || {100} = {111} by performing the union on the pathVec of state 3, state 8, and state 13. Similarly, the pathVec of state 4 and state 5 is also modified to be {111}. Figure 11 shows the final state diagram of our state traversal machine. Compared with the original AC state machine in Figure 10, six states are eliminated. 111_0

0

a

b

1

c

2

p

010_0

w

100_0

111_0

111_0

001_0

111_0

d

3

e

4

111_0 f

5

b

7

h 100_1

16

6. CYCLE PROBLEMS WHEN MERGING MULTIPLE SECTIONS OF PSEUDOEQUIVALENT STATES

w

b

7

d

c

2 8

e

d

3 9

b

e

4 10

c

5 11

f g

e

5

f

6

d

g

8

8. CONCLUSIONS We have presented a memory-efficient pattern matching algorithm which can significantly reduce the number of states and transitions by merging pseudo-equivalent states while maintaining correctness of string matching. In addition, the new algorithm is orthogonal to other memory reduction approaches and provides further reductions in memory needs. The experiments demonstrate a significant reduction in memory footprint for data sets commonly used to evaluate IDS systems.

To prevent the cycle problem, we only merge pseudo equivalent states when no cycle problem occurs. If there is a cycle, we will skip the merging.

1

4

We also compared with the bit-split algorithm [9]. The results are shown in Table 2. Consider the same Oracle rule set in the first row of Table 2. Applying the bit-split algorithm which splits the traditional AC state machine into 4 state machines, the total number of states is 6,665 and the size of memory is 633,175 bytes. Applying our algorithm after the bit-split algorithm, the number of states is reduced to 3,603 and the size of memory is reduced to 358,499 bytes. The memory reduction achieves 43%. For the total 1,595 string patterns of the Snort rule set, applying our algorithm after the bit-split algorithm can further achieve additional an 22% of memory reduction.

When certain cases of multiple sections of pseudo-equivalent states are merged, it may create cycle problems in a state machine. The cycle problem may cause false positive matching results. Consider the two patterns, “abcdef” and “wdebcg.” whose corresponding AC state machine is shown as Figure 12. We can find that states 2 and 10, states 3 and 11 are pseudo-equivalent states while states 4 and 8, states 5 and 9 are also pseudo-equivalent states. Figure 13 shows the state machine merging the two sections of pseudo-equivalent states. The state machine after merging the two disorder sections of pseudo-equivalent states creates a loop transition from state 5 to state 2. The loop transition will cause false positive matching results. For example, the input string “abcdebcdef” will be mistaken as a match of the pattern “abcdef.”

a

d

Table 1 shows the results of our approach compared with [5]. Columns one, two and three show the name of the rule set, the number of patterns, and the number of characters of the rule set. Columns four, five, and six show the number of state transitions, the number of states, and the memory size of [5]. Columns seven, eight, and nine show the results of our approach. Column ten shows the memory reduction compared to [5] and [9]. For example in the first row of the Table 1, the Oracle rule set has 138 patterns with 4,674 characters. Applying the traditional AC algorithm, the total number of states is 2,185 and the memory size is 880,009 bytes. Applying our algorithm, the number of states is reduced to 1,221 and the memory size is reduced to 452,533 bytes, 49% of memory reduction from [5].Consider the total 1,595 string patterns of Snort rule set. As shown in the ninth row of Table 1, our algorithm achieves a 29% memory reduction compared with [5].

Figure 11: State diagram of the state traversal machine

0

3

We performed experiments on the seven largest rule sets and the total string patterns from the Snort rule sets to compare with the methods from [5] [9].

11

12

c

2

7. EXPERIMENTAL RESULTS

010_1

c

7

b

Figure 13: Merging two disorder section of pseudo-equivalent states

6

g

1

w

001_1

c

a

0

6 12

Figure 12: AC state machine for the two patterns, “abcdef” and “wdebcg”

15

Matching Co-processor for Network Security. In 42nd IEEE/ACM Design Automation Conference, Anaheim, CA, June 13-17, 2005.

9. REFERENCE 1.

2. 3.

4.

5. 6.

R. Sidhu and V. K. Prasanna. Fast regular expression matching using FPGAs. In Proc. of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), 2001,pp. 227-238. R. Franklin, D. Carver, and B.L. Hutchings. Assisting Network Intrusion Detection with Reconfigurable Hardware. In Proceedings of IEEE FCCM 2002, pp. 111-120, Apr. 2002. J. Moscola, J. Lockwood, R. P. Loui and M. Pachos. Implementation of a Content-Scanning Module for an Internet Firewall. In Proc. of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Apr. 2003. C. R. Clark and D. E. Schimmel. “Scalable Parallel Pattern Matching on High Speed Networks,” in Proceedings of the Twelfth Annual IEEE Symposium on Field Programmable Custom Computing Machines 2004 (FCCM), 2004.

7.

M. Aldwairi*, T. Conte, and P. Franzon. Configurable String Matching Hardware for Speeding up Intrusion Detection. In ACM SIGARCH Computer Architecture News, 33(1):99–107, 2005.

8.

S. Dharmapurikar and J. Lockwood. Fast and Scalable Pattern Matching for Content Filtering. In Proceedings of Symposium on Architectures for Networking and. Communications Systems (ANCS), Oct 2005.

9.

L. Tan and T. Sherwood. A high throughput string matching architecture for intrusion detection and prevention. In ISCA'05: 32nd Annual International Symposium on Computer Architecture, pp. 112-122, 2005.

10. H. J. Jung, Z. K. Baker, and V. K. Prasanna. Performance of FPGA Implementation of Bit-split Architecture for Intrusion Detection Systems. In IPDPS 2006: 20th International Parallel and Distributed Processing Symposium, 2006.

A. V. Aho and M. J. Corasick. Efficient String Matching: An Aid to Bibliographic Search. In Communications of the ACM, 18(6):333–340, 1975.

11. M. Roesch. Snort- lightweight Intrusion Detection for networks. In Proceedings of LISA99, the 15th Systems Administration Conference, 1999

Young H. Cho and William H. Mangione-Smith, A Pattern

Table 1: Experimental results of the AC algorithm and our algorithm Rule Sets Oracle Sql Backdoor Web-iis Web-php Web-misc Web-cgi Total rules Ratio

of patterns

of char.

138 44 57 113 115 310 347 1,595

4,674 1,089 599 2,047 2,455 4,711 5,339 20,921

Tradition AC [5] # of # of Memory transitions states (bytes) 2,180 2,185 880,009 421 422 129,290 563 565 191,253 1,533 1,537 569,651 1,670 1,675 620,797 3,576 3,587 1,444,664 3,407 3,419 1,377,002 17,472 17,522 8,745,668 1 1 1

of transitions 1,389 321 523 1,273 1,295 3,031 2,672 14,704 84%

Our algorithm # of Memory states (bytes) 1,221 452,533 284 87,011 497 152,268 1,155 428,072 1,142 423,254 2,734 1,101,119 2,358 949,685 13,381 6,248,927 76% 71%

Memory reduction 49% 33% 20% 25% 32% 24% 31% 29%

Table 2: Experimental results of the bit-split algorithm and our algorithm Rule Sets Oracle Sql Backdoor Web-iis Web-php Web-misc Web-cgi Total rules Ratio

of patterns

of char.

138 44 57 113 115 310 347 1,595

4,674 1,089 599 2,047 2,455 4,711 5,339 20,921

of transitions 6,645 1,211 1,697 4,869 4,991 10,959 9,901 53,930 1

Bit-split [9] # of states 6,665 1,215 1,705 4,885 5,011 11,003 9,949 54,130 1

16

Memory (bytes) 633,175 110,565 155,155 464,075 476,045 1,067,291 965,053 5,467,130 1

of transitions 4,146 866 1,441 3,844 3,871 8,861 7,875 43,550 81%

Bit-split + Our algorithm # of Memory Memory states (bytes) reduction 3,603 358,499 43% 769 72,671 34% 1,305 126,585 18% 3,374 335,713 28% 3,345 332,828 30% 7,816 797,232 25% 6,957 709,614 26% 38,701 4,237,760 22% 71% 78%

[image: Optimization of Pattern Matching Algorithm for Memory Based ...]
Optimization of Pattern Matching Algorithm for Memory Based ...

[image: Optimization of Pattern Matching Algorithm for Memory ...]
Optimization of Pattern Matching Algorithm for Memory ...

[image: Efficient Pattern Matching Algorithm for Memory ...]
Efficient Pattern Matching Algorithm for Memory ...

[image: Efficient Pattern Matching Algorithm for Memory ... - IEEE Xplore]
Efficient Pattern Matching Algorithm for Memory ... - IEEE Xplore

[image: A Universal Online Caching Algorithm Based on Pattern Matching]
A Universal Online Caching Algorithm Based on Pattern Matching

[image: Optimization of Pattern Matching Circuits for Regular ...]
Optimization of Pattern Matching Circuits for Regular ...

[image: Optimization of String Matching Algorithm on GPU]
Optimization of String Matching Algorithm on GPU

[image: A Motion Modification Algorithm for Memory-based ...]
A Motion Modification Algorithm for Memory-based ...

[image: Pattern Matching]
Pattern Matching

[image: A Universal Online Caching Algorithm Based on Pattern ... - CiteSeerX]
A Universal Online Caching Algorithm Based on Pattern ... - CiteSeerX

[image: An Optimal Content-Based Pattern Generation Algorithm]
An Optimal Content-Based Pattern Generation Algorithm

[image: a wavelet-based pattern recognition algorithm to ...]
a wavelet-based pattern recognition algorithm to ...

[image: A Universal Online Caching Algorithm Based on Pattern ... - CiteSeerX]
A Universal Online Caching Algorithm Based on Pattern ... - CiteSeerX

[image: Tree Pattern Matching to Subset Matching in Linear ...]
Tree Pattern Matching to Subset Matching in Linear ...

[image: the matching-minimization algorithm, the inca algorithm and a ...]
the matching-minimization algorithm, the inca algorithm and a ...

[image: the matching-minimization algorithm, the inca algorithm ... - Audentia]
the matching-minimization algorithm, the inca algorithm ... - Audentia

[image: q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching]
q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

[image: Eliminating Dependent Pattern Matching - Research at Google]
Eliminating Dependent Pattern Matching - Research at Google

[image: Efficient randomized pattern-matching algorithms]
Efficient randomized pattern-matching algorithms

[image: biochemistry pattern matching .pdf]
biochemistry pattern matching .pdf

[image: String Pattern Matching For High Speed in NIDS - IJRIT]
String Pattern Matching For High Speed in NIDS - IJRIT

[image: q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching]
q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

[image: A New Point Pattern Matching Method for Palmprint]
A New Point Pattern Matching Method for Palmprint

Optimization of Pattern Matching Algorithm for Memory Based ...

Dec 4, 2007 - accommodate the increasing number of attack patterns and meet ... omitted. States 4 and 8 are the final states indicating the matching of string ...

 Download PDF

 336KB Sizes
 1 Downloads
 246 Views

 Report

Recommend Documents

[image: alt]

Optimization of Pattern Matching Algorithm for Memory Based ...

Dec 4, 2007 - widely adopted for string matching in [6][7][8][9][10] because the algorithm can H. J. Jung, Z. K. Baker, and V. K. Prasanna. Performance of.

[image: alt]

Optimization of Pattern Matching Algorithm for Memory ...

Dec 4, 2007 - . ABSTRACT. Due to the ... To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior.

[image: alt]

Efficient Pattern Matching Algorithm for Memory ...

matching approaches can no longer meet the high throughput of high speed. Sourdis et al. ... based on Bloom filter that provides Internet worm and virus.

[image: alt]

Efficient Pattern Matching Algorithm for Memory ... - IEEE Xplore

intrusion detection system must have a memory-efficient pat- tern-matching algorithm and hardware design. In this paper, we propose a memory-efficient ...

[image: alt]

A Universal Online Caching Algorithm Based on Pattern Matching

We present a universal algorithm for the classical online problem of caching or Call this the maximal suffix and let its length be Dn. 2. Take an Î± Some Distribution-free Aspects of ... Compression Conference, 2000, 163-172. [21] J. Ziv

[image: alt]

Optimization of Pattern Matching Circuits for Regular ...

NFA approaches, a content matching server [9] was developed to automatically generate deterministic finite automatons (DFAs) construct an NFA for a given regular expression and used it to process text characters. ... [12] adopted a scalable, low

[image: alt]

Optimization of String Matching Algorithm on GPU

times faster with significant improvement on memory efficiency. Furthermore, because the ... become inadequate for the high-speed network. To accelerate string ...

[image: alt]

A Motion Modification Algorithm for Memory-based ...

Computer simulation of human movements is an essential element of Computer-Aided. Ergonomic Design. As a general, accurate, and extendable motion ...

[image: alt]

Pattern Matching

basis of the degree of linkage between expected and achieved outcomes. In light of this ... al scaling, and cluster analysis as well as unique graphic portrayals of the results Pattern match of program design to job-related outcomes. Expected.

[image: alt]

A Universal Online Caching Algorithm Based on Pattern ... - CiteSeerX

errors in learning will affect the performance of the online algorithm. In the theoretical computer science literature, however, the online caching problem has ...

[image: alt]

An Optimal Content-Based Pattern Generation Algorithm

Experimental results show that ASPVC outperforms the existing PVC with predefined regular-shaped patterns when each embedded into H.264 as an extra mode. II. CONTENT-BASED PATTERN GENERATION. The MR of an MB in the current frame is obtained using the

[image: alt]

a wavelet-based pattern recognition algorithm to ...

t = 0 (beginning of the frame of time) and the current sample. For this signal, we only consider the angle Î¸, reproducible between two movements. 4.3 Patterns Definition. We decided to use the wavelet transform to classify the dif- ferent patterns t

[image: alt]

A Universal Online Caching Algorithm Based on Pattern ... - CiteSeerX

... Computer Science. Purdue University Ziv-Lempel based prefetching algorithm approaches the fault rate of the best prefetcher (which has ... In the theoretical computer science literature, however, the online caching problem has received.

[image: alt]

Tree Pattern Matching to Subset Matching in Linear ...

'U"cdc f f There are only O (ns) mar k ed nodes#I with the property that all nodes in either the left subtree ofBI or the right subtree ofBI are unmar k ed; this is ...

[image: alt]

the matching-minimization algorithm, the inca algorithm and a ...

trix and ID âˆˆ DÃ—D the identity matrix. Note that the operator vec{Â·} is simply rearranging the parameters by stacking together the columns of the matrix. For voice ...

[image: alt]

the matching-minimization algorithm, the inca algorithm ... - Audentia

ABSTRACT. This paper presents a mathematical framework that is suitable for voice conversion and adaptation in speech processing. Voice con- version is formulated as a search for the optimal correspondances between a set of source-speaker spectra and

[image: alt]

q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

possible to create a table of aliases for domain- specific alphanumeric values, however, it is unlikely that all possible errors could be anticipated in advance. 2.

[image: alt]

Eliminating Dependent Pattern Matching - Research at Google

so, we justify pattern matching as a language construct, in the style of ALF [13], without compromising we first give our notion of data (and hence splitting) a firm basis. Definition 8 Fred McBride. Computer Aided Manipulation of Symbol

[image: alt]

Efficient randomized pattern-matching algorithms

the following string-matching problem: For a specified set. ((X(i), Y(i))) of pairs of strings, properties of our algorithms, even if the input data are chosen by an ...

[image: alt]

biochemistry pattern matching .pdf

biochemistry pattern matching .pdf. biochemistry pattern matching .pdf. Open. Extract. Open with. Sign In. Main menu. Whoops! There was a problem previewing ...

[image: alt]

String Pattern Matching For High Speed in NIDS - IJRIT

scalability has been a dominant issue for implementation of NIDSes in hardware ... a preprocessing algorithm and a scalable, high-throughput, Memory-effi-.

[image: alt]

q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

matching is to increase automated record linkage. Valid linkages will be determined by the user and should represent those â€œnear matchesâ€� that the user.

[image: alt]

A New Point Pattern Matching Method for Palmprint

Email: ; . Abstractâ€”Point new template minutiae set), we traverse all of the candidates pair ã€ˆu, vã€‰ âˆˆ C Ã— D.

×
Report Optimization of Pattern Matching Algorithm for Memory Based ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

