Patience in Repeated Bargaining: Clarification and Futility of Comparative Statics via Approximations ∗ Jan Z´apal CERGE-EI & IAE-CSIC and Barcelona GSE [email protected] May 22, 2017

Abstract The paper clarifies the effect of patience on the equilibrium shares in repeated bargaining situations analyzed by Muthoo [Bargaining Theory with Applications, Cambridge University Press, 1999, Chapter 10]. The difference in results arises due to erroneous use of approximations of players’ discount factors in the vicinity of unity, while taking limits or deriving comparative statics. Comparative statics can be facilitated by approximations, but only in cases when the need for the facilitation does not arise. Derivation of limits cannot be facilitated by approximations, except in special cases.

JEL Classification: C65, C78 Keywords: repeated bargaining, patience, discounting, comparative statics, approximations



I would like to thank Miroslav Zelen´ y for bringing the Tietze Extension Theorem to my attention. This work was supported by the Czech Science Foundation [grant number 14-27902P]. All remaining errors are my own.

1

Introduction

In a series of contributions to bargaining theory, Muthoo (1995, 1999) analyzes a repeated version of the Rubinstein (1982) alternating-offer bilateral bargaining model. Muthoo (1999, Chapter 10) shows that the model admits unique SPE (Proposition 10.1), provides the limits of the players’ equilibrium shares as the time between bargaining rounds vanishes (Corollary 10.2) and shows that these shares may vary in a counterintuitive way; equilibrium share of a player might decrease with her patience (Corollary 10.3). Given that Muthoo (1999) is considered a ‘bargaining textbook’, with over a thousand citations and recommended by other book-length texts on bargaining (Napel, 2002), and given that the counterintuitive effect of patience has been extensively discussed by related work (Eberwein, 2001; Knabe, 2009) as well as highlighted in the review of the book (Rosenkranz and Schmitz, 2002), we wish to point out that the counterintuitive effect of patience is an artifact of incorrect proof of Corollary 10.3. More specifically, we prove that in the repeated bargaining model of Muthoo (1999, Chapter 10) players’ equilibrium shares, in the limit as the time interval between bargaining rounds vanishes, increase with their patience. Namely, our Proposition 1 provides correct version of Corollary 10.3. The reason proof of Corollary 10.3 fails is of independent interest. Within the model, bargaining situations are separated by τ > 0 units of time and each player i ∈ {1, 2} has discount rate ri > 0 that determines the discount factor applied between (repeated) bargaining situations, exp (−ri τ ). Corollary 10.3, which assumes that ri τ is close to zero, derives comparative statics on ri by first approximating exp (−ri τ ) by 1 − ri τ and then by taking a derivative with respect to ri . Our Proposition 2 shows that this approach to comparative statics, assisted by approximations, is valid under certain conditions. However, we argue that when these conditions hold, the comparative statics exercise is straightforward and can be conducted even without the approximations. That is, comparative statics can be facilitated by approximations exactly when the need for facilitation does not arise. We further show that Corollary 10.2, proven with the help of similar approximations prior to taking the limit, is correct. In light of our Example 1, which shows that facilitating derivation of limits by approximations can produce arbitrarily incorrect results, this is coincidental.

1

2

Repeated bargaining model

We provide a condensed exposition of the repeated bargaining model studied in Muthoo (1999, Chapter 10). Two players A and B bargain over division of an infinite number of pies, each of size one. For each n ∈ N≥1 , bargaining over pie n follows the standard Rubinstein (1982) alternating-offer bargaining protocol with bargaining rounds separated by ∆ > 0 units of time. For each n ∈ N≥2 , bargaining over pie n does not start until bargaining over pie n − 1 concludes and bargaining over consecutive pies is separated by τ > 0 units of time. Player A makes the very first offer and players alternate in proposal-making both within and between pies. For any i ∈ {A, B}, player i discounts time at rate ri > 0, thus her between-rounds discount factor is δi = exp (−ri ∆) and her between-pies discount factor is αi = exp (−ri τ ). Proposition 10.1 shows that the repeated bargaining model admits unique SPE with immediate agreement over the partition of every pie. Moreover, when ∆ < τ , the equilibrium share player i ∈ {A, B} proposes to herself and hence receives is x∗i =

(1 − δi αi )(1 − δ−i )(1 + α−i ) . (1 − δi αi )(1 − δ−i α−i ) − (δi − αi )(δ−i − α−i )

(1)

Corollary 10.2 shows that, ∀i ∈ {A, B}, lim x∗i = zi∗ =

∆→0

where φi =

(1+αi )(1−α−i ) (1−αi )(1+α−i ) .

r−i r−i + ri φi

(2)

Note that, ∀i ∈ {A, B}, φi > 0 since αi =

exp (−ri τ ) ∈ (0, 1) as ri τ > 0. Moreover, Corollary 10.2 shows that the equilibrium payoff of player i ∈ {A, B} in any subgame in which i proposes first is Vi∗ =

zi∗ 1−αi .

The following proposition mirrors and corrects Corollary

10.3. The underlined parts are opposite to those in Corollary 10.3.1 Proposition 1. For any i ∈ {A, B}, ri > 0, r−i > 0 and τ > 0, 1. zi∗ is strictly decreasing in ri and strictly increasing in r−i , ∗ , 2. if ri > r−i , then zi∗ < z−i

3. Vi∗ is strictly decreasing in ri and strictly increasing in r−i , 1

Corollary 10.3 assumes ‘small’ rA τ > 0 and rB τ > 0 as well as rA 6= rB . We require neither small ri τ nor rA 6= rB , but our correction applies only when these conditions hold.

2

∗ , 4. if ri > r−i , then Vi∗ < V−i

5. sign of

∂ ∗ ∂τ zi

coincides with the sign of r−i − ri ,

6. limτ →0 zi∗ = 12 . Proof. To prove the proposition we work with two basic hyperbolic trigonometric functions, sinh and cosh, where, ∀x ∈ R, sinh (x) = and cosh (x) =

exp (x)−exp (−x) 2

exp (x)+exp (−x) . 2

Lemma 1. Given x > 0, 1. sinh (0) = 0, sinh (x) > 0 and sinh0 (x) = cosh (x), 2. cosh (0) = 1, cosh (x) > 1 and cosh0 (x) = sinh (x), 3. (a) cosh2 (x) − sinh2 (x) = 1, (b) cosh (x) sinh (x) =

sinh (2x) , 2

(c) sinh (x) > x, and (d) sinh (x) < x cosh (x). Proof. Part 1, sinh (0) = 0 and sinh0 = cosh, follow from definitions of sinh and cosh. sinh (x) > 0 ∀x > 0 follows since exp (x) >

1 exp (x)

∀x > 0.

0

Part 2, cosh (0) = 1 and cosh = sinh, follow from definitions of sinh and cosh. cosh (x) > 1 ∀x > 0 is equivalent to exp (x) + exp (−x) − 2 = (exp ( x2 ) − exp (− x2 ))2 > 0 ∀x > 0 and hence holds. Parts 3a and 3b follow from definitions of sinh and cosh. Part 3c follows since sinh (0) = 0 and sinh0 (x) = cosh (x) > 1 ∀x > 0. Part 3d follows since sinh (0) = 0 = 0 · cosh (0) and sinh0 (x) = cosh (x) < cosh (x) + x sinh (x) = ∂ ∂x x cosh (x)

∀x > 0.

Lemma 2. For any i ∈ {A, B}, ri > 0, r−i > 0 and τ > 0, φi =

τ cosh ( r2i τ ) sinh ( r−i 2 ) τ . sinh ( r2i τ ) cosh ( r−i 2 )

Therefore 1.

∂φi ∂ri

2.

∂φi ∂τ

∂φi τ = −φi sinhτ(ri τ ) , ∂r = φi sinh (r , and −i −i τ )   ri −i = φi sinhr(r − sinh (ri τ ) has the same sign as ri − r−i . −i τ )

3

(3)

Proof. Fix i ∈ {A, B}, ri > 0, r−i > 0 and τ > 0. For any j ∈ {A, B}, we have

1+αj 1−αj

r τ

=

j 1+exp (−rj τ ) exp ( 2 ) rj τ 1−exp (−rj τ ) exp ( )

=

2

rj τ 2 rj τ exp ( 2

exp (

rj τ 2 r τ )−exp (− j2

)+exp (−

) )

=

follows by substitution into the original expression for φi .

rj τ ) 2 rj τ sinh ( 2 )

cosh (

and (3)

Derivation of the derivatives in parts 1 and 2 is standard, using Lemma 1 parts 3a and 3b. Sign of the derivative in part 2 follows since sinh (x)−x cosh (x) sinh2 (x)

∂ x ∂x sinh (x)

=

< 0 ∀x > 0, where the inequality follows by Lemma 1 part

3d. Fix i ∈ {A, B}, ri > 0, r−i > 0 and τ > 0. To see part 1, we have −r−i φi ∂φi i i φi 1 + φrii ∂φ and ∂r∂−i zi∗ = (r−ir+r 1 − rφ−ii ∂r . It = (r−i 2 ∂ri +ri φi )2 −i i φi )

∂ ∗ ∂ri zi

thus suffices to prove that in each expression the term in the brackets is strictly positive. Substituting the derivatives from Lemma 2 part 1 we have ri ∂φi φi ∂ri

=1−

ri τ sinh (ri τ )

r−i ∂φi φi ∂r−i

=1−

r−i τ sinh (r−i τ )

1+ 1−

>0 (4) >0

where the inequalities follow by Lemma 1 part 3c. Part 2 follows directly from part 1. ∗ ∂zi∗ 1 zi∗ ∂αi ∂ ∂ zi ∗ ∂ri Vi = ∂ri 1−αi = ∂ri 1−αi + (1−αi )2 ∂ri < 0, ∂z ∗ i where the inequality follows by ∂rii < 0 shown in part 1 and by ∂α ∂ri = ∗ ∗ zi ∂zi ∂ exp (−ri τ ) 1 = −τ αi < 0. Similarly, ∂r∂−i Vi∗ = ∂r∂−i 1−α = ∂r−i ∂ri 1−αi > 0, i ∗ ∂zi where the inequality follows by ∂r−i > 0 shown in part 1. Part 4 follows

To see part 3, we have

directly from part 3. −ri r−i ∂φi i . Since ∂φ ∂τ has the same (r−i +ri φi )2 ∂τ ∂ ∗ sign as ri − r−i by Lemma 2 part 2, ∂τ zi has the same sign as r−i − ri . To see part 6, using L’Hopital’s rule, we have limτ →0 φi = rr−i and hence i r−i 1 ∗ = 2. limτ →0 zi = r r−i +ri r−i

To see part 5, we have

∂ ∗ ∂τ zi

=

i

3

Comparative statics via approximations

The proof of Corollary 10.3 proceeds by first approximating αi = exp (−ri τ ) by 1 − ri τ and then by taking a derivative with respect to ri . The following proposition shows that this approach leads to a correct result under some conditions. Proposition 2. Let x ¯ ∈ R be a value of parameter x and Bx¯ = (¯ x −, x ¯ +). Let y, z : Bx¯ → R be strictly decreasing differentiable functions and By¯ = 4

(y(¯ x +), y(¯ x −)). Let f : Bx¯ ×By¯ → R be a differentiable function with each partial derivative of constant sign s1 , s2 ∈ {−1, 0, 1} on Bx¯ × By¯. Suppose z approximates y in the sense that there exists an open neighbourhood of x ¯, Bx¯0 ⊆ Bx¯ , such that, ∀x ∈ Bx¯0 , z(x) ∈ By¯. Then 1. sgn



∂ x, y(¯ x)) ∂x f (¯



= sgn



∂ x, z(¯ x)) ∂x f (¯



unless s1 = s2 ∈ {−1, 1},

2. if s1 = s2 ∈ {−1, 1}, there exists z such that sgn  ∂ f (¯ x, z(¯ x)) .2 sgn ∂x



∂ x, y(¯ x)) ∂x f (¯



6=

Proof. Denote partial derivatives of f with respect to the first and the second variable by f1 and f2 respectively. Then ∂ x, y(¯ x)) ∂x f (¯ ∂ x, z(¯ x)) ∂x f (¯

= f1 (¯ x, y(¯ x)) + f2 (¯ x, y(¯ x))y 0 (¯ x)

(5)

= f1 (¯ x, z(¯ x)) + f2 (¯ x, z(¯ x))z 0 (¯ x)

where, ∀d ∈ {1, 2}, fd (¯ x, y(¯ x)) and fd (¯ x, z(¯ x)) have the same sign sd , y 0 (¯ x) < 0 and z 0 (¯ x) < 0. Both derivatives

∂ x, y(¯ x)) ∂x f (¯

and

∂ x, z(¯ x)) ∂x f (¯

i) have sign

s1 if s2 = 0, ii) have sign −s2 if s1 = 0, and iii) have sign s1 if s1 = −s2 ∈ {1, −1}, proving part 1. To see part 2, consider z such that z(¯ x) = y(¯ x). Then fd (¯ x, y(¯ x)) = fd (¯ x, z(¯ x)) ∀d ∈ {1, 2}. By choosing z such that |z 0 (¯ x)| is sufficiently small, the sign of

∂ x, z(¯ x)) ∂x f (¯

becomes s1 . By choosing z such that |z 0 (¯ x)| is ∂ x, z(¯ x)) becomes −s2 = −s1 . ∂x f (¯ ∂ the sign of ∂x f (¯ x, z(¯ x)) is zero.

sufficiently large, the sign of there exists

z 0 (¯ x)

such that

Therefore,

In Proposition 2, parameter x enters expression f (x, y(x)) directly as well as through function y. The comparative statics effect of x on f (x, y(x)) around some value x ¯ can be derived by first approximating y by z, but only in cases in which the original comparative statics exercise is straightforward. That is, either when one of the partial derivatives in f1 (¯ x, y(¯ x)) + f2

(¯ x, y(¯ x))y 0 (¯ x)

opposite signs, so that

∂ x, y(¯ x)) ∂x f (¯

=

is zero or when the partial derivatives have

∂ x, y(¯ x)) ∂x f (¯

is the sum of two terms with identical

signs. In the difficult cases when the partial derivatives have identical signs and hence the sign of

∂ x, y(¯ x)) ∂x f (¯

tudes of f1 (¯ x, y(¯ x)) and f2

depends on the comparison of magni-

(¯ x, y(¯ x))y 0 (¯ x),

approximating y by z can provide

an incorrect result. 2

Proposition 2 continues to hold for strictly increasing y and z after replacing, in both parts, s1 = s2 ∈ {−1, 1} by s1 = −s2 ∈ {−1, 1}.

5

To see that the sign of by 1 − ri τ , write

zi∗

=

∂ ∗ ∂ri zi

changes after approximating exp (−ri τ ) r−i

1−α

1+exp (−r τ )

r−i + 1+α−i ri 1−exp (−ri τ ) −i

where y(ri ) =

as f (ri , y) =

r−i 1−α

r−i + 1+α−i ri y

,

−i

i

1+exp (−ri τ ) 1−exp (−ri τ ) .

1−α−i where cy = r−i 1+α −i



Then f1 (ri , y) = cy (−y) and f2 (ri , y) = cy (−ri ), −2 −i r−i + 1−α r y > 0, so that the partial derivatives i 1+α−i

have identical signs and hence

∂ ∗ ∂ri zi

cannot be derived by approximating y.

  −c In fact, ∂r∂ i f (ri , y(ri )) = −cy [y(ri ) + ri y 0 (ri )] = (1−αyi )2 1 − αi2 − 2ri τ αi , where 1 − αi2 − 2ri τ αi > 0.3 Approximating exp (−ri τ ) by 1 − ri τ amounts ∂ 0 iτ to using z(ri ) = 2−r ri τ , so that ∂ri f (ri , z(ri )) = −cz [z(ri ) + ri z (ri )] =   −cz −(ri τ )2 , where −(ri τ )2 < 0. A similar argument can be used for (ri τ )2 the effect of r−i on zi∗ .

4

Taking limits with approximations

Muthoo (1999, Chapter 10) approximates δi = exp (−ri ∆) by 1−ri ∆ for i ∈ {A, B} also when proving Corollary 10.2, which shows that lim∆→0 x∗i = zi∗ . Instead of working with ∆ → 0 and (δi , δ−i ) = (exp (−ri ∆), exp (−r−i ∆)), fix i ∈ {A, B} and let us work with δi → 1 and hence with δ−i (δi ) = 0 (δ ) = r−i δ−i (δi ) with δ → 1 limit equal to log (δi ) . Note that δ−i exp rr−i i i ri δi i r−i ri .

Using L’Hopital’s rule to derive limδi →1 x∗i , using δ−i (δi ) for δ−i , lim x∗i = lim

δi →1

δi →1

1 1 −i (δi )

1 + φi δ 0

= zi∗ .

(6)

In addition to showing that Corollary 10.2 is correct, the expression shows a (δ ) of δ (δ ) with δ a0 (1) = δ 0 (1) would deliver that any approximation δ−i i −i i −i −i a (δ ) = 1− r−i (1−δ ). the same limit. In fact, the approximation used gives δ−i i i ri

Following example shows that Corollary 10.2 is correct, despite approximating path by which (δi , δ−i ) approaches (1, 1), since the derivation of the limit admits the use of L’Hopital’s rule. Namely, neither continuity a0 (1) = δ 0 (1), which implies that (δ , δ (δ )) of x∗i in (δi , δ−i ), nor δ−i i −i −i −i a (δ )) approach (1, 1) ‘from the same angle’, guarantees that and (δi , δ−i −i

approaching (1, 1) via different paths will give identical limits. 3 The inequality can be proven by rewriting the expression as 1 − αi2 + 2αi log (αi ). The latter expression tends to unity and zero as αi → 0 and αi → 1 respectively and its derivative 2(1 − αi + log (αi )) < 0.

6

Example 1. Consider a continuous f : (0, 1)2 → R. Let y, z : (0, 1) → (0, 1) be continuous with y 0 , z 0 > 0 and limx→1 y(x) = limx→1 z(x) = 1. Suppose y(x) < z(x) ∀x ∈ (0, 1). Then limx→1 f (x, y(x)) and limx→1 f (x, z(x)) need not be equal. Proof. Denote two sets U = {(x, y) ∈ (0, 1)2 |y ≥ z(x)} L = {(x, y) ∈ (0, 1)2 |y ≤ y(x)}

(7)

and note that U and L are closed in (0, 1)2 since the complement of U ∪ L in (0, 1)2 , {(x, y) ∈ (0, 1)2 |y ∈ (y(x), z(x))}, is open in (0, 1)2 . Construct f such that f (x, y) = 1 for any (x, y) ∈ U and f (x, y) = 0 for any (x, y) ∈ L. By the Tietze Extension Theorem (Aliprantis and Border, 2006, Theorem 2.47), there exists a continuous extension of f to (0, 1)2 . Call it f . By construction, limx→1 f (x, y(x)) = 0 while limx→1 f (x, z(x)) = 1.

References Aliprantis, C. D. and K. C. Border (2006). Infinite Dimensional Analysis, A Hitchhiker’s Guide. Berlin: Springer. Eberwein, C. J. (2001). Repeated bargaining and the role of impatience and incomplete contracting. Labour Economics 8 (5), 573–592. Knabe, A. (2009). Implementing endogenous inside options in Nash wage bargaining models. Mathematical Social Sciences 57 (2), 161–176. Muthoo, A. (1995). Bargaining in a long-term relationship with endogenous termination. Journal of Economic Theory 66 (2), 590–598. Muthoo, A. (1999). Bargaining Theory with Applications. Cambridge, UK: Cambridge University Press. Napel, S. (2002). Bilateral Bargaining: Theory and Applications. Berlin: Springer. Rosenkranz, S. and P. W. Schmitz (2002). Book review: Abhinay Muthoo, Bargaining theory with applications. Public Choice 113 (3), 491–495.

7

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica 50 (1), 97–109.

8

Patience in Repeated Bargaining: Clarification and ...

Feb 20, 2017 - my attention. This work was supported by the Czech Science Foundation [grant number. 14-27902P]. All remaining errors are my own.

280KB Sizes 1 Downloads 237 Views

Recommend Documents

Gambling Reputation: Repeated Bargaining with ...
May 28, 2012 - bargaining postures and surplus division in repeated bargaining between a long-run player ..... When reputation is above the upper threshold p∗∗, both types of the long-run player accept the short-run players' low ..... forth, and

Gambling Reputation: Repeated Bargaining with ...
May 28, 2012 - with the treatment of reputation with imperfect public monitoring in Fudenberg ..... has private information about technology or consumer brand.

Gambling Reputation: Repeated Bargaining With ...
must take into account not only the amount of information that this decision will disclose ... player has an incentive to build a reputation for having a good distribution ..... sults in inefficiency of bargaining outcomes as well as discontinuity in

God's Patience -
September is here already! As the psalmist says, let everything that has breath Praise the Lord! Praise God who has brought us through these 8 months of 2013.

Information and Evidence in Bargaining
with (partially) verifiable evidence have been applied mainly in information- ..... MATHIS, J. (2008): “Full Revelation of Information in Sender-Receiver Games of ...

Patience
Page 1. Patience ! :)

Generalized quantifiers and clarification content
(13) Terry: Richard hit the ball on the car. ... Nick: What ball? ... Nick: What car? Terry: The car that was going past. ... Yeah a book, log book. BNC file KNV ...

Senate Attendance Clarification and Accountability Act.pdf ...
Page 1 of 3. THE STUDENT SENATE OF. THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. 53​. rd​. Legislative Assembly, 1​. st​. Session. S.B. 53.2-5. AN ACT TO CLARIFY THE DEFINITIONS AND PROCEDURES FOR SENATORS. AND SENATE OFFICERS IN CONTEXT OF

Repeated Play and Gender in the Ultimatum Game
25.9-39.2. 4.2-7.4. 72.9-74.1. F emale. Prop osers-All. Resp onders. 29-29. 46.8-46.1. 37.3-40.1. 14.6-13.8. 68.3-72.4. All. Prop osers-Male. Resp onders. 38-23.

Incrementality and Clarification/Sluicing potential1
above all with sluicing, that call into question existing assumptions about .... metric merge (Cooper, 2012; Hough, 2015) defined as: given two record types R1 ...

Repeated Play and Gender in the Ultimatum Game
In order to make subjects aware of their partner's gender, we follow Solnick (2001) and ... computer sessions, so the data have been pooled. ..... Money-to-Split.

Peer Punishment in Repeated Isomorphic Give and ...
Jul 21, 2017 - with 3 degrees of freedom = 20.739; p ... differences in contributions across treatments after accounting for within-group path ..... ONLINE ONLY.

Cooperation and Trustworthiness in Repeated Interaction
Jun 1, 2015 - Most contributions discussing the effects of institutions or social ... Hence, group members' benefits from cooperation depend .... of punishment in fostering cooperation depends on monitoring ...... media on cooperation.

Renegotiation and Symmetry in Repeated Games
symmetric, things are easier: although the solution remains logically indeterminate. a .... definition of renegotiation-proofness given by Pearce [17]. While it is ...

INFERRING REPEATED PATTERN COMPOSITION IN ...
of patterns is an important objective in computer vision espe- cially when a .... Fp(ap) = 1. 2. ∑ q∈N(p). ||Ip −˜Iq(ap)||2 +||Ip − ˜T(ap)||2. + ||LAp||2. F + |Gp|2. (3) ...

Patience and Altruism of Parents: Implications for Children's Education ...
Mar 29, 2015 - for Children's Education Investment. Jinghao Yang ... Production technologies for children's skill levels (θ1 and θ2) are: ... Background controls.

Clarification regarding clarification.PDF
r. o. "l;,,&. 4*'#. /. No. E (NG)-ll/2001/RR-1120. The General Manager (P),. RBE No.153 t2015. *t. New Delhi, Dt.:-J- 11212015. All Zonal Railways/Production ...

Reputation and Perfection in Repeated Common ...
the commitment type goes to zero, the normal type of player 1 can be driven close to her minmax payoff. Hence this is a continuity result with the complete information game as ...... the function described in the Lemma restricted to the domain [η,1]

Repeated colonization and hybridization in Lake Malawi cichlids
data from thirteen primer pairs. Our analysis .... mental procedures and two figures can be found with this ... Bern, Switzerland and Center for Ecology,. Evolution ...

Peternity leave clarification Memo
Ref: I. G.O.Ms.No.23 i, Fi.n'.'(FR.l)-D_ept., dt. ... The Private Secretary to the Chief Minister and Private Secretaries to all MilliSiérS. Allthe Departments of ...

Repeated Signaling and Firm Dynamics
We thank the seminar participants at Columbia University, Dartmouth College, New York University, London. Business School .... In our model, firms with positive information choose higher capital stocks and credibly ...... in simulated data, the corre

Bargaining, Reputation, and Equilibrium Selection in ...
We use information technology and tools to increase productivity and facilitate new forms of scholarship. ... universities for their comments. We are grateful ... imize its immediate payoff before agreement or is some degree of cooperation possible .