RSC Advances

Published on 15 October 2014. Downloaded by Nanyang Technological University on 12/11/2014 16:02:10.

COMMUNICATION

View Article Online View Journal | View Issue

Portable resistive pulse-activated lens-free cell imaging system Cite this: RSC Adv., 2014, 4, 56342

Received 15th September 2014 Accepted 14th October 2014

Jinhong Guo,a Xiwei Huang,b Dongyuan Shi,a Hao Yu,b Ye Ai,c Chang Ming Li*d and Yuejun Kang*a

DOI: 10.1039/c4ra10481a www.rsc.org/advances

We demonstrate a portable lens-free cell imaging system activated by resistive pulses that are induced by biological cells in a microfluidic channel. This imaging on-chip flow cytometer integrates CMOS with microfluidics as a standalone on-chip analytical device. The preliminary version of this system is able to provide dual-parametric study (light contrast image and modulated electrical pulse) for each biological cell. Red blood cells and a tumor cell line (HepG2) are used to demonstrate the performance of this chip for flow analysis of biological samples.

A microuidic chip-based Coulter counter has been introduced as a low-cost and portable analytical platform for characterization of biological cells such as human blood cells,1–3 and circulating tumor cells (CTCs).4–6 However, the modulated pulses under the Coulter principle can provide very limited information on the biological sample compared to the conventional optical microscopic methods, which can provide straightforward visualization of the biological samples and therefore pervade many aspects of modern biomedicine and bioscience. Moreover, the implementation cost of conventional optical microscopy is very high, which has limited its applications in point-of-care diagnosis.7–18 With the current rapid development of biomedical technologies, there is a growing need to develop compact, cost-effective and portable imaging systems for rapid and reliable point-of-care diagnosis, particularly in personalized healthcare. For this purpose, on-chip optouidic microscopy has recently been introduced as an innovative and powerful platform based on the semiconductor technologies, which is able to image human blood cells or tumor cells with

a

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore. E-mail: [email protected]

b

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

c Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore d

Institute for Clean Energy & Advanced Materials, Southwest University, Beibei, Chongqing, China. E-mail: [email protected]

56342 | RSC Adv., 2014, 4, 56342–56345

high resolution.19 Moreover, this on-chip optouidic microscope requires continuous imaging on the microuidic chip, even in the absence of cell events, which produces a huge amount of image data that may overload and slow down the signal or image processing. It is also quite challenging for the microcontroller and memory storage of this device to handle such big data. In this short report, we demonstrate a portable resistive pulse-activated lens-free cell imaging system to address the abovementioned challenge of the big data issue involved in imaging on-chip ow cytometry. As shown in Fig. 1, the chip consists of a microuidic channel (2 mm in length, 200 mm in width, 60 mm in height) and a complementary metal-oxidesemiconductor (CMOS) imaging sensor on the chip substrate. The microuidic channel comprises a constricted aperture (30 mm in length, 30 mm in width, 30 mm in height), whereas the CMOS working pixels are located near the downstream exit of the sensing aperture. When a microparticle is transported through the aperture that is subjected to an applied voltage bias, the electric current through the microchannel decreases because the non-conducting particle replaces the conducting electrolyte solution resulting in a signicant resistance increase. A threshold current (2% modulation to the baseline current) was set to detect this pulse and activate the imaging component (Fig. 1); when the current returns to a value above this threshold, it indicates that the particle is leaving the aperture, and a microcontroller will generate a signal to activate the CMOS sensor that is working in snapshot mode to capture the image of this particle. In this way, both the particle modulated pulse prole and image can be concurrently recorded by the system, which can be used for correlation analysis between peak amplitude and pixel size of biological cells. The mold of the polydimethylsiloxane (PDMS) microuidic channel was fabricated on a glass slide, which was cleaned in acetone, methanol, and deionized water, and dried on a hotplate for 30 min at 250  C. SU-8 25 (Microchem, USA) was spincoated on a clean glass slide (at 2000 rpm), so-baked for 5 min at 65  C and 15 min at 95  C, and exposed to UV irradiation. The

This journal is © The Royal Society of Chemistry 2014

View Article Online

Published on 15 October 2014. Downloaded by Nanyang Technological University on 12/11/2014 16:02:10.

Communication

Fig. 1 The working principle of the system: the imaging sensor is off when no resistive pulse is detected, whereas it is on when a resistive pulse is detected.

glass slide was then baked on a hot plate for 1 min at 65  C and 5 min at 95  C. Aer post-baking, the mold was developed in SU8 developer solution for 5 min, and baked on a hot plate for 20 min at 250  C. PDMS pre-polymer and curing agents were mixed in a ratio of 10 : 1 and degassed in a vacuum chamber. The mixture was cast on the SU-8 mold and cured in an oven for 2 h at 95  C. PDMS channels were then sliced and peeled off from the SU-8 mold and reservoir holes were punched. The PDMS channel and a clean substrate with a CMOS image sensor were plasma-treated for 10 s before they were bonded to form the nal chip. A tumor cell line, HepG2 cells (American Type Culture Collection, MD, USA), were cultured in Dulbecco's Modied Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 mg mL 1), 1 mM sodium pyruvate, and 0.1 mM MEM non-essential amino acids. The cells were grown at 37  C under 5% CO2 in a T75 ask. The red blood cells

RSC Advances

(RBCs) were separated from the whole blood using OptiPrep™ density gradient medium. Specically, the whole blood was mixed with OptiPrep at a ratio of 1 : 8. Tricine-buffered saline (TBS: 0.85% NaCl, 20 mM Tricine–NaOH, pH 7.4) was layered at the top of the mixture for protecting it from mixing with the blood. The whole blood sample was centrifuged at 2000g for 15 min. RBCs were collected from the bottom of the centrifuge tube. The acquired samples were washed three times with 1 PBS for 10 min and resuspended in fresh PBS solutions (2  106 mL 1). A power management circuit in the system can provide the voltage bias for the continuous electrokinetic ow in the chip with two electrodes submerged in the inlet and outlet chamber. The current modulation in the microuidic circuit is monitored by a high-speed precision current-sensor amplier and a lowpass lter. The output signal is collected and digitalized by an ADC chip, which is controlled by a central controller eld programmable gate array (FPGA, Altera, Cyclone II, USA). Once a pulse signal is detected, the FPGA will produce a signal to activate the CMOS image sensor to capture the cell image. The CMOS image sensor (Aptina MT9M032, San Jose, CA, USA) can image an area as small as 11.5 mm (W)  11.5 mm (L)  2.3 mm (H) with a pixel size of 2.2  2.2 mm and a full-resolution array size of 1472 (H)  1096 (V). The frame rate of the image sensor is 60 frames per second (fps) at a resolution of 1280 (H)  720 (V). The frame rate can be further increased if the region of interest (ROI) to readout only covers part of the entire sensor array. In this study, only a small area on the CMOS sensor, located near the exit of the sensing aperture, is needed for cell imaging when it is exiting the aperture. To ensure optimal image contrast, the cover glass of the CMOS sensor is carefully removed using a razor blade such that the distance between the microuidic channel and the sensor array is minimized. The schematic

Fig. 2 (a) The schematic structure of the proposed imaging on-chip flow cytometry: the FPGA is the central microcontroller for signal detection and processing; the analog module on the left is to continuously monitor the resistive pulse induced by biological cells; the CMOS imaging sensor module on the right is activated by the FPGA after a resistive pulse is detected by the analog module; (b) a prototype of the imaging onchip flow cytometer consisting of FPGA controller, current detection module, and CMOS imaging module. Two on-board electrodes are used to provide continuous electrokinetic flow in the microfluidic chip.

This journal is © The Royal Society of Chemistry 2014

RSC Adv., 2014, 4, 56342–56345 | 56343

View Article Online

Published on 15 October 2014. Downloaded by Nanyang Technological University on 12/11/2014 16:02:10.

RSC Advances

diagram and a home-made prototype of the proposed system are shown in Fig. 2. Monodisperse polystyrene microbeads of 6.3 mm and 15.6 mm in diameter were used to calibrate this imaging ow system. The microbead suspensions were stripped from their original buffer through multiple dilution steps, and suspended in 1 PBS solution. Bovine serum albumin (BSA) was added to the solution to prevent the beads from forming agglomerates. RBC and HepG2 cells were harvested and resuspended in 1 PBS solution, supplemented with BSA to prevent cell aggregation. Fig. 3 summarizes the experimental results for polystyrene particles of two different sizes, RBCs, and HepG2 cells with this resistive pulse-activated lens-free imaging ow system. The counting rate of particles or cells is about 100 events per min. The 2nd and 3rd columns in Fig. 3 demonstrate the comparison between the optical contrast images of the particles and cells obtained by a regular optical microscope and the CMOS sensor on this imaging on-chip ow cytometer. The particle or cell diameter can be calculated based on the number of pixels in the image and the actual size of each pixel of the CMOS sensor (4th column in Fig. 3). These results indicate that, for these polystyrene particles, the measured sizes are consistent with the nominal average size as specied by the manufacturer. The peak amplitude of the resistive pulses corresponding to each particle/cell event is also recorded in the system (5th column in Fig. 3). The 6.3 mm particles induce average pulse amplitude of 3.13 mA, whereas the 15.6 mm particles induce an average pulse amplitude of 19.57 mA. For testing biological cells, RBCs exhibit average pulse amplitude of 2.56 mA and diameter of 6.6 mm, whereas HepG2 cells show an average pulse amplitude of 20.76 mA and diameter of 22 mm. The bandwidth of the pulses reveals that each cell passes through the aperture within about 100 ms. RBCs and HepG2 cells were spiked and mixed in the same suspension to demonstrate the capability of this system to distinguish tumor cells from RBCs. Fig. 4 shows a series of cell

The images of 6.3 mm and 15.6 mm polystyrene particles, a RBC and a HepG2 cell captured by the imaging on-chip flow cytometer, compared to the contrast image obtained by an optical microscope. The diameter is calculated based on the CMOS pixel size (2.2  2.2 mm) and the image pixel size. The pulse amplitude is recorded by the analog module corresponding to each cell/particle event. Fig. 3

56344 | RSC Adv., 2014, 4, 56342–56345

Communication

Fig. 4 The recorded resistive pulses induced by several consecutive

cell events, indicating the detection of a total of 9 biological cells (4 RBCs and 5 HepG2 cells); each resistive pulse activates a cell image taken by the on-chip CMOS imaging module.

events during a short time, recording the resistive pulses and the corresponding cell images activated by each pulse. The pulses of smaller amplitude represent the RBCs, which is concurrently veried by the image pixel size. The pulses of higher amplitude represent the HepG2 cells with a signicantly larger pixel size. Although both RBCs and HepG2 cells show some size variation, these two different subpopulations can be clearly distinguished based on the image size and resistive pulse amplitude in Fig. 4. In summary, a resistive pulse-activated lens-free imaging onchip ow cytometer has been developed to record both the resistive pulse induced by a single biological cell and its optical contrast image. This proof-of-concept study showed that HepG2 tumor cells can be easily distinguished from red blood cells using this system. As a major advantage, the imaging module is at rest when there is no cell detected, and is activated only by resistive pulses induced by each cell event, thereby signicantly reducing the image data size and improving the signal and image processing speed. This on-demand automatic imaging strategy could be applied to develop portable analytical devices for haematological studies and other biomedical applications. The current prototype, however, is limited by low image resolution and system throughput compared to a commercial imaging ow cytometer. More importantly, the capability of uorescence imaging is still lacking in this system. Future work could further improve the image resolution by advanced image processing algorithms and the system throughput using multiple channel arrays, and integrate more advanced optical sensors to realize uorescence imaging with this on-chip ow cytometer.

Notes and references 1 W. Asghar, Y. Wan, A. Ilyas, R. Bachoo, Y. T. Kim and S. M. Iqbal, Lab Chip, 2012, 12, 2345. 2 X. Wu, Q. Chen, Y. Sun and X. Fan, Appl. Phys. Lett., 2013, 102, 203706.

This journal is © The Royal Society of Chemistry 2014

View Article Online

Published on 15 October 2014. Downloaded by Nanyang Technological University on 12/11/2014 16:02:10.

Communication

3 Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan and X. Fan, Lab Chip, 2013, 13, 3351. 4 J. Guo, T. S. Pui, A. R. R. Rahman and Y. Kang, IEEE Trans. Biomed. Eng., 2013, 60, 3269. 5 W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald and T. Sulcheck, PLoS One, 2012, 7, e46609. 6 S. Byun, S. Son, D. Amodei, N. Cermak, J. Shaw, J. H. Kang, V. C. Hecht, M. M. Winslow, T. Jacks, P. Mallick and S. R. Manalis, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(19), 7580. 7 X. Heng, D. Erickson, L. Baugh, Z. Yaqoob, P. Sternberg, D. Psaltis and C. Yang, Lab Chip, 2006, 6, 1274. 8 W. Xu, M. Jericho, I. Meinertzhagen and H. Kreuzer, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 11301. 9 J. Garcia-Sucerquia, W. Xu, M. Jericho and H. Kreuzer, Opt. Lett., 2006, 31, 1211. 10 X. Cui, L. Lee, X. Heng, W. Zhong, P. Sternberg, D. Psaltis and C. Yang, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 10670.

This journal is © The Royal Society of Chemistry 2014

RSC Advances

11 N. Lindquist, A. Lesuffleur, H. Im and S. Oh, Lab Chip, 2009, 9, 382. 12 S. Seo, T. Su, D. Tseng, A. Erlinger and A. Ozcan, Lab Chip, 2009, 9, 777. 13 E. Schonbrun, W. Ye and K. Crozier, Opt. Lett., 2009, 34, 2228. 14 G. Zheng, X. Cui and C. Yang, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9043. 15 E. Schonbrun, A. Abate and P. Steinvurzel, Lab Chip, 2010, 10, 852. 16 G. Zheng and C. Yang, Opt. Lett., 2010, 35, 2636. 17 D. Breslauer, R. Maamari, N. Switz, W. Lam, D. Fletcher and M. Pai, PLoS One, 2009, 4, e6320. 18 J. Wu, X. Cui, G. Zheng, Y. M. Wang, L. M. Lee and C. Yang, Opt. Lett., 2010, 35, 2188. 19 G. Zheng, S. A. Lee, S. Yang and C. Yang, Lab Chip, 2010, 10, 3125.

RSC Adv., 2014, 4, 56342–56345 | 56345

Portable resistive pulse-activated lens-free cell imaging ...

12 S. Seo, T. Su, D. Tseng, A. Erlinger and A. Ozcan, Lab Chip,. 2009, 9, 777. 13 E. Schonbrun, W. Ye and K. Crozier, Opt. Lett., 2009, 34,. 2228. 14 G. Zheng, X.

494KB Sizes 1 Downloads 197 Views

Recommend Documents

Resistive exercise versus resistive vibration exercise to ...
Firenze, Italy) with a 5- to 7.5-MHz broadband linear transducer. SFA diameter .... (Statistical Package for Social Sciences 16.0, SPSS, Chicago, IL). Statistical ...

Multi-element resistive memory
trols the grounding of at least tWo [storage] resistive memory elements[, such as ...... Graphics Port (AGP), used to couple a high performance video card to the ...

Cheap Flash Sale Portable Cell Phone Mini Electric Fan Cooling ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Cheap Flash ...

Development of portable fuel cell arrays with printed ...
digital assistants, mobile phones, and next generation lap- tops in particular ... the requirements for large-scale fuel cell systems and small-scale fuel cell sys-.

VOLT AND CURRENT WAVEFORM RESISTIVE LAOD.pdf ...
Whoops! There was a problem loading more pages. VOLT AND CURRENT WAVEFORM RESISTIVE LAOD.pdf. VOLT AND CURRENT WAVEFORM RESISTIVE ...

Highly Demanding Resistive Vibration Exercise ...
Nov 24, 2005 - the platform. Fig.1b Illustration of the standardisation of training intensity during .... changes during BR (BR02 to BR56) revealed a time effect. (p < 0.001) ... Vibration frequency increased from 19 Hz at the beginning to about ...

Resistive Simulated Weightbearing Exercise With ...
Study Design. Randomized controlled trial. Objective. Determine the effectiveness a resistive ex- ercise countermeasure with whole-body vibration in rela- tion to lumbo-pelvic muscle and spinal morphology changes during simulated spaceflight (bed-res

Cheap Vr Ar Game Gun With Cell Phone Stand Holder Portable ...
Cheap Vr Ar Game Gun With Cell Phone Stand Holder ... d Smart Phones Free ... Games For Iphone Android Smart Phones Free Shipping & Wholesale Price.pdf.

Cheap 1pcs High Quality 2 in 1 Portable Cell Phone Mini Electric ...
Cheap 1pcs High Quality 2 in 1 Portable Cell Phone Mi ... oler For iPhone 5-5s-5c-SE-6-6 plus-6s-6s plus-6s.pdf. Cheap 1pcs High Quality 2 in 1 Portable Cell ...

Resistive Switching of Ta2O5-Based Self-rectifying ...
To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure sim- ilar to a ...

Diversity in Ranking via Resistive Graph Centers
Aug 24, 2011 - retrieval, social network search, and document summariza- tion, our approach ... screen real estate (10–20 top-ranking positions), so as to.

Highly Demanding Resistive Vibration Exercise Program is Tolerated ...
Nov 24, 2005 - and all Sundays free of exercise after the second week. There was also no ... Statistical analyses were carried out with the SPSS software ver-.

Resistive vibration exercise attenuates bone and ...
Jun 18, 2009 - performed and subjects retained their feet on the platform in ... clinical chemistry analyzer (Modular Analytics; Roche. Diagnostics, Mannheim ...

Enhanced oxygen vacancy diffusion in Ta2O5 resistive ...
116, 033504 (2014). 39N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12, 163 (1948). 40D. B. Strukov and R. S. Williams, Appl. Phys. A 94, 515 (2009). 41L. Larcher, O. Pirrotta, F. M. Puglisi, A. Padovani, P. Pavan, and L. Vandelli, ECS Trans. 64, 49 (2

Portable FM Radio - GitHub
There is a hole on the top of the ... This design makes the components easily changeable and all of the expensive .... Si4701/035 document and the G Laroche6 website. ... .com/attach/BCA/BCA-764/35383_AN243%20Using%20RDS_RBDS.pdf ... My experiments s

Portable contaminant sampling system
Dec 12, 2007 - 8/1976 BrouWer. 4,092,845 A. 6/1978 Prodi et a1. .... an apple, or the surface of a machine or tool. At present, gas is sampled through the use ...