

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

COP 5537 Network Optimization Project Report

PageRank Computation of the World Wide Web Graph L. Page, S.Brin

Mustafa Ilhan Akbas

Abstract. In this project, PageRank algorithm proposed by L. Page and S. Brin is investigated. It is aimed to understand the graph model of the PageRank application, implementation of the algorithm, and the graph-theoretic problem being solved. The algorithm is implemented and the graph theory is used to model and solve the problem of web-page rank determination. In this report, I first describe the PageRank Method and state how I applied graph theory to create a simulation of the solution for Page Rank determination. The latest literature is also surveyed and listed. Then the algorithm and implementation with results obtained from the experiment are elaborated. Conclusions are drawn and experiences are presented in the last section.

1

Introduction

Since the late nineties, Web search engines have started to rely more and more on off-page, Web-specific data such as link analysis, anchor-text, and click-through data. One particular form of link based ranking factors is static score, which is a query-independent importance score that is assigned to each Web page. The most famous algorithm for producing such scores is PageRank [1], devised by Brin and Page while developing the ranking module for the prototype of the search engine Google [2]. PageRank can be described as the stationary probability distribution of a certain random walk on the Web graph. This graph can be described as a graph whose nodes are the Web pages, and whose directed edges are the hyperlinks between pages.

2

Problem description

PageRank was developed by Google founders Larry Page and Sergey Brin while they were students at Stanford University. In the context of their research Page and Brin checked the idea that if a search engine will determine the most relevant pages according to the relationships between web sites, it should be more effective, then other search engines of that time. This conception became the basis of the foundation of Google Search Engine and nowadays PageRank is the heart of Google's algorithm and makes it the most complex of all the search engines. Today, Google is the dominant web search engine in the Internet. Figure 1 shows the search shares among important web search engines in the Internet for July 2006. The sample in the figure is taken from 500,000 people world wide and it takes total about 5.6 billion searches a month. From this 5.6 billion searches, Google has a share of ~2.8 billion per month, ~93 million per day, ~3.8 million per hour, ~63,000 per minute and ~1,000 per second.

Figure 1 July 2006 Nielson Search Share

PageRank uses the link structure of the Web to produce a global importance ranking of every web page. This ranking is used by search engines and help users quickly make sense of the vast heterogeneity of the World Wide Web. A link from page X to page Y is interpreted as a vote, by page X, for page Y. In PageRank, the page that casts the vote is also analyzed. “Votes” made by competent web sites weigh more heavily and give an opportunity to linked site to be considered as a qualitative one. Web page that has links from many pages with high Google PageRank receives a high rank itself. But only relevant links, which are connected to the

sphere of the page and are useful for the customers of the page, could be valued. The absence of links means that there is no support for that page and it will not get satisfactory PageRank. Sites with high PageRank get a higher ranking in search results. Further, since Google is currently the world's most popular search engine, the ranking a site receives in its search results has a significant impact on the volume of visitor traffic for that site. If we focus on scoring and ranking measures derived from the link structure of WWW alone, PageRank assigns to every node in the web graph a numerical score between 0 and 1. The PageRank of a node will depend on the link structure of the web graph. Given a query, a web search engine computes a composite score for each web page that combines hundreds of features such as cosine similarity and term proximity, together with the PageRank score. This composite score is used to provide a ranked list of results for the query.

3

Graph-theoretic property and application on the problem

PageRank was developed to take not only the backlinks of a page into consideration, but also weights in that pages’ “importance”. In other words, Yahoo linking to Page A should count more than my page because Yahoo is a more important or reputable site and would also do more checking validity before linking. So basically, a page rank is high if the sum of the ranks of its backlinks is high. Mathematical (simplified) Presentation:

R(u) = c ∑ v∈Bu

R (v) Nv

(1)

where: u = a web page Fu = the set of pages u points to Bu = the set of pages that point to u Nu = |Fu| be the number of links from u c = normalization factor so total rank of all web pages is constant where c < 1

This is a recursive function and can be started on any set of pages to be iterated. The iterating should continue until it converges to a steady state. The functionality of the algorithm is shown in Figure 2. There’s a potential problem with this approach

Figure 2 Graphic Representation of PageRank Calculation (1)

Consider two web pages that point to each other and no other web page. Then suppose there is a web page that points to one of them (Figure 3).This means that the pages within the loop will accumulate rank but not distribute any rank to the network. These pages do not link to any other pages. This is called a Rank Sink.

Figure 3 Rank Sink

To solve the problem of Rank Sinks, a rank source, or in other words a damping factor, is introduced. Hence a new function is formed with this factor:

R(u) = c ∑

v∈Bu

R (v) + cE (u) Nv

(2)

where Eu is some vector over Web pages that corresponds to a source of rank.

As stated before, the behavior of the PageRank algorithm can be thought of as a “random surfer”. The damping factor gives the effect of the random surfer to the first equation. In the first equation, the surfer continues to follow successive links on a page, giving no consideration to content. For this reason, the PageRank of the current page is distributed evenly among all links, since the same probability is given that a user will click any of the links. The damping factor in the second equation takes into effect of the user getting bored and jumping off to another point. Although PageRank is recursive, it converges in logarithmic time. The authors of [1] showed that on a 322 million link database it converges in about 52 iterations to an acceptable tolerance. There are only about 7 additional iterations on the 322 million link database than half the size on 161 million link database, which indicates the good scalability of the program.

Figure 4 Convergence of PageRank Computation

The process for the PageRank can also be expressed as the following eigenvector calculation: Let M be the square, stochastic matrix corresponding to the directed graph G of the web, assuming all nodes in G have at least one outgoing edge. If there is a link from page j to page i, then let the matrix entry mij have the value 1=Nj . Let all other entries have the value 0. One iteration of the fixpoint computation at [3] corresponds to the matrix-vector multiplication “M * Rank”. Repeatedly multiplying Rank by M yields the dominant eigenvector Rank* of the matrix M. Because M corresponds to the stochastic transition matrix over the graph G, PageRank can be viewed as the stationary probability distribution over pages induced by a random walk on the web.

Consider a random surfer who begins at a web page (a node of the web graph) and executes a random walk on the Web as follows. At each time step, the surfer proceeds from his current page A to a randomly chosen web page that A hyperlinks to. As the surfer proceeds in his random walk from node to node, he visits some nodes more often than others; intuitively, these are nodes with many links coming in from other frequently visited nodes. The idea behind PageRank is that pages visited more often in this walk are more important.

4

Related Work

Along with the random surfer model, other usages of hyperlink data were suggested for the purpose of computing the authority weight of a web page. Historically, [4] was one of the first to apply ideas of bibliometrics to the web. An even earlier pre-Internet attempt to utilize graph structure was done by [5]. Another approach [6] suggests characterizing a page by the number of its in-links and introduces the concept of a neighborhood subgraph. The idea of a topic-sensitive PageRank is developed in [7]. To compute topic-sensitive PageRank, a set of top topics from some hierarchy is identified and instead of the uniform personalization vector v in PageRank, a topic specific vector is used for teleportation leading to the topic-specific PageRank. While the described approach provides for personalization indirectly through a query, user-specific priors can be taken into account in a similar fashion. This type of personalization is used in different demo versions, which confirms its practical usefulness. Another approach is blockRank [8], which restrict personalization preferences to domain blocks and the algorithm provides clear opportunities. What is different in this algorithm is the nonuniform choice of teleportation vector. Though a few iterations to approximate PageRank with this algorithm would suffice, even that is not feasible in query time for a large graph. On the other hand, this development is very appealing since block-dependent teleportation constitutes a clear model. The authors [9] of developed an approach to computing Personalized PageRank vectors (PPV). The personalization vector v relates to user-specified bookmarks with weights. The authors suggest a framework that, for bookmarks a belonging to a highly linked subset of hub pages H, provides a scalable and effective solution to build PPV. The presented framework leverages already pre-computed results, provides cooperative computing of several interrelated objects, and effectively encodes the results.

The authors of [10] suggest a personalization process that actually modifies the random surfer model and try to produce an intelligent surfer model. Both the link weights and the teleportation distribution are defined in terms of the relevance between page content and a query. So, the constructed term-dependent PageRanks are zero over the pages that do not contain the term. Based on this observation, the authors elaborate on the scalability of their approach. The authors of [11] have been interested in customization. They present a way to personalize HITS [12] by incorporating user feedback on a particular page j. One way of doing this is simply to raise a page’s authority and to distribute it through the propagation mechanism. This, however, runs into the trouble of an abnormal increase of closely related pages. Instead, the authors suggest an elegant way to increase the authority of a page indirectly through a small change in the overall graph geometry that is consistent with user feedback and is comprehensive in terms of effects on other pages.

5

Applications to Real Life

PageRank is in our daily life almost all the time. On the way of organizing a qualitative web resource, it’s important to concentrate on Google PageRank, and provide web site with competent links. Of course PageRank isn't the only factor, but it is rather important one to pay attention to it. But it is important to keep in mind that not every link is good for your site. Some of them can cause web site to be penalized by Google. It’s evident that sometimes you cannot control which sites link to yours one, but you should control which sites you link to. That’s why inbound links cannot make harm, but if a page links to penalized ones the result can be grievous. Therefore, to get success in the Internet, it is necessary to be well-informed in Google PageRank.

6

Algorithm Design & Implementation

The PageRank algorithm and the calculation of the web-page rankings are implemented in Java. In the program, the web is implemented as a graph with pages as nodes and links as directed edges. Both versions of PageRank are implemented. The program code is in Appendix. When the program is run, it first creates the network to apply the algorithm on. The networks can be created randomly and also can be

user-defined. The network is formed as an adjacency matrix, in which rows and columns are the nodes of the network. A ”1” in the matrix shows an outgoing link from the node of that row to the node of the corresponding column. When creating a network, a user can enter his predetermined adjacency matrix to see the resulting PageRank distribution in the network according to his link structure. For the random creation of the network, user selects a number between 0 and 1. A link is created between two pages according to this number with the use of Bernoulli trial logic. For every two pages, a random number generator is used and a number between 0 and 1 is generated in the program. Hence, the number created with the random number generator determines the density of the network. For instance, if the number is 0.7, there is a link between any two pages with probability 70%. The program doesn’t create self-loop links. After the network is initialized, a starting PageRank is assigned to each node. There is no definition for initial PageRank assignment. Therefore we used 1/n as the starting PageRank for each node, where n is the number of nodes. Hence, the sum of PageRanks over the network is 1. After initialization of the network and the PageRanks, PageRank of each node is written in terms of PageRanks of other nodes according to equation (1) or equation (2). These formulas are to use in each iteration of the algorithm. The user determines the number of trials. The PageRanks converge after several iterations. The case investigated in [1] shows the convergence of PageRanks in a real-life implementation(). Figure 5 shows a simple example of the implemented algorithm. The network taken into account has 3 nodes. According to the topology of the network, the adjacency matrix is created. Then the formulas are formed by using the matrix.

Figure 5 Implementation example of PageRank

After the starting PageRanks are assigned (1/3 for each node since there are three nodes), the program starts the iterations. Figure 6 shows the PageRanks for the nodes after each run. It can be seen that after fifth or sixth iteration, the PageRanks converge to their steady-state values.

Figure 6 A simple running example of PageRank

The actual output of the implemented program is given below. Figure 7 shows the PageRank convergence for each of the node with this output. The first equation is used for this network, since it is a simple topology. PageRank of Node A 0.3333333333333333 0.5 0.33333333333333337 0.4166666666666667 0.41666666666666674 0.375 0.41666666666666674 0.39583333333333337 0.39583333333333337

PageRank of Node B 0.16666666666666666 0.16666666666666666 0.25000000000000006 0.16666666666666669 0.20833333333333334 0.20833333333333337 0.1875 0.20833333333333337 0.19791666666666669

PageRank of Node C 0.5 0.3333333333333333 0.4166666666666667 0.41666666666666674 0.375 0.41666666666666674 0.39583333333333337 0.39583333333333337 0.40625000000000006

0.40625000000000006 0.39583333333333337 0.40104166666666663 0.40104166666666663 0.3984375 0.4010416666666667 0.39973958333333337 0.39973958333333337 0.400390625 0.39973958333333337 0.4000651041666667

0.19791666666666669 0.20312500000000003 0.19791666666666663 0.20052083333333331 0.20052083333333334 0.19921875 0.20052083333333334 0.19986979166666669 0.19986979166666669 0.2001953125 0.19986979166666669

0.39583333333333337 0.40104166666666674 0.40104166666666663 0.39843749999999994 0.4010416666666667 0.39973958333333337 0.39973958333333337 0.400390625 0.39973958333333337 0.4000651041666667 0.4000651041666667

Figure 7 Convergence of the PageRank for the example Network

Figure 8 shows the convergence of the PageRank for a network with 30 nodes and 20 iterations. This one is actually the output of the program that is using the function with damping factor. 0.85 is used as the damping factor as suggested in [1]. The algorithm doesn’t need too many runs to converge, which is one of the main advantages it has.

Figure 8 Convergence of PageRank for 30 nodes

Following the design notion discussed above, the aforementioned two versions of the PageRank algorithm were implemented. The project is implemented in Java under Eclipse platform.

7

Conclusions

In this project, I studied how the graph theory is applied to the PageRank method, which is used for rating Web pages objectively and mechanically, effectively measuring the human interest and attention devoted to them. The creators basically turn every page on the World Wide Web into a single number, its PageRank. PageRank is a global ranking of all web pages, regardless of their content, based solely on their location in the Web's graph structure. Using PageRank, the authors were able to order search results so that more important and central Web pages are given preference. In their experiments, this turns out to provide high quality search results to users. The intuition behind PageRank is that it uses information which is external to the Web pages themselves, their backlinks, which provide a kind of peer review. Furthermore, backlinks from important pages are more significant than backlinks from average pages. I implemented this algorithm using Java in Eclipse Platform. The implementation includes the simple and complicated versions of the PageRank algorithm and simulates a network of web-pages and its PageRank distribution. The results are also presented as graphs, which are showing the reliability of the implementation.

References 1.

L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking: Bringing order to the Web, Stanford Digital Library Project, Working Paper SIDL-WP-1999-0120, Stanford University, CA, 1999.P. Briggs, K. D. Cooper, and L. Torczon. Improvements to graph coloring register allocation. ACM Trans. Program. Lang. Syst., 16(3):428–455, 1994. 2. www.google.com 3. Taher H. Haveliwala . Efficient Computation of PageRank, Technical Report, 1999 4. R. R. Larson. “Bibliometrics of the World Wide Web: An Exploratory Analysis of the Intellectual Structures Of Cyberspace.” In ASIS ’96: Proceedings of the 59th ASIS Anual Meeting, edited by S. Hardin, pp. [71–78]. Medford, NJ: Information Today, 1996. 5. M. E. Frisse. “Searching for Information in a Hypertext Medical Handbook.” Commun. ACM 31:7 (1988), 880–886. 6. J. Carri`ere and R. Kazman. “WebQuery: Searching and Visualizing the Web through Connectivity.” In Selected Papers from the Sixth International Conference on World Wide Web, pp. 1257–1267. Essex, UK: Elsevier Science Publishers Ltd., 1997. 7. Taher Haveliwala. “Topic-Sensitive PageRank.” In Proceedings of the Eleventh International Conference on World Wide Web, pp. 517–526. New York:ACM Press, 2002. 8. Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and Gene Golub. “Exploiting the Block Structure of the Web for Computing PageRank.” Technical Report, Stanford University, 2003. 9. G. Jeh and J.Widom. “Scaling Personalized Web Search.” Technical Report, Stanford University, 2002. 10. Mathew Richardson and Pedro Domingos. “The Intelligent Surfer: Probabilistic Combination of Link and Content Information in PageRank.” In Proceedings of the 2001 Neural Information Processing Systems (NIPS) Conference, Advances in Neural Information Processing Systems 14, edited by T. G. Dietterich, S. Becker, and Z. Ghahramani, pp. 1441–1448. Cambridge, MA: MIT Press, 2002. 11. H. Chang, D. Cohn, and A. McCullum. “Learning to Create Customized Authority Lists.” In Proceedings of the 17th International Conference on Machine Learning, pp. [27–134]. San Francisco, CA: Morgan Kaufmann, 2000. 12. Kleinberg, Jon (1999). "Authoritative sources in a hyperlinked environment". Journal of the ACM 46 (5): 604–632.

13. Brin, S. & Page, L. 1998, The PageRank Citation Ranking: Bringing Order to the Web, Stanford Univeristy.

Appendix Graph.java : package project; import java.util.ArrayList; import java.util.List; import java.util.Random; import project.Node; /** * Main graph implementation. Contains a list of nodes and generates adj matrix * * @author Mustafa Ilhan Akbas * */ public class Graph { /** * User defines the number of nodes (NUMNODES) and * number of iterations that will printed on the screen here. * */ public static int NUMNODES = 8; public static int NUMOFITERPRINTS = 20; /** * A node class is created but not used. nodes array is to keep the nodes. * However I left the node class and the array since it may be useful for future changes in the program. * adjMatrix is the adjacency matrix that will be created randomly. * */ public static List nodes = new ArrayList(); public static int adjMatrix[][] = new int[NUMNODES][NUMNODES];

/** * adjMat is to be used for creating the network not randomly * User can define his matrix to find out the PageRanks of the nodes * Here I give two examples for adjacency networks. * */ public static int adjMat[][] = { { 0, 1, 1}, {0, 0, 1}, {1, 0, 0} }; //public static int adjMat[][] = { { 0, 1, 1, 0, 1, 0, 0, 1 }, { 0, 0, 1, 0, 1, 0, 0, 1 },{ 0, 1, 0, 0, 1, 0, 0, 1 },{ 0, 1, 1, 0, 1, 0, 0, 1 },{ 1, 0, 1, 0, 0, 0, 0, 1 },{ 0, 1, 1, 0, 1, 0, 0, 0 },{ 0, 1, 0, 1, 1, 0, 0, 1 }, { 0, 1, 1, 0, 1, 0, 1, 0 },}; /** * probSuccess is the random number used in Bernoulli trials to create a link between two nodes. * rankArray keepss the ranks for the nodes. * dampingFactor is used in the equation. 0.85 is the mostly used value, but it can be changed * according to needs of the user. * */ public static double probSuccess = 0.7; public static double rankArray[] = new double[NUMNODES]; public static double tempRankArray[] = new double[NUMNODES]; public static double DAMPINGFACTOR = 0.85; public static Random rand = new Random(); /** * This function creates a new adjacency matrix. * This adjacency matrix defines the links between nodes. * In a row of a node, each 1 means an outgoing link to the * node of the corresponding column. * By this matrix, we create our graph basically. * */ public void createAdjMatrix() {

for (int i = 0; i < NUMNODES; i++) {

for (int j = 0; j < NUMNODES; j++) { if (i == j) continue; double tempValue = rand.nextDouble(); if (tempValue < probSuccess) { adjMatrix[i][j] = 1; } else adjMatrix[i][j] = 0; } } } /** * This function initializes the Rank Array. * The array includes the initial values of PageRanks * of all Pages. There is no specific method to assign ranks. * Therefore we assign 1/(Number of Nodes) as the rank of each page. * */ public void initializeRankArray() { for (int i = 0; i < NUMNODES; i++) rankArray[i] = 1 / (double) NUMNODES; } /** * This function iterates across each row of the matrix and updates the rank * This function calculates the PageRank according to the first approach by Page and Brin. * */ public void iterateMatrix() { //System.out.println("In iterate matrix"); int rowSum[] = new int[NUMNODES]; /** * calculating rowsum */ for (int i = 0; i < NUMNODES; i++) { for (int j = 0; j < NUMNODES; j++) { rowSum[i] = rowSum[i] + adjMatrix[i][j];

} }

for (int i = 0; i < NUMNODES; i++) { tempRankArray[i] = rankArray[i]; // System.out.println("Rowsum for " + i + "is:" + rowSum[i]); } for (int i = 0; i < NUMNODES; i++) { double nodeRank = 0.0; for (int j = 0; j < NUMNODES; j++) { nodeRank = nodeRank + (tempRankArray[j] * adjMatrix[j][i]) / rowSum[j]; } rankArray[i] = nodeRank; } }

/** * This function iterates across each row of the matrix and updates the rank * with the damping factor. * This function calculates the PageRank according to the final formula by Page and Brin, which * includes the damping factor. * */ public void iterateMatrixDamp() { //System.out.println("In iterate matrix"); int rowSum[] = new int[NUMNODES]; /** * calculating rowsum */ for (int i = 0; i < NUMNODES; i++) { for (int j = 0; j < NUMNODES; j++) { rowSum[i] = rowSum[i] + adjMatrix[i][j]; } }

// test loop for (int i = 0; i < NUMNODES; i++) { tempRankArray[i] = rankArray[i]; // System.out.println("Rowsum for " + i + "is:" + rowSum[i]); } for (int i = 0; i < NUMNODES; i++) { double nodeRank = 0.0; for (int j = 0; j < NUMNODES; j++) { nodeRank = nodeRank + (tempRankArray[j] * adjMatrix[j][i]) / rowSum[j]; } rankArray[i] = nodeRank * DAMPINGFACTOR + (1 DAMPINGFACTOR); } } /** * This is a control function to iterate across each row of a user defined matrix and to updates the rank * with the damping factor. Any graph can be entered to the program in the matrix form. Then * this function calculates the PageRank values of the pages in that graph. * */

public void iterateMatrixNew() { //System.out.println("In iterate matrix"); int rowSum[] = new int[NUMNODES]; /** * calculating rowsum */ for (int i = 0; i < NUMNODES; i++) { for (int j = 0; j < NUMNODES; j++) { rowSum[i] = rowSum[i] + adjMat[i][j]; } } for (int i = 0; i < NUMNODES; i++) {

tempRankArray[i] = rankArray[i]; } for (int i = 0; i < NUMNODES; i++) { double nodeRank = 0.0; for (int j = 0; j < NUMNODES; j++) { nodeRank = nodeRank + (tempRankArray[j] * adjMat[j][i]) / rowSum[j]; } rankArray[i] = nodeRank; //rankArray[i] = nodeRank * DAMPINGFACTOR + (1 DAMPINGFACTOR); //System.out.println("Node Rank for " + i + "is:" + rankArray[i]); } } /** * This function is used to see the graph in matrix form. * It basically prints the adjacency matrix. * */ public void printAdjMatrix() { for (int i = 0; i < NUMNODES; i++) { for (int j = 0; j < NUMNODES; j++) { System.out.print(adjMatrix[i][j] + " } System.out.println(""); }

");

} /** * This function is used to see the user defined graph in matrix form. * It basically prints the adjacency matrix. * */ public void printAdjMat() { for (int i = 0; i < NUMNODES; i++) { for (int j = 0; j < NUMNODES; j++) { System.out.print(adjMat[i][j] + " } System.out.println("");

");

} }

/** * This function normalizes the rankarray and ensures total is equal to 1. * This is a thing to do after each iteration. * */ public void normalizeRankArray() { double arraySum = 0; for (int i = 0; i < NUMNODES; i++) { arraySum = arraySum + rankArray[i]; } if (arraySum == 1) return; for (int i = 0; i < NUMNODES; i++) { rankArray[i] = rankArray[i] / arraySum; } return; } /** * This is the main function of the program. * There are NUMOFITERPRINTS*counter iterations and NUMOFITERPRINTS of * the iteration results are printed on the screen. * */ public static void main(String[] args) { System.out.println("Starting simulation"); Graph g = new Graph(); g.createAdjMatrix(); g.initializeRankArray(); for (int i = 0; i < NUMNODES; i++) //System.out.print(rankArray[i] + "

");

System.out.println(""); g.printAdjMatrix(); //prints the randomly created matrix //g.printAdjMat(); //prints the user-defined matrix for (int index = 0; index < NUMOFITERPRINTS; index++) { int counter = 0; while (counter < 1) { g.iterateMatrixDamp(); //g.iterateMatrixNew(); // If the first formula is used, this line is used instead of the previous one. g.normalizeRankArray(); counter = counter + 1; } //The program gives the matrix created and the PageRanks as the output. for (int i = 0; i < NUMNODES; i++){ System.out.print(rankArray[i] + "\t } System.out.println(""); } }

");

}

Node.java : package project; /** * This is the node that I first planned to comprise the graphs * with. I haven’t used it later on, but included it in case * it may be useful in the future. * @author Mustafa Ilhan Akbas * */ public class Node { public static int ID; public static int inDegree; public static int outDegree;

public Node() { } public static int getID() { return ID; } public static void setID(int id) { ID = id; } public static int getInDegree() { return inDegree; } public static void setInDegree(int inDegree) { Node.inDegree = inDegree; } public static int getOutDegree() { return outDegree; } public static void setOutDegree(int outDegree) { Node.outDegree = outDegree; } }

[image: PageRank Computation of the World Wide Web Graph]
PageRank Computation of the World Wide Web Graph

[image: Efficient Computation of PageRank]
Efficient Computation of PageRank

[image: Extracting knowledge from the World Wide Web - Proceedings of the ...]
Extracting knowledge from the World Wide Web - Proceedings of the ...

[image: Distributed PageRank Computation Based on Iterative ... - CiteSeerX]
Distributed PageRank Computation Based on Iterative ... - CiteSeerX

[image: The Mobile Web in Developing Countries - World Wide Web Consortium]
The Mobile Web in Developing Countries - World Wide Web Consortium

[image: InBrowser Network Performance Measurement - World Wide Web ...]
InBrowser Network Performance Measurement - World Wide Web ...

[image: InBrowser Network Performance Measurement - World Wide Web ...]
InBrowser Network Performance Measurement - World Wide Web ...

[image: Transparency and Choice - World Wide Web Consortium]
Transparency and Choice - World Wide Web Consortium

[image: AdAlyze Redux - International World Wide Web Conference]
AdAlyze Redux - International World Wide Web Conference

[image: Transparency and Choice - World Wide Web Consortium]
Transparency and Choice - World Wide Web Consortium

[image: Fast Distributed PageRank Computation]
Fast Distributed PageRank Computation

[image: Improving Performance of World Wide Web by Adaptive ...]
Improving Performance of World Wide Web by Adaptive ...

[image: Improving Performance of World Wide Web by ...]
Improving Performance of World Wide Web by ...

[image: Improving Performance of World Wide Web by ...]
Improving Performance of World Wide Web by ...

PageRank Computation of the World Wide Web Graph

important web search engines in the Internet for July 2006. The sample in the figure is A node class is created but not used. nodes array is to keep the nodes.

 Download PDF

 190KB Sizes
 2 Downloads
 267 Views

 Report

Recommend Documents

[image: alt]

PageRank Computation of the World Wide Web Graph

Platform. I have a basic schedule in my mind for the project. With this report,. I'm done with 59th ASIS Anual Meeting, edited by S. Hardin, pp. [71â€“78]. Medford ...

[image: alt]

Efficient Computation of PageRank

Oct 18, 1999 - related algorithm used by the IBM HITS system maintains a hub and an authority We partition Links into Î² links files Links0, . . . , LinksÎ²âˆ’1,.

[image: alt]

Extracting knowledge from the World Wide Web - Proceedings of the ...

Apr 13, 2002 - vol. 101 suppl. 1 www.pnas.orgcgidoi10.1073pnas.0307528100 ... (e.g., sites ''coming soon''), web hosting firms that present their homepage on improved, and how can communities be best structured or presented to ...

[image: alt]

Distributed PageRank Computation Based on Iterative ... - CiteSeerX

Oct 31, 2005 - Department of Computer. Science. University of California, Davis. CA 95616, USA sults show that the DPC algorithm achieves better approx-.

[image: alt]

The Mobile Web in Developing Countries - World Wide Web Consortium

1. The Mobile Web in Developing Countries. Ravi Jain ... The explosive growth of mobile phones and mobile voice services in developing countries has led competition, regulation and the attributes of the fixed network.

[image: alt]

InBrowser Network Performance Measurement - World Wide Web ...

Oct 29, 2012 - provides application developers a best practice for understanding their We run the experiment 10 times for each browser for a total of 1,000 use a machine running Ubuntu 12.04 to host a custom HTTP server written in.

[image: alt]

InBrowser Network Performance Measurement - World Wide Web ...

Oct 29, 2012 - standalone measurement software, on the other hand, presents portability as well as ... The popularity of iOS with its lack of Flash support (Android is also not download from servers that are relatively close to endusers.

[image: alt]

Transparency and Choice - World Wide Web Consortium

collection that helps ensure the security and integrity of data, determines behavior to the offline world, as well as the rise of cloud-based computing and the ...

[image: alt]

AdAlyze Redux - International World Wide Web Conference

author's site if the Material is used in electronic media. International World Wide Web Conference 2015 by tools like AdAlyze Redux is tracking their impact and at- tributing (hopefully) increased revenue back to ... ing using the Web analytics

[image: alt]

Transparency and Choice - World Wide Web Consortium

Page 1. Transparency and Choice: Protecting Consumer Privacy in an Online World. Alma Whittena ... content and also helps create innovation opportunities.

[image: alt]

Fast Distributed PageRank Computation

Apr 2, 2014 - and Department of Computer Science, Brown University, the first phase, each node v performs d(v)Î· (d(v) is degree of v) independent.

[image: alt]

Improving Performance of World Wide Web by Adaptive ...

Dec 17, 2006 - of the file, saving the web pages at the client side, changing the burst nature of traffic ... unnecessarily increase storage costs, transmission costs, download When uploading large files, intelligent agents prompt the user to ..

[image: alt]

Improving Performance of World Wide Web by ...

growth of Internet, web users are suffering from the network congestion and ... used for much reduction in bandwidth consumption, alternate schemes such as ...

[image: alt]

Improving Performance of World Wide Web by ...

markup. The consequences of such bloated HTML are unnecessarily increase storage costs, transmission costs, download times and browser rendering times.

×
Report PageRank Computation of the World Wide Web Graph

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

