POSTGLACIAL VEGETATION AND FIRE HISTORY NEAR BOLAN LAKE IN THE NORTHERN SISKIYOU MOUNTAINS OF OREGON

by CHRISTY ELAINE BRILES

A THESIS Presented to the Department of Geography and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Master of Science March 2003

ii

“Postglacial

Vegetation and Fire History Near Bolan Lake in the Northern Siskiyou

Mountains of Oregon” a thesis prepared by Christy E. Briles in partial fulfillment of the requirement for the Master of Science degree in the Department of Geography. This thesis has been approved and accepted by:

_____________________________________________________________________ Dr. Cathy Whitlock, Chair of the Examining Committee

___________________________________ Date

Committee in Charge:

Dr. Cathy Whitlock Dr. Patrick Bartlein

Accepted by: _____________________________________________________________________ Vice Provost and Dean of the Graduate School

iii

An Abstract of the Thesis of Christy E. Briles in the Department of Geography

for the degree of

Master of Science

to be taken

March 2003

Title: POSTGLACIAL VEGETATION AND FIRE HISTORY NEAR BOLAN LAKE IN THE NORTHERN SISKIYOU MOUNTAINS OF OREGON Approved: __________________________________________ Dr. Cathy Whitlock

Analysis of pollen and high-resolution macroscopic charcoal from Bolan Lake, Oregon was used to reconstruct the postglacial vegetation and fire history of the northern Siskiyou Mountains. During the late-glacial period, cool dry conditions supported subalpine parkland vegetation and few fires. Wetter conditions after 14,500 years ago resulted in a closed forest of Abies and Tsuga mertensiana and more fires than before. Warm, dry conditions in the early Holocene led to the development of open woodland and more frequent fires than before or at present. Cool, wet conditions in the late Holocene allowed Abies and Picea to become more abundant and resulted in lower fire frequency than before. Modern forests of Abies and Pseudotsuga and the present-day fire regime were established ca. 2100 years ago. Variations in Holocene fire frequency at Bolan Lake are generally similar to those recorded in the Pacific Northwest and suggest widespread response to large-scale climate changes.

iv

CURRICLUM VITA NAME OF AUTHOR: Christy Elaine Briles PLACE OF BIRTH: Montrose, Colorado DATE OF BIRTH: November 19, 1976 GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon University of Denver DEGREES AWARDED: Master of Science in Geography, 2003, University of Oregon Bachelor of Science in Environmental Science, 1999, University of Denver AREAS OF SPECIAL INTEREST: Quaternary Paleoecology and Biogeography of Western North America PROFESSIONAL EXPERIENCE: Graduate Research Fellow, General Science Program, University of Oregon, 2002-03. Graduate Research Fellow, Department of Geography, University of Oregon, 1999-02.

v

ACKNOWLEDGEMENTS I wish to express my sincere appreciation to Cathy Whitlock for introducing me to the diverse Siskiyou Mountains and the opportunity to conduct this research. I’m very grateful for Cathy’s continued support and guidance through the entire process. I also want to thank Pat Bartlein for providing the data analysis tools and instructions for the charcoal analysis, and for the review of this paper. Andrea Brunelle and Vicki Rubinstein offered helpful reviews of the manuscript and undying support. The U of O Environmental Change Research Group provided helpful suggestions and insights. Mary Edwards gave me with a radiocarbon date from a Bolan Lake core taken in 1988. Cathy Whitlock, Mitch Power, Tom Minckley, Steve Wathan helped recover the core from Bolan Lake. Julie Briles, Arne Buechling, Denise Huebner, Pete Martin and Eugene Saunders provided valuable lab assistance. Dick Boothe from the Siskiyou National Forest (USDA Forest Service) helped identify fire scars on trees in the Bolan Lake watershed. My parents, Evelyn and Wayne, have provided encouragement and financial support. Finally, thanks to Don Sullivan for introducing me to paleoecology. The project was supported by grants to Cathy Whitlock from the U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest Research Station (PSW-950022CA) and from the National Science Foundation (ATM 0117160). Summer research grants from the University of Oregon Department of Geography also help support the research.

vi

TABLE OF CONTENTS Chapter I.

Page INTRODUCTION…………………………………………………………. 1 Setting……………………………………………………………………… 7

II.

METHODS………………………………………………………………… 10 Field………………………………………………………………………... 10 Laboratory…………………………………………………………………. 10 Chronology and Lithology…………………………………………….… 10 Sediment Analysis………………….……………………………………. 11 Charcoal Analysis………………………………………………………... 12 Pollen Analysis…………………………………………………………... 12 Data Analysis………………………………………………………………. 14 Charcoal……………………………………………………………….…. 14 Pollen…………………………………………………………………….. 15

III.

RESULTS………………………………………………………………….. 16 Chronology and Lithology…………………………………………………. 16 Charcoal Record…………………………………………………………… 23 Pollen Record……………………………………………………………… 26

IV. DISCUSSION…………………………………………………………….... 38 Postglacial Vegetation and Fire History at Bolan Lake and Regional Comparison………………………………………………………………. 38 Late-glacial Period (ca. 17,000 to 10,900 cal yr BP)…………………….. 43 Early Holocene (ca. 10,900 to 4,500 cal yr BP)…………………………. 48 Late Holocene (ca. 4,500 cal BP to present)…………………………….. 53 Climate-Vegetation-Fire Linkages at Bolan Lake…………………………. 57 V.

CONCLUSIONS…………………………………………………………... 60 APPENDIX

A.

KEY TO ABBREVIATIONS USED IN APPENDICES B, C, AND D BY ORDER OF APPEARANCE……………………………………….. 63

vii

Page B.

CHARCOAL CONCENTRATION, CHARCOAL ACCUMULATION, MAGNETIC SUSCEPTIBILITY, LOSS ON IGNITION, DEPOSITION RATE FOR BOLAN LAKE, 99A CORE ………………. 66

C.

CHARCOAL INFLUX, BACKGROUND CHARCOAL, PEAKS, AND EPISODE FREQUENCY FOR BOLAN LAKE, 99A CORE….…………………………………………………………………. 92

D.

POLLEN COUNTS AND SUMS FOR BOLAN LAKE, 99A CORE…….. 130

BIBLIOGRAPHY……………………………………………………………………… 145

viii

LIST OF TABLES Table 1.

Page Pre-settlement Fire Regimes in Different Forest Types in the Siskiyou Mountains………...………………………………………………………….. 6

2. Short core, 210Pb concentrations, and calibrated ages for Bolan Lake………... 17 3. Uncalibrated radiocarbon dates and calibrated ages for Bolan Lake, long core 99A………………………………………………………………… 19 4. Pollen zone and subzone descriptions, vegetation types, and inferred climate for Bolan Lake……………………………………………………………….. 29 5. Modern site characteristics for pollen and fire records from western Oregon to northwest California……………………………………………… 39

ix

LIST OF FIGURES Figure

Page

1. Map showing the location of Bolan Lake and other sites discussed in the text…………………...………………………………………………………. 2 2. Modern vegetation zones of the Siskiyou Mountains, southwestern Oregon……………………………………………………………………….. 5 3. Age-versus-depth curve for Bolan Lake short core based on a series of 210Pb dates.………………………………………………………………….. 18 4. Calibrated and uncalibrated age-versus-depth curves for Bolan Lake….……... 20 5. Percent organic carbon content and magnetic susceptibility…………………... 22 6. Charcoal accumulation rate (CHAR) record for the last 14,500 years at Bolan Lake…………………………………………………………………… 24 7. Peaks or fire episodes, fire episode frequency, and pollen percentage diagram of selected taxa for Bolan Lake…………………………………….. 27 8. Pollen accumulation rates of selected taxa for Bolan Lake……………………. 28 9. Fire frequency records from sites in Oregon and northwestern California……. 40 10. Vegetation reconstruction based on pollen data from sites in Oregon and northwestern California……………………………………………………… 42 11. Current distribution of Pseudotsuga menziesii in the western United States………………………………………………………………………..... 45 12. Peaks or fire episodes, fire episode frequency, fire-adapted and fire-sensitive taxa, and inferred climate for Bolan Lake……………………. 50 13. Fire episode frequency versus background…………………………………….. 59

1

CHAPTER I INTRODUCTION The Siskiyou Mountains in southwestern Oregon and northwestern California are the northern extension of the rugged Klamath Mountains that lie between the Coast Range to the west and the Cascade Range to the east (Figure 1). These mountains harbor levels of biodiversity that exceed most North American temperate forests (DellaSala et al., 1999). The Klamath-Siskiyou Ecoregion (including the Siskiyou Mountains) is ranked third among temperate coniferous forests in the United States and Canada in terms of total species richness and endemism. Thirty conifer species are present in the region, and several are endemic, such as the Picea breweriana (Brewer spruce), Chamaecyparis lawsoniana (Port Orford cedar), and Pinus balfouriana (fox tail pine). The Siskiyou Mountains are also home to several rare and endangered species, such as Kalmiopsis leachiana (kalmia), Fritillaria glauca (Siskiyou fritillaria), and Plethodon stormi (Siskiyou salamander) (All botanical nomenclature is based on Hickman, 1993). The biodiversity of the region is a result of complex geology, climate conditions, and fire regimes that support and maintain many species and communities (Whittaker, 1960). Extensive ultramafic soils create unique plant communities with high endemism. The ultramafic serpentine bedrock weathers to soils rich in iron, magnesium, nickel, chromium and cobalt that result in sparse vegetation cover and plants that can tolerate nutrient-poor substrates. Areas dominated by granite, diorite, and sedimentary rocks

2

120°W

WA

ID

OR

45°N

e

Indian Prairie

Mo u h t a m K la

s n t a in

Ca s

cad

e

Little Lake

R ang

Coast

Range

Pacific Ocean

N 0

Siskiyou Mountains

40°N

100 km CA

NV

Figure 1. Map showing the location of Bolan Lake and other sites discussed in the text.

3 maintain different communities with little or no ultramafic tolerance (Coleman and Kruckeberg, 1999). The climate of the Siskiyou Mountain region is determined by the seasonal migration of high- and low-pressure systems in the northeast Pacific Ocean (Mock, 1994 and 1996). During the winter, a strong low-pressure system forms over the Gulf of Alaska and a weak high-pressure system develops in the central Pacific. Storms form in the Gulf of Alaska and move onshore, delivering moisture to Oregon from the sub-tropical Pacific. The winter storms tend to be intercepted by coastal mountains in southwestern Oregon, creating a rainshadow in the interior valleys. In summer, the eastern Pacific high-pressure system expands and the jet stream and associated storms shift northward. As a result, the Siskiyou region becomes relatively dry due to the subsidence associated with the highpressure. The region features the highest temperatures in western Oregon and receives only small amounts of precipitation from convectional storms in summer. In addition, the topographic heterogeneity of the region produces a variety of different precipitation and temperature regimes; with higher elevation sites receiving significantly more precipitation and recording lower temperatures than the valleys (Taylor and Hannan, 1999). Rugged mountainous terrain and the array of climate regimes found in the Siskiyou Mountains allow plant species from California, the Pacific Northwest, and the Great Basin to create unique vegetation communities found nowhere else. The region marks the northern limit of Abies concolor (white fir), Abies magnifica (red fir), Pinus jeffreyi (Jeffrey pine), Lithocarpus densiflorus (tanoak), and Calocedrus decurrens (incense

4 cedar), with primary ranges in the Sierra Nevada and the California Coast Range. The southern limit of Tsuga heterophylla (western hemlock), Thuja plicata (western red cedar), and Alnus sinuata (sitka alder), found primarily in the Oregon Coast Range and Cascade Range, also occurs in the Siskiyou Mountains. The vegetation limits of these species results in an important biogeographic transition zone in the region. In areas not underlain by ultramafic soils, the forests can be divided into six zones: Interior Valley, Mixed-Evergreen, Mixed-Conifer, Abies concolor, Abies magnifica, and Tsuga mertensiana. These zones are arranged along east-west gradients in elevation and climate (Figure 2). Fire is the major form of natural disturbance in forests of the Siskiyou Mountains with different fire regimes associated with particular vegetation communities (Agee, 1991 and 1993; McNeil and Zobel, 1980; Taylor and Skinner, 1998 ; see Table 1). Fires in the Pacific Northwest are associated with the establishment of a persistent upper-level ridge and associated surface high-pressure area in summer that create warm, dry conditions and dry fuels. The development of a weak upper-level trough creates atmospheric instability and dry thunderstorms with lightning (Agee, 1993). In recent years, the Siskiyou forests have experienced a large number of stand-replacing fires. For example, the largest recorded fire in Oregon history (the ~202,000 ha “Biscuit Fire”) occurred in summer 2002 in the Siskiyou National Forest Kalmiopsis Wilderness of southwestern Oregon and extended into northwestern California. Another large fire year occurred in 1987 in northern California and southwestern Oregon.

Quercus garryana, Q. kelloggii, P. ponderosa, Arbutus menziesii, and Pseudotsuga menziesii

Interior Valley Zone -

Mixed-Evergreen Zone - Pseudotsuga menziesii, Lithocarpus densiflorus, Arbutus menziesii, Chrysolepis chrysophylla, Quercus chrysoepis, P. ponderosa, P. lambertiana, and Calocedrus decurrens

Mixed-Conifer Zone - Pseudotsuga menziesii, Abies concolor, Calocedrus decurrens, P. lambertiana, and P. ponderosa

Abies concolor, Pseudotsuga menziesii, P. monticola, P. lambertiana, Calodedrus decurrens, Picea breweriana, and Abies magnifica var. shastensis

Abies concolor Zone -

P. monticola , Tsuga mertensiana, and P. contorta

Siskiyou Mountains

Bolan Lake

Abies magnifica Zone - Abies magnifica var. shastensis, Abies concolor,

Tsuga mertensiana, Abies magnifica var. shastensis, P. contorta, P. albicaulis, and P. monticola

Tsuga mertensiana Zone Increasing precipitation and decreasing temperature

Figure 2. Modern vegetation zones of the Siskiyou Mountains, southwestern Oregon (Franklin and Dyrness, 1988). Dominate species in each zone are in bold.

500m

1000m

1500m

2000m

2500m

5

6 Table 1 Pre-settlement Fire Regimes in Different Forest Types in the Siskiyou Mountains1 Forest Type

Frequency (Mean Fire Return Interval), Severity

Tsuga mertensiana

Infrequent (>800 years), high severity (cool, moist conditions dampened fires and build up of understory fuels overtime supported crown fire behavior)

Abies magnifica

Infrequent (not well known but ca. 100-300 years), moderate severity

Abies concolor

Frequent (43-64 years; increasing with elevation), moderate to low severity (frequent fires removed understory ladder fuels)

Mixed-Conifer (Pseudotsuga forest)

Frequent (12-19 years), variable fire severities usually moderate to low (depends on forest composition, stand development history, and topographic position of the forests)

Mixed-Evergreen (Pseudotsuga/hardwood forests)

Frequent (11-17 years), variable fire severities usually moderate to low

Quercus and Pinus Woodland

Frequent (not known), low severity, short-duration fires (result of understory fine fuels that carry fires)

1Agee, 1993 2 Taylor and

Skinner, 1998

7 The history of the forests and the processes that have maintained the biological diversity of the Siskiyou Mountains are poorly understood. Paleoecological studies from other parts of the Pacific Northwest show changes in vegetation and fire regimes to climate variations occurring at orbital (103-104 years) to annual time scales, and the response of vegetation and fire differs at the various time scales. Comparable information does not exist for the Siskiyou Mountains, because no long-term vegetation and fire records exist. This study presents a postglacial history of vegetation and fire derived from pollen, plant macrofossils, and charcoal contained in the sediments of Bolan Lake, a small lake in northern Siskiyou Range. This record allowed me to address the following questions: 1. What is the climate, vegetation and fire history since the end of the last ice age at Bolan Lake? 2. How sensitive were vegetation and fire regimes at Bolan Lake to changes in climate occurring on millennial and centennial time scales? 3. When and under what conditions (i.e., climate and disturbance regimes) did the present-day montane vegetation and fire regime develop at Bolan Lake? The results of this study were compared with pollen and fire records from Oregon and northern California to develop an understanding of regional patterns in the fire and vegetation history. Setting Bolan Lake (Lat. 42°01’30”N, Long. 123°27’30”W, 1638 m elevation; U.S. Geological Survey 7.5’Oregon Caves Quadrangle, 1986; see Figure 1) occupies a late-

8 Pleistocene cirque basin dammed by a 15-m high arcuate moraine (Long, 1977). Diorite is the dominate bedrock but outcrops of serpentine also occur throughout watershed. There is no inlet stream and a dam was constructed in the mid-20th century to raise the water level of the lake. Most of the precipitation in the northern Siskiyou Mountains occurs in winter as snow, with occasional thunderstorms in the summer. Climate data spanning the last 20 years from Oregon Caves National Monument (elevation 1219 m), 20 km north of Bolan Lake, record a mean annual precipitation of 175 cm and mean annual snowfall of 436 cm. The mean daily temperature ranges from 0°C in January to 18°C in July. Bolan Lake is located at a higher elevation and is correspondingly cooler and wetter. The vegetation in the Bolan Lake watershed is typical of the Abies concolor Zone between 1400-1800 m elevation (Figure 2). Old-growth stands of Abies concolor and Pseudotsuga menziesii dominate the forest. Abies magnifica is scattered through the watershed and is the dominant conifer species at higher elevations in the watershed. Pinus monticola occupies disturbed areas in the watershed and on dry slopes. Calocedrus decurrens is a late-successional species associated with Abies concolor and Pseudotsuga menziesii. Tsuga mertensiana is found in the watershed on shaded, more mesic slopes. A isolated population of Picea breweriana is located west and south of Bolan Lake but the species is not present in the watershed. Alnus sinuata (Sitka alder), Chyrsolepis chrysophylla (canyon live oak), Rubus parviflorus (thimbleberry), Sorbus spp. (mountain ash), Lonicera conjugialis (wedded honeysuckle) are common shrubs around the lake and streams. Shrubs found in forest openings and along forest fringes include Acer circinatum

9 (vine maple), Acer glabrum var. douglasii (Douglas maple), Amelanchier spp. (serviceberry), Corylus cornuta var. californica (California hazel), Arctostaphylos nevadensis (pinemat manzanita), Arctostaphylos patula (green manzanita), Ceanothus velutinus (snow brush), Holodiscus discolor (ocean spray), Quercus sadleriana (sadler oak), Quercus vaccinifolia (huckleberry oak), Ribes spp., Rosa spp., and Vaccinium membranaceum (thin leaf huckleberry). The forest understory includes Pyrola (wintergreen), Achlys triphylla (vanillaleaf), Vancouveria hexandra (inside-out-flower), Berberis, and Chimaphila umbellata (prince’s pine). Little is known about the fire history of the Bolan Lake watershed. In summer 2000, several Abies concolor in the watershed were cut by the U.S.D.A Forest Service to control the spread of yellow cap fungus (Pholiota limonella). Rings on four stumps were counted and all preserved fire scars at ca.130 and 200 years. The oldest trees in the watershed are approximately 300-330 years old and were likely established after a major disturbance event (probably a fire). Based on studies from other Abies concolor forests, the Bolan Lake watershed probably experienced frequent fires of moderate to low severity in the recent past (Agee, 1991 and 1993; Taylor and Skinner, 1998; Mohr et al., 2000).

10

CHAPTER II METHODS Field Continuous meter-long sediment cores were retrieved from the deepest water of Bolan Lake (11.25 meters of water) in September 1999 from an anchored platform using a 5-cm-diameter modified Livingstone square-rod piston sampler (Wright et al., 1983). Core 99A was 8.94-m-long with the drive starting from the mud-water interface and core 99B was 7.87-m-long with the drive starting 0.5 m below the mud-water interface. Cores were extruded, wrapped in cellophane and aluminum foil, and stored under refrigeration. In addition, an 80-cm-long short core, with an intact mud-water interface, was collected using a 7.5-cm-diameter plastic tube fitted with a piston and operated with drive rods. The short core was extruded in the field at 1-cm intervals and stored in plastic bags under refrigeration. Laboratory Chronology and Lithology Long core 99A was used for all laboratory analyses, except to obtain radiocarbon dates to fill gaps in the chronology. Subsequent discussion refers to core 99A unless

11 otherwise noted. In the laboratory, each core segment was sliced longitudinally, and the lithology and macrofossils described in detail. Nine macrofossils, seven from long core 99A, one from long core 99B, and one from the short core were submitted for AMS-radiocarbon dating. Thirteen dried sediment samples of 0.7 to 1.1 grams from the top 30 cm of the short core were submitted for 210Pb dating. Sediment Analysis Loss-on-ignition determinations were performed at contiguous 1-cm intervals through the organic section of the core, to a depth of 7.89 m, and at 10 cm intervals through the inorganic section of the core. Samples of 1-cm3 were dried 24 hours at 90°C to determine dry weight. Weight-loss after burning the samples for two hours at 550°C was used to calculate the percent of organics and weight-loss after two hours at 900°C was used to determine carbonate percentages (Dean, 1974, see Appendix B). Sediment magnetic susceptibility was measured on contiguous 1-cm intervals to a depth of 7.89 m using 8 cm3 of sediment packed in a plastic cup. Individual cups were placed in a magnetic-susceptibility meter made by Sapphire Instruments to measure the inductance of the sample. Results were reported in terms of electromagnetic units (emu) (see Appendix B).

12 Charcoal Analysis Analysis of macroscopic charcoal was used to reconstruct the fire history for the Bolan Lake watershed. Charcoal analysis followed methods described by Millspaugh and Whitlock (1995), Long et al. (1998), and Mohr et al. (2000). Contiguous 1-cm interval samples from the long core were taken through the dated section of the core, to a depth of 7.89 m, which spanned the last 14,500 cal yr BP. Additionally, the entire 80-cm short core was also sampled for charcoal at 1-cm intervals. Individual samples were placed in plastic bags and disaggregated in a 5% sodium hexametaphosphate solution. The material was wet-sieved though a nested series of metal screens with mesh sizes of 250 and 125 µm. The >250 and 125-250 µm charcoal fractions were placed in gridded petri dishes and counted under a stereomicroscope at 32x and 50x, respectively. Long core and short core records were merged based on lithologic correlation. Charcoal counts at the >250 and 125 µm showed similar stratigraphic variations and where combined to calculate charcoal concentration (particles cm-3). Charcoal accumulation rates (CHAR; particles cm-2 year-1) were calculated by dividing the charcoal concentrations by the deposition time (years cm-1) for each sample (see Appendix B). Pollen Analysis Pollen was analyzed at 20-cm intervals, approximately every 100-800 years, in 1 cm3 samples to reconstruct the vegetation history. Standard laboratory techniques were used (Faegri et al., 1989). Pollen counts ranged between 200-400 terrestrial grains per sample. Lycopodium tracer spores were added to each sample for calculation of pollen

13 concentration (grains cm-3) and pollen accumulation rates (grains cm-2 year-1). Individual pollen grains were identified down to the lowest taxonomic level possible using the pollen and spore reference collection at the Department of Geography, University of Oregon, published atlases (e.g. Kapp et al., 2000; Moore and Webb, 1978) and journal articles for specific taxa (Jarvis et al., 1992; Hebda et al., 1988a and 1988b). Identifications were made at magnifications of 500x and 1250x. The assignment of pollen taxa was based on modern phytogeography. Haploxylon-type Pinus pollen counts may have come from Pinus monticola, P. albicaulis, P. lambertiana and/or P. balfouriana, and diploxylon-type Pinus pollen counts were attributed to P. jeffreyi and P. ponderosa. Pinus grains missing a distal membrane were identified as undifferentiated Pinus and were assumed to contain the same proportions of haploxylon-type and diploxylon-type pine as the identified fraction. Abies pollen grains were probably A. concolor and A. magnifica. Picea pollen were probably P. breweriana or P. engelmannii, and Cupressaceae grains may have come from Calocedrus decurrens, Chamaecyparis lawsoniana, Thuja plicata, or Juniperus occidentalis. Chrysolepis-type grains were either C. chrysophylla or Lithocarpus densiflora . Quercus vaccinifolia-type pollen was distinguished from Q. garryana-type based on coarseness of the sculpturing elements and differences in the apertures (Jarvis et al., 1992). Ceanothus grains may have come from C. cuneatus (buckbrush), C. integerrimus (deerbrush), C. prostrates (squaw carpet), C. pumilus (dwarf ceanothus), C. thyrsiflorus (blue blossom ceanothus), or C. velutinus (snowbrush). Betula pollen were attributed to B. occidentails (water birch) and Corylus grains to C. cornuta (california hazel). Pollen grains that were broken, corroded, hidden

14 or otherwise damaged were counted as ‘Indeterminate’, and those that were unidentifiable were counted as ‘Unknown.’ Data Analysis Charcoal CHAR are composed of both peaks and background. The peaks component represents charcoal produced by a fire while the background component represents charcoal sequestered in the watershed and littoral zone that is introduced into lake sediments through time or charcoal from extra-local sources (Long et al., 1998; Whitlock et al., 1996). Variations in the background component are attributed to charcoal stored in and around the lake that gets introduced secondarily during non-fire years and changes in woody fuel biomass (Long et al., 1998; Clark and Royall, 1996). The goal of the charcoal analysis was to separate the high-frequency, rapidly varying CHAR-peak component from the lower-frequency, slowly varying background component using the decomposition approach described by Long et al. (1998). CHAR were interpolated to equally spaced decadal pseudo-annual intervals. The background component was determined using a locally weighted average, calculated by moving a window along the decadal pseudo-annual CHAR series. Peaks or fire episodes (a single fire or cluster of fires) were determined when the peaks component exceeded the background component by a threshold value that was calibrated using fire-scarred treerings from the watershed and the known fire return interval in comparable forests. A locally weighted frequency of fire episodes (number of fire episodes per number of years)

15 was produced by smoothing with a locally weighted mean through the binary series of fire episodes (1=fire episode; 0=no fire episode). A window width of 850 years and a threshold-ratio value of 1.1 best approximated the inferred fire episode frequency for the past few centuries. These parameters were applied to the entire record (see Appendix C). Pollen Pollen percentages and accumulation rates were used to reconstruct past vegetation. Percentages of terrestrial upland taxa were based on a sum of all trees, shrubs, herbs, and pteridophytes (see Appendix D). Because the lake margin today is surrounded by Alnus sinuata and the pollen record was dominated by that taxon, it was excluded from the terrestrial pollen sum. Aquatic percentages were based on a sum of all pollen and spores, including wetland and aquatic types. The pollen-percentage record was divided into five zones by use of a constrained cluster analysis (CONISS; Grimm, 1988). Pollen concentrations (grains cm-3) and deposition times (calibrated yr cm-1) were used to calculated pollen accumulation rates (grains cm-2 yr-1) to determine changes in individual taxon abundance over the length of the record independent of other pollen types (Birks and Gordon, 1985).

16

CHAPTER III RESULTS Chronology and Lithology Thirteen 210Pb age determinations on the short core were used to establish a highresolution chronology for the past 160 years (Table 2). The top of the core was assigned an age of 1999 AD, the year the core was taken. An age-versus-depth model was constructed based on thirteen 210Pb dates, and a 4th-order polynomial was used to describe the sedimentation rate of Bolan Lake for the last 160 years (Figure 3). The Holocene chronology was constructed from (1) thirteen 210Pb dates, (2) ten AMS 14C dates from long cores 99A and 99B and the short core, (3) a 14C date on gyttja from a previously dated core (WIS2085, 1988, M. Edwards, personal communication, 2002), and (4) a tephra in long core 99A attributed to the eruption of Mount Mazama in the Cascade Range northeast of Bolan Lake (Table 3). Lithologic correlation among cores allowed 14C and 210Pb dates from long and short cores to be incorporated into a single chronology. The 14C dates were converted to calendar ages using CALIB 4.1.2 (Stuiver and Reimer, 1998). A 4th-order polynomial, based on a range of possible dates (within the 2 sigma probability distribution), was used to describe the deposition time of sediments in the lake record (Figure 4).

17 Table 2 Short core, 210Pb concentrations, and calibrated ages for Bolan Lake Depth (cm)a

210Pb

dpm g-1b

0

Age (cal yr)

Age (yr AD)

0

1999

6

13.74

30

1969

7

9.58

42

1957

8

6.94

52

1947

10

4.87

64

1935

12

3.00

80

1919

14

1.74

98

1901

16

1.59

101

1898

18

1.01

116

1883

20

0.74

126

1873

22

0.58

134

1865

24

0.45

142

1857

26

0.35

151

1848

28

0.27

159

1840

Bolan Lake short core age model (yr AD): Age = 1999 - 2.60 * depth - 0.72 * depth2 + 0.04 * depth3 - 0.00063 * depth4 (r2 = 0.9977) aDepth below mud surface. b Concentration data provided by the Center for Great Lake Studies,

University of Wisconsin-Milwaukee

18 Depth (cm) 0

10

20

30

1999

1969

Age (yr AD)

1960

1957

1947 1935

1920

1919

1901 1880

1898 1883

1873 1865

1840

1857 1848

1840

Figure 3. Age-versus-depth curve for Bolan Lake short core based on a series of 210Pb dates. See Table 2 for age models applied to the curve.

Uncalibrated 14C age (14C yr B.P.) Calibrated age (cal yr BP) & cal yr BP range (2 sigma)b Material Dated

Lab. number/ referencec

wood gyttja

663 (628-710) 14319 (14095-15428)

WIS2085 (Edwards, 1988)

AA40214

AA=Univ. of Arizona AMS Facility; WIS= Univ. of Wisconsin AMS Facility

aDepth below mud surface; b14C ages derived from CALIB 4.1.2 calibration curves (Stuiver and Reimer, 1998). Where multiple ages are reported, the bolded age was used in the age model; cNSRL=CU Boulder INSTAAR-AMS Facility;

Bolan Lake age models (including 210Pb dates): Calibrated age model (cal yr BP): 300.67 * depth + 764.68 * depth2 - 156.67 * depth3 + 10.71 * depth4 (r2 = 0.9993) Uncalibrated age model (14C yr BP): 648.95 * depth + 480.63 *depth2 - 102.87 * depth3 + 7.22 * depth4 (r2 = 0.9989)

Short core (adjusted depth in core 99A) 708±41 0.69 (0.71) Previous dates 7.86 12360±120

Core 99A cone scale and needle AA40215 304 (272-465) 0.59 267±46 leaf and charcoal AA44436 2117 (1995-2155) 1.66 2123±35 AA44437 2.60 3354±39 3629, 3619, 3607, 3601, 3586 (3474-3643) cone scale wood NSRL12159 3.12 4120±45 4783, 4768, 4611, 4597, 4574 (4523-4737) wood NSRL12160 7247 (7152-7313) 4.63 6290±45 Mazama ash Zdanowicz et al., 1999 7627 (7477-7777) 4.86 6730±40 wood NSRL12161 9007 (8763-9092) 5.70 8060±50 wood AA40217 9908, 9898, 9892, 9874 (9680-10161) 6.45 8827±62 Core 99B (adjusted depth in core 99A) wood NSRL12162 13002 (12856-13174) 7.22 (7.39) 11010±65

Depth (m)a

Table 3 Uncalibrated radiocarbon dates and calibrated ages for Bolan Lake, long core 99A.

19

20 Depth below mud surface (m) 0 0

2

4

6

8

267 304 708 663 2123 2117

Age (cal yr BP x1000)

4

3354 4120 3607 4574 6290 6730

8

7247 7627

8060 8827 9007 9908

12

11010

Calibrated Age (cal yr BP) cal yr BP age range (2 sigma) Uncalibrated Age (14C yr BP) with 1 s.d.

12360 13002 14319

16

Figure 4. Calibrated and uncalibrated age-versus-depth curves for Bolan Lake. See Tables 2 and 3 for age determinations and age models.

21 The long core contained two distinct lithological units. The bottom lithological unit (7.89 to 8.69 m depth) consisted of inorganic green clay (~10% organic matter). The top unit (0 to 7.89 m depth) consisted of fine detritus clay gyttja (~35% organic matter) with abundant macrofossils. In the top unit, from 6.73 to 7.26 m depth, alternating bands of fine detritus gyttja and silt, with several small stones, were preserved. The top unit, from 3.75 to 3.85 m and 4.61 to 4.71 m depth, contained abundant Isoetes microspores (pond weed). A 0.5-cm-thick ash layer from Mount Mazama was preserved at 4.85 m depth. Loss-on-ignition and magnetic susceptibility data were separated into five main lithologic units from the late-glacial period through the Holocene (Figure 5). The lowest unit, from 17,000 to14,500 cal yr BP, was characterized by low organic content (1 to 2%), suggesting an unproductive lake. Also during this time, high magnetic susceptibility (7x10-6 emu cm-2yr-1) in the inorganic green clay unit indicated large clastic inputs of sediment. The greatest change in organic content and magnetic susceptibility occurred between 14,500 and 10,900 cal yr BP. The period is marked by an initial increase in organic content (from 1 to 20%) and a decrease in magnetic susceptibility (from 7x10-6 to 1x10-6 emu cm-2yr-1) between 14,500 and 12,200 cal yr BP suggesting a more productive lake than before and decreased clastic input. A rapid decline in organic content (from 20 to 10%) and an associated increase in magnetic susceptibility (from 1x10-6 to 3x10-6 emu cm-2yr-1) between 12,200 to 10,900 cal yr BP suggest less productivity and high clastic inputs. Laminated sediments and several stones were found between 12,200 and 10,900 cal yr BP suggesting glacier advances or other mass movements nearby. The organic content rapidly increased (from 10 to 35%) and magnetic susceptibility decreased (from

22 % Organic Content 0

10

20

30

40

0 1 2 3 gradually increasing productivity, low clastic input

4

Age (cal yr BP x1000)

5 6 7 8 9

variable productivity, low clastic input

10 11

low productivity, high clastic input, laminated sediments, stones

12 13 14

high productivity, low clastic input

15 16

low productivity, high clastic input

17

1E-008 1E-007 1E-006 1E-005 0.0001 0.001

Magnetic Susceptibility (emu)

Figure 5. Percent organic carbon content (solid line) and magnetic susceptibility (dashed line).

23 3x10-6 to 5x10-7 emu cm-2yr-1) between 10,900 and 8500 cal yr BP, reaching almost modern values and indicating a highly productive lake system with low clastic input. Between 10,900 and 8500 cal yr BP, organic content varied more than at any other time period in the record (between 25 and 35%), possibly due to changing lake levels resulting in greater concentration of organics in the middle of the lake during lower lake levels (B. Shuman, personal communication, 2002). Increasing organic content (from 25 to 35%) and decreasing magnetic susceptibility (from 7x10-7 to 1x10-7 emu cm-2yr-1) characterized the last 8500 cal years, suggesting Bolan Lake has gradually become more productive. Charcoal Record Analysis of the Bolan Lake charcoal record identified three episodes of fires in the last 350 years. The episodes correlate well with independent evidence of fires based on tree-ring scars and stand ages from the watershed if the margins of error from 210Pb and 14

C dates are considered. Fires identified from tree-ring scars occurred at 130 and 200

years ago and most trees in the watershed were 300 to 330 years old. Recent fire episodes identified by charcoal peaks occurred from 96 to146, 176 to 206, and 346 to 366 years ago. Fire episodes varied from 4 to 10 episodes/1000 yr over the last 14,500 cal yr BP (Figure 6). Fire episode frequency fluctuated between 3.7 and 7 episodes/1000 yr between 14,500 and 10,900 cal yr BP, with highest values at 13,000 cal yr BP (7 episodes/1000 yr) and lowest at 14,000 and 11,500 cal yr BP (3 and 4 episodes/1000 yr, respectively). Fire played a minor role in the forest between 14,500 and 10,900 cal yr BP

24 Fire Episode Frequency

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15 0 4 8 12 2 particles cm yr 1

0

Age (cal yr BP x1000)

Age (cal yr BP x1000)

Peaks/ Accumulation Rate & Fire Episodes Background

4 8 12 no./1000 yr

Figure 6. CHAR record for the last 14,500 years at Bolan Lake. Accumulation rates were decomposed into background (the slowly varying curve overlying the accumulation rate curve; window-width=850 years) and peaks or fire episodes (threshold value=1.1). The fire episode frequency shows the number of peaks per 1000 years smoothed with a 2500-year window.

25 except for between 13,200 and 12,200 cal yr BP. Background charcoal gradually increased from 0.2 to 2 particles cm-2 yr-1. The low background indicates small amounts of woody fuel to burn. Fire episode frequency gradually increased from 3 to 10 episodes/1000 yr between 10,900 and 7000 cal yr BP, with highest values at 7000 cal yr BP. Fire became a more major form of disturbance in the forest than before or at present. Background charcoal increased rapidly from 2 to 3 particles cm-2yr-1 between 10,900 and 10,500 cal yr BP, ranged from 2.5 to 3 particles cm-2yr-1 between 10,500 and 7500 cal yr BP, and increased to 4.4 particles cm-2yr-1 ca. 7000 cal yr BP. The increasing background through the interval suggests increasing amounts of woody fuel to burn. Fire episode frequency steadily declined from 10 to 7 episodes/1000 yr between 7000 and 3500 cal yr BP with a corresponding decline in background charcoal from 4.4 to 3.5 particles cm-2yr-1. Background charcoal increased from 4.4 to 5 particles cm-2yr-1 and fire episode frequency increased from 7 to 8 episodes/1000 yr between 3500 and 2000 cal yr BP. Fire became a minor form of disturbance in the forest and the amount of available fuels declined after 7000 cal yr BP. After 2000 cal yr BP, background charcoal levels declined from 5 to 3.3 particles cm-2yr-1 and fire episode frequency gradually increased from 8 to 9 episodes/1000 yr suggesting that fire played an increasing role in the forest.

26 Pollen Record The pollen record was divided into five local zones: BOL-1 (Artemisia, Pinus, Picea, and Cupressaceae), BOL-2 (Abies and Tsuga mertensiana), BOL-3 (Pinus and Quercus), BOL-4 (Abies and Picea), and BOL-5 (Abies and Pseudotsuga). Zone BOL-2 was further divided into two subzones: BOL-2a (Abies, Tsuga mertensiana, and Pseudotsuga) and BOL-2b (Abies, Tsuga mertensiana, and Picea). Zone BOL-3 was divided into three subzones: BOL-3a (Pinus, Quercus, Cupressaceae), BOL-3b (Pinus, Quercus, and Cyperaceae), and BOL-3c (Pinus, Quercus, Cupressaceae, and Alnus rubra). Selected pollen taxa along with fire episodes and fire episode frequency are plotted in Figure 7. Pollen accumulation rates for selected taxa are shown in Figure 8, and key features of the pollen diagram are summarized in Table 4. Zone BOL-1 (ca. 17,000 to 14,500 cal yr BP; 7.76 to 8.60 m depth) features high percentages of Artemisia and Poaceae and moderate percentages of Pinus, Picea, Tsuga mertensiana, and Cupressaceae (probably Juniperus occidentalis). Picea pollen in this zone may be from P. engelmannii or P. breweriana. Both species of Picea could have been close to Bolan Lake between 17,000 to 14,500 cal yr BP, although neither grows in the watershed at present. Accumulation rates of Pseudotsuga and Pinus pollen prior to 14,500 cal yr BP are low (3 to 7 grains cm-2 yr-1, <1000 grains cm-2yr-1, respectively) suggesting that these taxa played less of a role than implied by the percentages (<3% and 15 to 50%, respectively). Low pollen accumulation rates for conifer taxa and high rates in Artemisia and Poaceae suggest a relatively open environment, based on similar pollen accumulation rates found in modern subalpine environments (Ritchie and Lichti-

Age (cal yr BP x1000)

re

is

Pi

s nu

i

l co in

us

e yp

t a-

P al

t on

t To

m

q

cy a

g su

en

m

i

si

e zi

20

20

e ea c a ot ss a s d e eu pr ice ie Ps Cu P Ab

0 4 8 12 20 40 60 20 no./1000 yr percent pollen

Fi

ep

e od

fre

n ue

20

20

20 20 gray shaded area is 5x exaggeration

1

Artemisia, Pinus, Picea & Cupressaceae

2b Abies & Tsuga mertensiana 2a

3a

3b

Pinus & Quercus

Abies & Picea 4 3c

Abies & Pseudotsuga 5

Figure 7. Peaks or fire episodes, fire episode frequency, and pollen percentage diagram of selected taxa for Bolan Lake.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pe

a

/ ks

F

ire

i Ep

so

s de

Herbs and Pteridophytes e e yp pus t p r pe -ty lia ca ty a a o n o e n e if a e ea pe i n Li t h si ya -typ p c n r c / r y c e t a -ty te ga bra us va epis ia e cea ia- odi ris er l is a a s p te m us us ru oth us a l rc us n rc so em ace er bro no po Inferred y y g u or ue Aln ea ue hr Art Po Cyp Am Che Dry Zone Vegetation s C Q T C Q C Trees and Shrubs

27

Age (cal yr BP x1000)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Herbs and Pteridophytes

pe

e zi

si

i

300 100 300 100 800 400 300 100 800 400 400 200

100 50 800 400 3000 1000 200 100 1500

100 50 400 200 300 100

500 1500 500 6000 2000 3000 1000

Figure 8. Pollen accumulation rates of selected taxa for Bolan Lake.

Accumulation rate (grains cm-2 yr-1)

1

2a

2b

3a

3b

3c

4

5

pe us e ty pe rp y a t yp a i t l a c l t- y en e na pe ia ifo tho an a a i r l e a n t m e i s i e o e p s ty c p ry n cc is/L tic uga e a- s ty dia ea -ty erre te ar a r n r a ff c s g i v i p b o u e e t ia o r ia ts d sa ae rac m s te tal us s ru oth us sole mis os nop e un us m udo res u o r c s c e a a l c x r n a ie er hry rte e pe mb he p ry ue yp To flu on nu ea us in ce ug l o b r i s y u u o s n Z n A P A P A A P i C D P C C Q C T Q C C Pi

Trees and Shrubs

28

10000 5000

400 200

100 50

Pollen zone, age (cal yr BP) and depth (m) BOL-1 ca. 17,000-14,500 7.76-8.60

Highest percentages of Artemisia (14%) and Poaceae (9%) occur at the beginning of the zone and decline toward the top. Pinus percentages are high (80%); however, accumulation rates are low (<200 grains cm-2 yr-1). Tsuga mertensiana is high (10%) at the bottom of the zone, decreases (5%), and then increases to 10% toward the top of the zone. Accumulation rates for Tsuga mertensiana are low (27 grains cm-2 yr-1) at the bottom of the record and increase (200 grains cm-2 yr-1) toward the top. Pseudotsuga reaches 3% around 16,000 cal yr BP, with low accumulation rates (6 grains cm-2 yr-1), and then decreases to small amounts (<1%) at the top of the zone. Cupressaceae is initially low (<1%) but increases (5%) at the top of the zone. Picea percents are moderate (3%) but accumulation rates are low (10 grains cm-2 yr-1). Abies is intially low (<2%) and increases to 9% at the top of the zone. Tsuga heterophylla occurs in trace amounts (<1%). Total pollen accumulation rates are low ranging from 250 to 700 grains cm-2 yr-1.

Description

Subalpine forest at treeline; colder and drier than present

Vegetation Type & Inferred Climate

Table 4. Pollen zone and subzone descriptions, vegetation types, and inferred climate for Bolan Lake.

29

BOL-2b 13,000-10,900 6.73-7.48

Abies, Picea, and Artemisia percentages are initally low (8%, 2%, 2%, respectively), peak (17%, 4%, 3%, respectively) at ca. 12,500 cal yr BP, and then decline (9%, 2%, 1%, respectively) at the top of the subzone. Tsuga mertensiana percentages are also initially low (3%), peak (17%) at ca. 12,000 cal yr BP when Pseudotsuga and Pinus monticola-type are low (2 amd 18%, respectively) and then decline to <1% as Pseudotsuga and Pinus monticola-type increase (5 and 25%, respectively) toward the top of the subzone. Highest percentages of Ambrosia (3 to 5%) and Chenopodiaceae/Amaranthaceae (2%) occur in this subzone. Corylus, Quercus, Alnus rubra-type, and Ceanothus all occur in trace amounts (<1%). Total pollen accumulation rates range from 2100 to 5000 grains cm-2 yr-1. Macrofossils included Picea (7.22 and 7.23 m depth), a Picea englemannii needle (7.28 m depth), and a Abies needle (6.71 m depth).

Open subalpine forest; colder than in BOL-2a but not as cold as BOL-1

Table 4 (cont). Pollen zone and subzone descriptions, vegetation types, and inferred climate for Bolan Lake. Pollen zone, Vegetation Type & age (cal yr BP) Description Inferred Climate and depth (m) BOL-2a Closed forest with Abies and Tsuga mertensiana percentages are high (9 and 8%, respectively). 14,500-13,000 Pseudotsuga increase (2 to 9%) toward the top of the subzone. Alnus rubra-type present day subalpine 7.48-7.88 percents are small (<3%). Pinus decreases from 80% at the bottom of the zone to and montane species; 50% at the top. Artemisia, Poaceae, and other herbs and pteridophytes are found warmer and wetter than BOL-1 but not in small amounts (<2%). Quercus, Corylus, and Ceanothus are found in small as warm and wet amounts (<1%) at the top of the subzone. Cupressaceae is absent from the as today subzone. Total pollen accumulation rates range from 1500 to 2500 grains cm-2 yr-1.

30

Pinus-dominated open forest; cooler than in BOL-3a

Closed mixedconifer forest; warmer and wetter than in BOL-3b

Highest percentages of Pinus (81%) and Pinus monticola-type (63%) occur in this subzone. Abies percentages gradually increase through the subzone (2 to 10%). Pseudotsuga (3 to 6%) and Quercus vaccinifolia-type (3 to 7%) increase at the top of the subzone while Quercus garryana-type and Ceanothus are present in steady amounts. Cyperaceae and Drypoteris-type occur in moderate amounts (5%). Cupressaceae and Alnus rubra-type are only found in small amounts (<2%).Total pollen accumulation rates range from 5500 to 9600 grains cm-2 yr-1.

Highest percentages of Alnus rubra-type (14%) and Quercus vaccinifolia-type (11%) occur in this subzone. Cupressaceae percentages increase (4%) but not to the amount of BOL-3a. Abies gradually increases while Pinus declines through the subzone. Pseudotsuga percentages remains unchanged from BOL-3b. Ceanothus values are small (2%). Artemisia values are moderate at the bottom of the subzone and gradually decrease toward the top. Picea and Tsuga mertensiana, are found in small amounts (1%) through out the subzone. Total pollen accumulation rates range from 1300 to 9000 grains cm-2 yr-1. Macrofossils included a Abies needle (3.85 m depth).

BOL-3b 8500-7000 4.52-5.47

BOL-3c 7000-4500 3.03-4.52

Table 4 (cont). Pollen zone and subzone descriptions, vegetation types, and inferred climate for Bolan Lake. Pollen zone, Vegetation Type & age (cal yr BP) Description Inferred Climate and depth (m) High elevation open BOL-3a Highest percentages of Cupressaceae (16%) occur in this subzone. Pinus is high mixed-evergreen 10,900-8500 (80%) with Pinus monticola-type reaching 54% and declining to 40% at the top forest; warmer and 5.47-6.73 of the subzone. Quercus (3%), Alnus rubra-type (6%), and Ceanothus (2%) drier than before become well estabished at the bottom of the subzone. Pseudotsuga percentages and at present decline (<3%) from amounts in BOL-2 toward the top of the subzone. Abies, Tsuga mertensiana, Artemisia, and other herbs and pteridophytes occur in small amounts (<2%). Picea is absent from the subzone. Total pollen accumulation rates range from 8800 to 12,500 grains cm-2 yr-1.

31

BOL-5 0-2100 0-1.71

Highest percentages of Pseudotsuga (18%) occur at the beginning of the zone and Present day vegetation and climate; slightly decline (8%) toward the present. Initially, Abies percentages are lower (12 to drier than BOL-4 18%) than in BOL-4 but increase (19 to 28%) to the top of the zone. Pinus percentages (<40%) decline to their lowest amounts. Cupressaceae, Quercus, Ceanothus, Artemisia, and Poaceae increase slightly (<4%) at the top of the zone. Tsuga mertensiana increases gradually to 10% after 1500 cal yr. B.P. Accumulation rates for Tsuga mertensiana at 1500 cal yr. B.P are <100 grains cm-2 yr-1 and increase to 800 grains cm-2 yr-1 at the top of the zone. Chysolepis/Lithocarpus first appears in the record. Alnus rubra-type percentages are ca. 5%. Picea was absent from the zone. Total accumulation rates of terrestrial pollen range from 3100 to 11,000 grains cm-2 yr-1. Macrofossils included Abies concolor cone scales (0.58 m and 1.2 m depth), Abies needle (0.78 m depth), a Pseudotsuga menziesii needle (1 m depth).

Table 4 (cont). Pollen zone and subzone descriptions, vegetation types, and inferred climate for Bolan Lake. Pollen zone, Vegetation Type & age (cal yr BP) Description Inferred Climate and depth (m) Abies dominated BOL-4 Highest percentages of Abies (27%) and Picea (5%) occur in this zone. forest; warmer and 2100-4500 Pseudotsuga percentages gradually increase to the top of the zone. Tsuga wetter than in BOL-3c 1.71-3.03 mertensiana percentages are moderate at the bottom of the zone and are absent after 3700 cal yr B.P. Pinus percentages gradually increase from the bottom of the zone to the top (25 to 35%). Alnus rubra-type percentages gradually decline from 14 to 5%. Cupressaceae and Quercus garryana-type, Ceanothus, Artemisia, Poaceae, Cyperaceae, and Ambrosia-type occur in small amounts (<2%). Total pollen accumulation rates range from 3200 to 7000 grains cm-2 yr-1. Macrofossils included 5-needle Pinus (1.92 and 2.53 m depth), Abies concolor needles (1.91, 1.93, and 2.13 m depth), Abies magnifica needle (2.23 m depth), and a Pseudotsuga menziesii needle (2.47 m depth).

32

33 Federovich, 1967; Davis et al., 1973; Fall, 1992). The vegetation assemblage was probably similar to present-day subalpine environments near upper treeline in the high Cascades (Franklin and Dyrness, 1988). Conditions were probably colder and drier than present based on the sparse subalpine vegetation. Zone BOL-2a (14,500 to 13,000 cal yr BP; 7.48 to 7.76 m depth) features increased percentages of Abies (most likely A. magnifica based on modern vegetation associations), Tsuga mertensiana and Pseudotsuga and decreases in percentages of Artemisia and Poaceae. Haploxylon pine percentages (probably P. monticola or P. albicaulis) are high at the base of the zone but decrease towards the top of the zone. Pinus accumulation rates increase from low values in BOL-1 and show an opposite trend than the percentage data, suggesting an over-representation of Pinus in the zone. Pollen accumulation rates for Abies, Tsuga mertensiana, and Pseudotsuga increase after 14,500 cal yr BP. The increased importance of conifer species in the subzone suggests an upslope migration of conifer species and the establishment of a forested landscape. Total pollen accumulation rates are similar to those found in subalpine environments (Ritchie and LichtiFederovich, 1967; Davis et al., 1973; Fall, 1992). Pseudotsuga and disturbance-adapted shrubs and herbs, such as Alnus rubra-type, Ambrosia-type, and Chenopodiaceae, were associated with increasing fire episode frequency. The assemblage indicates a closed forest, but not as closed as at present, and a species composition similar to forests in the Abies magnifica Zone. The vegetation composition suggests increased warming and precipitation compared with Zone BOL-1.

34 Zone BOL-2b (13,000 to 10,900 cal yr BP; 6.73 to 7.48 m depth) features increases in percentages of Abies (either A. concolor or A. magnifica), Picea (either or both P. engelmannii and P. breweriana), Alnus rubra-type, Quercus, Ceanothus, Artemisia and Ambrosia and a decrease in percentages of Tsuga mertensiana and Pseudotsuga between 13,000 and 12,200 cal yr BP. After 12,200 cal yr BP, percentages of Tsuga mertensiana pollen increase and percentages of Pinus monticola-type, Abies, Picea, Pseudotsuga, Quercus, Alnus rubra-type and Artemisia pollen decrease. Pinus, Abies, Picea, Artemisia, and Ambrosia accumulation rates increase though the subzone while those of Pseudotsuga decline. Tsuga mertensiana accumulation rates decline until 12,200 cal yr BP and then increase toward the top of the subzone. A needle of Picea engelmannii was recovered along with other Picea needles (a species level identification could not be determined due to poor preservation) after 13,000 cal yr BP, implying that P. engelmannii and possibly P. breweriana were growing in the Bolan Lake watershed. Fire-adapted taxa, such as Pseudotsuga, Pinus, and Alnus rubra-type, are high at the base of the subzone during the period of higher fire episode frequency and are replaced by more fire-sensitive taxa, such as Picea, Abies, and Tsuga mertensiana, as fire episode frequency declines toward the top of the subzone. The increased percentages of Abies, Pseudotsuga, Picea, and the first appearance of deciduous shrubs, such as Quercus, Corylus (probably C. cornuta), and Ceanothus (probably found in forest openings and in the understory), suggest a forest composition similar to the present. Increased Tsuga mertensiana and decreased Pinus monticola-type, Abies, Picea, and Pseudotsuga later in the subzone indicate a shift to plant communities

35 resembling the present-day Tsuga mertensiana Zone. The shift took place over a short period of time (~1000 years). Conditions became cooler than in BOL-2a, as evidenced by the increase in Picea and Abies and the decline in Pseudotsuga and deciduous trees and shrubs. Conditions became even colder after 12,200 cal yr BP as indicated by the increase in Tsuga mertensiana. Zone BOL-3a (10,900 to 8500 cal yr BP; 5.47 to 6.73 m depth) features high percentages of Pinus monticola-type and Cupressaceae (probably Calocedrus decurrens) and low percentages of Pseudotsuga, Abies, Artemisia, and herb taxa. The lowest percentages of Abies (probably A. concolor) occur in the subzone and deciduous taxa, such as Quercus and Ceanothus, are abundant in the zone. Pollen accumulation rates for Pinus, Cupressaceae, and Quercus are higher than in any other zone. Picea and Tsuga mertensiana decline rapidly after 10,900 cal yr BP. Total pollen accumulation rate are similar to those found in pine-oak woodland (Ritchie and Lichti-Federovich, 1967; Davis et al., 1973; Fall, 1992). Associated with the increasing fire episode frequency were fire-adapted species, such as Pinus monticola, Cupressaceae, Alnus rubra, Quercus, and Ceanothus, while firesensitive species, such as Picea and Abies, were absent or present in small numbers. The forest assemblage indicates an open forest, similar to the present-day Mixed-Evergreen Zone, which suggests that conditions were warm and dry. Fire probably played a large role in maintaining the composition and openness of the forest in the subzone. Zone BOL-3b (8500 to 7000 cal yr BP; 4.52 to 5.47 m depth) is characterized by a dramatic decline in percentages and accumulation rates of Cupressaceae and the largest

36 increase of those in Pinus (especially Pinus monticola-type). Decreased Alnus rubratype, Quercus, and Ceanothus and increased Cyperaceae and Drypoteris-type percentages and accumulation rates also occurred in the subzone. Percentages and accumulation rates of Abies (probably A. concolor) and Pseudotsuga increase steadily from the base of the subzone. The increase in Pinus occurs following a period of decreasing fire episode frequency at the base of the subzone. As fire episode frequency increases toward the top of the subzone Pinus declines. The forest was open and dominated by Pinus, Abies, and Quercus with similar vegetation to the modern-day northern California forests at high elevations in the Klamath Mountains, (Mohr et al., 2000). Conditions were cooler than in BOL-3a, indicated by the increase in Pinus and Abies. Zone BOL-3c (7000 to 4500 cal yr BP; 3.03 to 4.52 m depth) features a gradual decline in percentages and accumulation rates of Pinus and gradual increases in those of Pseudotsuga and Abies (probably A. concolor). A needle of Abies (not identifiable to species) was recovered from this zone. Cupressaceae (probably Calocedrus decurrens) percentages and accumulation rates increase at the base of the subzone and remain steady. Picea (probably P. breweriana) and Tsuga mertensiana were components of the forest again. Fire-adapted taxa, such Artemisia, Quercus, Alnus rubra-type, and Ceanothus, became significant components of the forest during the period of increased fire activity. As fire episode frequency decreased through the subzone, Pinus, Artemisia, Ceanothus, and Quercus declined while fire-sensitive taxa, such as Abies, increased. The

37 assemblage suggests that the forest was more closed than in BOL-3b and similar in composition to the present-day Mixed-Conifer Zone. Based on similar vegetation associations, conditions became initially warmer and wetter than in BOL-3b and then conditions became gradually cooler and wetter. Zone BOL-4 (4500 to 2100cal yr BP; 1.77 to 3.03 m depth) features increases in percentages and accumulation rates of Pinus, Pseudotsuga, Abies, Picea and Poaceae, and decreases in those of Cupressaceae (probably Calocedrus decurrens), Quercus, Alnus rubra-type, and Ceanothus than compared to BOL-3c. Total pollen accumulation rates are similar to those found in montane forest of California (Fall, 1992). Picea (probably P. breweriana) and Abies percentages were highest at the bottom of the zone when fire episode frequency was declining. Abies declined and Picea disappeared at the top of the zone as fire episode frequency increased. The zone featured a closed forest of Abies concolor similar to the Abies concolor Zone. Conditions were slightly wetter than in BOL-3c. Zone BOL-5 (2100 cal yr BP to the present) contains the highest percentages and accumulation rates of Pseudotsuga. Chrysolepis/Lithocarpus made its first appearance in the zone and increased slightly towards the present. Artemisia, Quercus, Ceanothus percentages and accumulation rates increased, those of Pinus decreased slightly, and those of Tsuga mertensiana increased in the last 1500 cal yr BP. Abies (both A. concolor and A. magnifica) and Pseudotsuga were the dominant conifers in the forest. Conditions were slightly drier than in zone BOL-4 as indicated by increases in xerophytic taxa such as Pseudotsuga, Cupressaceae, and Quercus.

38

CHAPTER IV DISCUSSION Postglacial Vegetation and Fire History at Bolan Lake and Regional Comparison The Bolan Lake record is compared with pollen and charcoal records to the north and south to reconstruct a regional picture of postglacial vegetation, fire, and climate change. Pollen records are available from Little Lake in the central Coast Range, Oregon (Worona and Whitlock, 1995; Long et al., 1998), Indian Prairie Fen in the central Cascade Range, Oregon (Sea and Whitlock, 1995), and Crater Lake, Bluff Lake, and Cedar Lake in the eastern Klamath Mountains, California (Mohr et al., 2000; West, 1989). Only Little Lake and the Klamath Mountain sites have fire history records. Sites range in elevation from 217 m at Little Lake to 2288 m at Crater Lake. The forests surrounding Little Lake and Indian Prairie today support more mesic vegetation than sites further south and receive the greatest amount of precipitation. January and July mean annual temperatures increase from the Coast Range and Cascade Range to the Klamath Mountains. Most sites have northwest to east exposures, except Bluff Lake, which has a southeast exposure (Table 5). The Coast Range, Klamath Mountains, and Siskiyou Mountains have had distinct fire regimes throughout history (Figure 9). Charcoal records indicate that fires are infrequent in the Coast Range compared to the Siskiyou Mountains whereas fires occurring in the

1743

1921

2288

1638

east

southeast

northeast

northwest

>100d

>100d,e

>100d

ca. 175c

ca. 200b

-3.6; 29.3d

-3.6; 29.3d

-3.6; 29.3d

0;18c

4.4;18.4b

Pinus jeffreyi, Pinus contorta, Pinus monticola, Calocedrus decurrens, Pseudotsuga menziesii, Abies concolor, Abies magnifica Pinus jeffreyi, Pinus contorta, Pinus monticola, Calocedrus decurrens, Pseudotsuga menziesii, Abies concolor, Abies magnifica

Pinus balfouriana, Pinus albicaulis, Pinus monticola, Pinus contorta, Abies magnifica, Tsuga mertensiana

Abies concolor, Pseudotsuga menziesii, Abies magnifica,Tsuga mertensiana

Pseudotsuga menziesii, Tsuga heterophylla,Thuja plicata

Pseudotsuga menziesii, Tsuga heterophylla, Abies amabilis, Abies procera, Taxus brevifolia

Vegetation

aNCDC (1971-2000) Marion Forks Fish Hatchery, OR (755 m); 25 km east of Indian Prairie; b NCDC (1964-1991) Noti, OR (137 m); 14 km southeast of Little Lake;c Oregon Caves Composite Weather Records (1971-2000); 1219 m; 20 km north of Bolan Lake; dMt. Shasta Climate Station (1971-2000), Mount Shasta, CA; 1090 m; 20-30 km northeast of the Klamath Lakes; e Bluff Lake is the driest site

(West 1989, Minckley and Whitlock, unpub. data)

Cedar Lake E. Klamath Mountains 41°10'N, 122°30'W

(Mohr et al. 2000)

Bluff Lake E. Klamath Mountains 41°20'N, 122°33'W

(Mohr et al. 2000)

Crater Lake E. Klamath Mountains 41°20'N, 122°35'W

(this study)

Bolan Lake N. Siskiyou Mountains 42°01'W, 123°27'W

northwest

0.5;17.4a

ca. 180a

north

988

217

Mean Annual Temp. (Jan;July°C)

Mean Annual Precip. (cm)

Exposure

Elevation (m)

(Worona et al. 1995; Long et al, 1998)

Little Lake Central OR Coast Range 44°10'N, 123°35'W

(Sea and Whitlock 1995)

Indian Prairie W. OR Cascade Range 44°38'N, 122°34'30"W

Site

Table 5. Modern site characteristics for pollen and fire records from western Oregon to northwest California

39

40 North

South

Age (cal yr B.P. X1000)

Little Lake

Bolan Lake

Crater Lake

Bluff Lake

Cedar Lake

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15 2

6

10

2

6

10 8

12

16 4

8

12 4

8

12

episodes/1000 yrs

Figure 9. Fire frequency records from sites in Oregon and northwestern California .

41 Klamath Mountains tend to occur more frequently than sites further north. Bluff Lake, a site from the Klamath Mountains, has a dry southeast exposure and should be associated with more fires than Crater Lake with a northwest exposure. However, because the sedimentation rate at Bluff Lake is slow it is likely that more than one fire was recorded for each sample counted which accounts for the higher fire episode frequency at Crater Lake (Mohr et al., 2000). Today the forest surrounding Bolan Lake lies within a vegetation transition zone and has vegetation affinities with the Coast Range, Cascade Range, and Klamath Mountains. For example, on drier southwest-facing slopes the forest is more open and has more components of Calocedrus decurrens, Pinus monticola, and Pseudotsuga menziesii, much like the forests of the Klamath Mountains. However, on northeast facing slopes the forest is more closed and composed of Abies and Tsuga mertensiana characteristic of the Coast Range and Cascade Range forests. A comparison of the vegetation history from central Oregon to northern California reveals that the vegetation transition zone shifted north and south as climate changed. During the late-glacial period (17,500 to 14,500 cal yr BP) and early Holocene (10,900 to 4,500 cal yr BP) to 2100 cal yr BP the forest at Bolan Lake resembled those in the Klamath Mountain, whereas during the lateglacial/early Holocene transition (14,500 to 10,900 cal yr BP), the forest at Bolan Lake was more like the modern Coast Range and Cascade Range forests. After 2100 cal yr BP the forest at Bolan Lake had vegetation affinities with both the Klamath Mountain, Coast Range, and Cascade Range forests (Figure 10).

42

1 2 3

Modern climate with cooler and wetter conditions than before

4

Pseudotsuga, Tsuga heterophylla, and Abies forest

Cr a (2 ter L 28 a 8 m ke ) Bl uf f (1 La 92 ke 1m ) Ce ( 1 da 77 r L 0 m ak ) e

Bo ( 1 lan L 60 a 0 m ke )

South Li t tl (2 e L a 17 k m) e

0

Inferred Climate

In d ia (9 n P 68 ra m) irie

North

Abies, Pinus, and Quercus forest

Age (cal yr BP x1000)

5 ?

6 7 Warmer and drier than before 8 and present 9 ?

10

? Pinus, Quercus, and Cupressaceae forest

11 Increasing 12 temperature and 13 precipitation after 14,500 14 cal yr BP 15 16 17

Abies and Tsuga mertensiana forest

?

Pinus and ? Abies forest ? ? ?

Subalpine Cooler and ? parkland (Pinus, drier than Picea, Tsuga present mertensiana, ?

Subalpine parkland (Artemisia, Poaceae, Pinus, Tsuga mertensiana)

Artemisia, Poaceae)

Figure 10. Vegetation reconstruction based on pollen data from sites in Oregon and northwestern California. Individual sites are represented by a solid vertical line. Vegetation taxa common among sites are represented by different shades of gray. Unknown extent of vegetation is defined by a dashed line or question mark.

43 Late-glacial Period (ca. 17,000 to 10,900 cal yr BP) During the late-glacial period, the high-elevation mountain ranges of the Pacific Northwest, including the Cascade Range, the Olympic Mountains and the Siskiyou Mountains, supported alpine glaciers. Increasing insolation during the late-glacial period caused the Laurentide ice sheet to shrink and the position of the jet stream, which was displaced south of its present position during the full-glacial, to shift northward. As the jet stream moved northward, associated storms followed, increasing the amount of moisture reaching the Pacific Northwest. Summer insolation increased through the lateglacial period and led to warmer, drier conditions than before. Conditions in the Pacific Northwest were still cooler than present due to the presence of an ice sheet and lowerthan-present sea-surface temperatures until ~14,000 cal yr BP (COHMAP, 1988; Bartlein et al., 1998). The Bolan Lake watershed supported a subalpine parkland of Artemisia and Poaceae, with scattered Pinus (probably P. monticola and P. albicaulis), Picea (probably P. engelmannii and/or P. breweriana), Tsuga mertensiana and Cupressaceae (probably Juniperus occidentalis) between ca.17,000 and 14,500 cal yr BP. The late-glacial vegetation shows similarities with modern vegetation associations found in the upper Tsuga mertensiana Zone (Franklin and Dyrness, 1988), suggesting that present-day treeline was depressed by about 800 to 1300 m. Mean annual temperature was at least 3°C lower than at present based on modern mean annual temperature in the upper Tsuga mertensiana Zone. The upslope migration of Tsuga mertensiana, Abies, and Pseudotsuga after 14,500 cal yr BP implies that the forest became more closed.

44 During the height of the last glacial period, the location of Pseudotsuga west of the Cascades is a biogeographical mystery because it is not recorded at any sites between ca. 27,000 and 14,500 cal yr BP. Today Pseudotsuga is a dominant conifer of the temperate rainforests in the Pacific Northwest. Pseudotsuga menziesii has two recognized varieties today: P. menziesii var. menziesii occurs west of the Cascade crest in Washington and Oregon and extensively through British Columbia and the Sierra Nevada; and P. menziesii var. glauca in the Pacific Northwest interior and Rocky Mountains (Figure 11). West of the Cascades, Pseudotsuga first appears in the pollen records ca. 14,500 cal yr BP (Worona and Whitlock, 1995; Grigg and Whitlock, 1998). In the southern Puget Trough it shows up ~2000 years later at ca. 12,500 cal yr BP (Barnosky, 1985). Critchfield (1984) studied the genetic variability of different populations of Pseudotsuga throughout the western United States and discovered that those west of the Cascade crest in Oregon and Washington were genetically more uniform than those in California. The genetic uniformity in western Oregon suggested a single glacial-age refugium located in southwestern Oregon to the California boarder. The pollen record at Bolan Lake, however, shows only a minor amount of Pseudotsuga pollen prior to ca. 14,500 cal yr BP. The absence of Pseudotsuga implies that the taxon may have grown at lower elevations or along the Oregon coast but not at high elevations. The 2000-year lag between the first appearance of Pseudotsuga at Bolan Lake and in the southern Puget Trough may be explained by northward migration from southern sources. Locations along the southern margin of the ice sheet were probably too cold and dry to support Pseudotsuga during the late-glacial period (Bartlein et al., 1998). As glaciers retreated

45

12.5 14.5 14.5

Bolan Lake 14.5

OR ID CA

NV

N

0

100 km

Figure 11. Current distribution of Pseudotsuga menziesii in the western United States (gray shaded area). Dashed line separates the coastal variety (menziesii) and the interior variety (glauca) of Pseudotsuga menziesii. The first apperance Pseudotsuga menziesii of in the pollen record in the southern Puget Trough, Coast and Cascade Range, and the Siskiyou Mountains is labeled (x1000 cal yr BP).

46 and warmer and wetter conditions prevailed, more suitable habitat for Pseudotsuga became available and colonization from southern populations occurred. From ca. 14,500 to 13,000 cal yr BP, a closed forest of Abies, Picea, Tsuga mertensiana, and Pseudotsuga developed in the Bolan Lake watershed. The forest composition was probably similar to that of the Abies magnifica Zone given the large percentages of Abies (most likely A. magnifica with some A. concolor) and Tsuga mertensiana (Franklin and Dyrness, 1988). At present, the closest modern analog lies 300 to 500 m higher than Bolan Lake. Fire was a minor form of disturbance in the forest as it is in the Abies magnifica Zone today. In the central Coast and Cascade ranges, subalpine parkland vegetation of Pinus, Picea, Tsuga mertensiana, Artemisia and Poaceae dominated the region between 17,000 and ca. 14,500 cal yr BP (Worona and Whitlock, 1995; Sea and Whitlock, 1995). Treeline is estimated to have been 500 to 1000 m lower than at present, which suggests that mean annual temperature was 1 to 3°C lower. Closed forests of Abies, Pseudotsuga, Tsuga heterophylla, and Alnus in the central Coast Range (Worona and Whitlock, 1995) and Abies forests in the central Cascade Range (Sea and Whitlock, 1995) developed after 14,500 cal yr BP. Although few records are available to describe the environment south of the Siskiyou Mountains, a late-glacial record from Swamp Lake (1554 m elevation) in Yosemite National Park suggests a period of subalpine parkland composed of Artemisia, Poaceae, and Asteraceae and minor amounts of Pinus, Abies and Tsuga (Smith and Anderson, 1992). Herbaceous assemblages from the base of the Bluff Lake record indicate the

47 presence of subalpine vegetation in the Klamath Mountains (Mohr et al., 2000). The Bluff Lake record shows increased Pinus and Abies after ca. 13,100 cal yr BP. CHAR were low throughout the late-glacial period at Bluff Lake probably due to a sparse understory. Fire episode frequency at Bluff Lake ranged between 6 and 9 episodes/1000 yr from 15,000 to 13,100 cal yr BP and 5 and 8 episodes/1000 yr between 13,100 and 11,100 cal yr BP. At lower elevations, Cedar Lake supported an open forest of Pinus and Abies with an ericaceous understory between 14,500 and 11,500 cal yr BP (West, 1989). Pollen percentage increases in Picea (either or both P. engelmannii and P. breweriana), Abies, Artemisia, and decreases in Pinus monticola and Pseudotsuga at Bolan Lake suggest cooler condition between 13,000 and 12,000 cal yr BP than before. After 12,000 cal yr BP, Tsuga mertensiana dominated the forest and Abies, Picea, Pinus monticola, and Pseudotsuga declined suggesting further cooling. In addition, between 12,000 and 10,900 cal yr BP, fire episode frequency decreased from 7 to 4 episodes/1000 yr, lake productivity decreased, and clastic inputs to the lake increased. Shortly after 11,500 cal yr BP, Pinus and Pseudotsuga increased while Abies declined, and Tsuga mertensiana and Picea disappeared from the record by 10,900 cal yr BP. These trends are consistent with the warm dry conditions. A cold period is registered between 13,000 to 10,900 cal yr BP at Bolan Lake. This interval coincides with the Younger Dryas cool period, which is an event recorded in northwestern Europe and Greenland between 12,900 to 11,600 cal yr BP (Hajdas et al., 1995; Becker et al., 1993; Stromberg, 1994; Alley et al., 1993), and also a cool episode from 12,400 to 11,000 cal yr BP in the northeast Pacific and western Oregon (Pisias et

48 al., 2001; Sea and Whitlock, 1995; Grigg and Whitlock, 1998). Cooling in the Pacific Northwest was about 600 years after the onset of the Younger Dryas cool period. Grigg and Whitlock (1998) suggest that this discrepancy may be attributed to lags in the transmission of climate events, lags in vegetation response to regional climate events, and/or the inability to constrain calendar and radiocarbon ages in this period. In any case, the northern Siskiyou Mountains experienced a climate change coincident with the change in Europe and Greenland but like the Pacific Northwest cool event, described by Grigg and Whitlock (1998), it starts later and persists 600 years longer than the Younger Dryas event. Early Holocene (ca. 10,900 to 4,500 cal yr BP) In the early Holocene, summer insolation was greater than present and winter insolation was lower (Bartlein et al., 1998). Greater summer insolation allowed for the expansion and intensification of the Pacific subtropical high-pressure system off the Pacific Coast and warmer sea surface temperatures. Consequently, seasonality was more extreme with enhanced summer drought and colder winters (Bartlein et al., 1998). Vegetation at Bolan Lake during the early Holocene was an open parkland of Pinus (both P. monticola and P. lambertiana), Quercus (both Q. garryana and Q. vaccinifolia), Cupressaceae (probably Calocedrus decurrens), Ceanothus, and Corylus. Decreased percentages of Abies and Pseudotsuga suggest that conditions were considerably warmer and drier than in the late-glacial period or at present. The composition of species was similar to that found in the Mixed-Evergreen Zone (Franklin and Dyrness, 1988) about

49 500 m downslope from the lake today. Based on modern vegetation associations, mean annual temperatures were probably ~1.5°C higher, and the area received significantly less precipitation than at present. With the exception of Pinus and Cupressaceae, conifers played a minor role in the forest. The dominance of these two taxa (most likely Pinus monticola and Calocedrus decurrens) is probably associated with increased fire episode frequency as well as with the warm, dry conditions characteristic of the time period. Superimposed upon the longterm trends of increased Pinus monticola-type and Cupressaceae percentages are shortterm (~1000 years) trade-offs in the taxon percentages, which may be related to variations in climate and fire episode frequency (Figure 12). Generally, Pinus monticola is favored following periods of declining fire episode frequency and cool conditions, and Cupressaceae following periods of increasing fire episode frequency and warm conditions. To understand the trends in Pinus monticola and Cupressaceae requires an evaluation of modern autecology’s of Pinus monticola and Calocedrus decurrens. Both species can survive large ranges in temperature, available moisture, and soil types. However, Pinus monticola tends to tolerate frost conditions better than Calocedrus decurrens, while Calocedrus decurrens withstands extreme heat and drought better than Pinus monticola. Pinus monticola, while not fire resistant, is a rapidly growing seral species that depends on disturbances such as fire to remove competing vegetation. Calocedrus decurrens thrives in open environments but, unlike Pinus monticola, has a thick bark that protects it from fire damage. In addition, Pinus monticola seeds require 30 to 120 days of cool,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pe F

ire

o

ep

is i

so

0 4 8 12 no./1000 yr

ak

re Fi s/

Ep

o

-ty la

pe

20 40 60 percent pollen

ic

cy

t on

n ue

m

q

us

fre

n Pi

de

s de

i ns

20

e

Warmer and drier than before and present

Modern climate with cooler and wetter conditions than before

Inferred Climate

Cooler and drier than present

Increasing temperature and precipitation after 14,500 cal yr BP

tiv

20 20 20 gray shaded area is 5x exaggeration

1

2a

2b

3a

3b

3c

4

5

e pe -ty -s ty ia ire l a F xa ifo an pe in ta e c ry -ty a r e a ra s vac c g sa us rub thu us a s es rc us no rc r ce bie i ue Aln ea ue up P A Zone C Q C Q

pe

Figure 12. Peaks or fire episodes, fire episode frequency, fire-adapted and fire-sensitive taxa, and inferred climate for Bolan Lake.

Age (cal yr BP x1000)

Fire-adapted taxa

50

51 moist conditions and wet soils (resulting from snowmelt though the summer) for germination and establishment to occur. Calocedrus decurrens seed germination and establishment occurs under a wide range of conditions (Burns and Honkala, 1990). The autecology’s of Pinus and Cupressaceae explains the unique forest that existed at Bolan Lake between 8500 and 7000 cal yr BP. The forest was predominantly Pinus monticola with some Abies and Pseudotsuga. Calocedrus decurrens diminished to very low numbers, much lower than at any other time during the early Holocene. Slightly cooler conditions may have resulted in a longer snowpack and more days with frost, which favored Pinus monticola over Calocedrus decurrens. The prior period of decreased fire episode frequency resulted in a more closed forest, restricting Calocedrus decurrens. Increased percentages of Cupressaceae, Abies, Pseudotsuga, Alnus rubra, Ceanothus, and Quercus as well as decreased values of Pinus suggest that the forest became more closed as a result of warmer and wetter conditions after 7000 cal yr BP. The forest at Little Lake after 11,000 cal yr BP supported xerophytic species, such as Pseudotsuga and Quercus (Worona and Whitlock, 1995). Fire episode frequency was initially low at 5 episodes/1000 yr ca. 9000 cal yr BP, peaked at 10 episodes/1000 yr at ca. 7500 cal yr BP, and declined to 8 episodes/1000 yr by 7000 cal yr BP. Fire probably played an important role in maintaining open, dry vegetation. Long et al. (1998) suggest that the forest at Little Lake was similar to present-day dry regions of the Tsuga heterophylla Zone indicating warmer and drier conditions than in the late-glacial. After ca. 7000 cal yr BP, gradual increases in Thuja (probably T. plicata, western red cedar), Tsuga heterophylla, Picea, and Dryopteris indicate forest closing. Fire episode frequency

52 was low at 6 episodes/1000 yr, but the presence of Pseudotsuga and increased abundance of Alnus rubra suggest that fires still played an important role in the forest. The vegetation history at Indian Prairie in the central Cascade Range indicates a closed forest of Pseudotsuga, Abies, and Tsuga heterophylla after ca. 11,100 cal yr BP (Sea and Whitlock, 1995). During this time, the presence of Abies in the forest was significantly reduced in the late-glacial period whereas other taxa, such as Quercus and Corylus, migrated approximately 500 m upslope suggesting increased summer drought. In the Klamath Mountains, the Bluff Lake pollen record shows a decline in Abies and an overall decrease in Pinus and an increase in haploxylon-type pine (probably Pinus monticola or Pinus lambertiana) after 11,100 cal yr BP (Mohr et al., 2000). In addition, pollen of Quercus vaccinifolia, Rhamnaceae, and Rosaceae indicate the development of a dense shrub understory. Quercus garryana and Cupressaceae (probably Juniperus occidentalis) moved upslope and mesophytic conifers, such as Tsuga mertensiana and Pseudotsuga, played a minor role in the forest. After ca. 7400 cal yr BP, Abies and Poaceae increased and Quercus vaccinifolia decreased. Fire episode frequency was high at ca. 8400 and 6000 cal yr BP (10 and 9 episodes/1000 , respectively) and low at ca. 9500, 7400, and 5000 cal yr BP (7, 4, and 3 episodes/1000 yr, respectively). After 8400 cal yr BP, Crater Lake supported Pinus, Quercus vaccinifolia, Artemisia, and a larger component of Abies and Tsuga mertensiana than at Bluff Lake, due to the lake’s higher elevation and northeast exposure. Abies and Tsuga mertensiana increased after ca. 5650 cal yr BP. Fire episode frequency was high, at 17 episodes/1000 yr at ca. 8400. At a lower elevation, the forest at Cedar Lake was composed of Cupressaceae

53 (most likely Chamaecyparis lawsoniana) and Pinus after 11,500 cal yr BP (West, 1989). Fire episode frequency was low (ca. 9 episodes/1000 yr) at 11,000 to10,000, 7400 to 6000, and 9000 cal yr BP and high (12 episodes/1000 yr) at 10,700 cal yr BP and 8400 to 7800 cal yr BP (Mohr et al., 2000). Late Holocene (ca. 4,500 cal BP to present) The decrease in summer insolation in the late Holocene weakened the subtropical high-pressure system off the Pacific Coast, decreased sea-surface temperatures, and led to cooler wetter summer conditions (Bartlein et al., 1998). A significant difference between the early and late Holocene was the moderation in seasonal extremes. A closed forest dominated by Abies (probably Abies concolor) was present by 4500 cal yr BP around Bolan Lake. Pinus, Picea (probably P. breweriana), and Pseudotsuga were minor components of the forest. Quercus vaccinifolia and Ceanothus grew in forest openings but were less abundant than before. The change from open parkland to closed forest is consistent with cooler and wetter conditions in the late Holocene. Background CHAR values peaked after 3000 cal yr BP and remained high through the rest of the record suggesting high levels of burnable woody vegetation. The brief appearance of Picea between 4500 and 3000 cal yr BP coincides with a prior period of decreasing fire episode frequency. Picea breweriana is currently restricted to isolated populations in southwestern Oregon and northwestern California probably due to its sensitivity to fire (Sawyer and Thornburgh, 1977). The decreasing fire episode frequency through the early

54 part of the late Holocene may have allowed P. breweriana to extend its range to Bolan Lake. After 2100 cal yr BP, Pseudotsuga, Cupressaceae, Quercus, Ceanothus, Chrysolepis/Lithocarpus and Artemisia increased while Abies declined slightly suggesting drier conditions than at the beginning of the late Holocene. The dominance of both Pseudotsuga and Abies in the forest marked the establishment of the modern vegetation at Bolan Lake. Tsuga mertensiana increased in abundance and probably occupied cooler, wetter slopes in the last 1500 years. Fire episode frequency gradually increased to 9 episodes/1000 yr, which is comparable to frequencies at the beginning of the Holocene. Slight decreased percentages of Pinus and Abies and increased values of Pseudotsuga, Cupressaceae, Quercus, Ceanothus and Artemisia may be associated with increasing fire episode frequency after 1500 cal yr BP. Low-elevation Coast Range forests in central Oregon supported a closed forest of Pseudotsuga menziesii, Tsuga heterophylla, Abies, Alnus rubra, and Thuja plicata (western red cedar) after 6650 cal yr BP (Worona and Whitlock, 1995). The composition of the forest suggests cooler and wetter conditions than in the early Holocene. Although the forest became more closed at Little Lake and fire episode frequency declined (to less than 5 episodes/1000 yr), the persistence of Alnus rubra and Pseudotsuga suggests frequent but small disturbance. Increases in Pseudotsuga and Abies and declines in Thuja plicata and Alnus rubra after ca. 1950 cal yr BP indicate a closed forest at Little Lake possibly as a result of slightly wetter conditions. Small fires created a mosaic of forest patterns with patches of fire-adapted and fire-sensitive species (Long et al., 1998).

55 A closed forest of Pseudotsuga, Tsuga heterophylla, and Abies dominated the Cascade forests after 5500 cal yr BP (Sea and Whitlock, 1995) and the dominance of these taxa suggests cooler wetter conditions than in the early Holocene. A slight decrease in Abies and increase in Pseudotsuga and Poaceae indicate drier conditions after ca. 2000 cal yr BP. The forests near Bluff Lake became more closed with slight increases in Abies concolor, Pinus jeffreyi, and Pinus monticola and declines in Cupressaceae and Quercus after 4450 cal yr BP (Mohr et al., 2000). Quercus vaccinifolia and Poaceae probably occupied forest openings and understory. Fire episode frequency was generally low (5 episodes/1000 yr) after 4450 cal yr BP with increased activity at ca. 4000 cal yr BP. A slight increase in Pinus jeffreyi, Cupressaceae, and Artemisia and the high fire episode frequency (10 episodes/1000 yr) indicate a drier environment around Bluff Lake at ca. 1000 cal yr BP. The high elevation forest at Crater Lake became more closed with slight increases in Abies, Tsuga mertensiana, and Pinus after 5500 cal yr BP. Cupressaceae and Quercus probably moved downslope contributing to the development of the modern forest. The changes in forest composition are consistent with the climate becoming cooler and wetter. Fire episode frequency was lower after 4450 cal yr BP (10 to13 episodes/1000 yr) than in the early Holocene, and the highest activity occurred at ca. 4000 and ca. 1200 cal yr BP. A modern forest of Pseudotsuga, Abies, Pinus contorta, and Ericaceae developed at Cedar Lake, at lower elevations, as conditions became cooler and wetter after ca. 4500 cal yr BP (West, 1989). Fire episode frequency was initially high (11 episodes/1000 yr)

56 between 6000 and 4500 cal yr BP, declined (6 episodes/1000 yr) between 4500 and 2500 cal yr BP, and increased (10 episodes/1000 yr) from 2500 to 1000 cal yr BP. Many sites show the establishment of modern forests at ca. 2000 cal yr BP when conditions became slightly drier. However, modern forests at Cedar Lake and Indian Prairie appeared as early as 4500 and 5500 cal yr BP, respectively. Variation in the timing of establishment among sites probably reflects differences in climate, elevation, site aspect, and fire regimes at the local scale. The fire records from the Klamath Mountains show high fire occurrence at ca. 1000 cal yr BP, whereas records from Bolan Lake and Little Lake show a steady increase in fire episode frequency at this time. The increased fire episode frequency in the Klamath Mountains occurred during the ‘Medieval Warm Period’ (1080 to 1200 A.D.; Mohr et al., 2000), a period characterized by warm, dry summers in Europe (Lamb, 1965). Although the cause of the Mediaeval Warm Period is not well understood, the event occurred during a period of increased solar irradiance, probably due to greater sunspot activity (Crowley, 2000). Hughes and Diaz (1994) reviewed the limited paleoclimate evidence from around the world and found that warming was not registered everywhere. For example, the Sierra Nevada of California and the Canadian Rocky Mountains showed evidence of warmer conditions in the summer whereas the climate of the southeastern United States showed little differences from today. Fire records from central Oregon to the Klamath Mountains suggest that the warming at ca. 1000 cal yr BP was not widespread. The drier Klamath sites today featured higher fire episode frequency whereas the wetter sites of the Siskiyou Mountains and Coast

57 Range showed no response. Likewise, there is no evidence of a vegetation change during the ‘Medieval Warm Period’ in any of the sites in this study. Higher resolution pollen records are needed to evaluate the response of forests to submillennial- to decadal-scale climate changes. Climate-Vegetation-Fire Linkages at Bolan Lake The relationship among climate, fire, and vegetation is dynamic and complex. All three variables are dependent on one another; however, climate is the primary driver of both vegetation and fire activity. These linkages are evident in the Bolan Lake record on century and longer time scales (>102 yr). The record suggests that fire episode frequency is high during warm periods and low during cool periods. For example, higher-thanpresent summer insolation in the early Holocene created conditions that dried out fuels and led to a regime of frequent fires similar to that found in the Mixed-Evergreen forests today. As summer insolation decreased through the late Holocene, summer conditions became cooler and wetter, which decreased fire activity. The linkages are also evident on sub-millennial time scales. For example, between 12,000 to 10,900 cal yr BP, low fire activity coincides with cool events recorded in the North Atlantic and western Oregon. Vegetation productivity and rates of decay is influenced by climate resulting in different types and amounts of woody fuels that are responsible for different fire regimes (Ryan, 1991; Agee, 1991). The decomposition of CHAR into background and peaks allowed for the approximation of woody fuel biomass at Bolan Lake (Figure 6). Background (woody fuel biomass) showed a strong relationship with fire episode

58 frequency suggesting that high amounts of woody fuel buildup were associated with high fire activity (Figure 13). The high amounts of woody fuel biomass coincide with closed forests suggesting that increased fire activity produced greater amounts of charcoal during each fire event. Fire’s role in the maintenance of vegetation assemblages is also evident in the Bolan Lake record. For example, fire-adapted taxa including Pinus monticola, Cupressaceae, Quercus, and Alnus rubra were abundant when fire activity was high whereas fire-sensitive species, including Picea and Abies, dominated the forest during periods of low fire activity (Figure 12). Plant species have specific temperature and moisture requirements that limit their latitudinal and elevational range (Thompson et al., 1999). As climate has changed through time, taxa have migrated as their ideal habitat changed location. At Bolan Lake, vegetation was able to migrate up and downslope in response to climate changes since the last glacial. For example, the forest at Bolan Lake started off as subalpine parkland during the late-glacial period and by the early Holocene was an open parkland composed of xerophytic taxa. The change in climate from cool dry conditions in the late-glacial period to warm dry conditions in the early Holocene resulted in a 1500 m upslope shift in taxa.

59

Background (particles cm-2yr-1)

5

4

3

2

1

0 4

5

6

7

8

9

10

Fire Episode Frequency (episodes/1000 years)

Figure 13. Fire episode frequency versus background. A positive linear relationship exists between the two variables suggesting that more woody biomass in the forest leads to greater fire occurrence (r=0.53).

60

CHAPTER V CONCLUSIONS Fluctuations in pollen percentages, pollen accumulation rates, and fire frequencies at Bolan Lake suggest that the high-elevation forests in the Siskiyou Mountains experienced major restructuring of vegetation and fire regimes during the last 17,000 years. These fluctuations correspond with major changes in climate and are evident at other sites in Oregon and northern California. Fire reconstructions from across the region show synchronous trends on millennial time scales throughout history, but on sub-millennial time scales similarities in fire frequencies are less evident. Several conclusions are drawn from the study that answer the following questions:

1.) What is the climate, vegetation and fire history since the end of the last ice age at Bolan Lake? The late-glacial vegetation at Bolan Lake was similar to that found at upper elevations of the modern Tsuga mertensiana Zone, and was most similar to the forests found in the Klamath Mountains during the late-glacial period. Increasing temperature and precipitation during the late-glacial/early Holocene transition led to the upslope migration of conifer species, in particular Abies, and a closed forest at Bolan Lake. The Bolan Lake vegetation showed close affinities with that of the Coast Range and Cascade Range at that time. A brief return to cold conditions between

61 13,000 and 10,900 cal yr BP is evidenced by increases in Abies, Picea, Tsuga mertensiana and Artemisia. Fire frequency was low at Bolan Lake until the early Holocene. Open parkland grew near Bolan Lake during the early Holocene and the forest was similar to the present day Mixed-Evergreen Zone. Conditions were more xeric with mean annual temperatures approximately 1.5°C higher than at present. The Bolan Lake vegetation resembled that of the nearby Klamath Mountains during the early Holocene. Bolan Lake recorded high fire frequency during this period. Abies dominated the forest at Bolan Lake in the late Holocene. The forest became more closed and had vegetation components of the Coast Range, the Cascade Range, and the Klamath Mountains. Fire frequency decreased at Bolan Lake until ca. 2000 cal yr B.P and has steadily increased since then.

2.) How sensitive were vegetation and fire regimes at Bolan Lake to changes in climate

occurring on millennial to centennial time scales? The vegetation history from Bolan Lake shows a greater response to climate change than most records in the region. Plant communities and associated fire regimes migrated up or downslope in response to climate change. For example, during the late-glacial period Bolan Lake supported species currently found 800 m upslope in the modern Tsuga mertensiana Zone. During the early Holocene, when summer insolation was greatest, the forest supported species found currently 500 m

62 downslope in the Mixed-Evergreen Zone. In addition, restructuring of vegetation also occurred in response to sub-millennial scale climate changes. A clear relationship exists among climate, fire, and vegetation. Low fire activity and the presence of fire-sensitive species characterized cold wet periods. By contrast, warm dry periods were characterized by high fire activity and the prevalence of fireadapted taxa. 3.) When and under what conditions (i.e., climate and disturbance regimes) did the

present-day montane vegetation and fire regime develop at Bolan Lake? The modern forest at Bolan Lake was established after 2100 cal yr BP. Pseudotsuga, Cupressaceae, Quercus, Ceanothus, and Chrysolepis and/or Lithocarpus increased while Abies decreased suggesting that conditions were cooler than in the early Holocene but drier than between 4500 to 2100 cal yr BP. Fire frequency slightly increased at Bolan Lake after 2100 cal yr BP. Additional pollen and charcoal studies are needed in the region to fill in gaps between records from Washington, Oregon, and northern California and provide a better regional picture of vegetation and fire response to climate change. Sites with high sedimentation rates, such as Bolan Lake, should be analyzed at higher resolution for pollen and charcoal in order to evaluate vegetation and fire response to millennial to centennial climate changes. No vegetation or fire records are found west of the Coast Range along the Pacific Coast. A transect of sites from the Pacific Coast to the crest of the Cascades would help evaluate coastal versus inland vegetation and fire responses to climate change.

63

APPENDIX A KEY TO ABBREVIATIONS USED IN APPENDICES B, C, AND D BY ORDER OF APPEARANCE

64 Pollen Count Abbreviations H LX CU I AB TM TS CY Q2 AR CE Q1 CH R G Y M K dy t E P SQ A RS R3 RO AX J SM AM AC CP PR VC ME ER VA VI

Pinus monticola-type Pseudotsuga Cupressaceae Picea Abies Tsuga mertensiana Tsuga heterophylla Corylus Quercus garryana-type Alnus rubra-type Ceanothus Quercus vaccinifolia-type Chyrsolepis/Lithocarpus Artemisia Poaceae Cyperaceae Ambrosia-type Cheopodiineae Drypoteris-type Pteridium-type Pinus jeffreyi-type Pinus undifferentiated Sequoia Alnus undifferentiated Spiraea Amelanchier Other Rosaceae Arcethobium Juglandaceae Sambucus Acer macrophyllum Acer circinatum Cercocarpus/Purshia Prunus Vaccinium Menyanthes Ericaceae Labiatea Viburnum

SR RH RA TH BR OT CR LE CM EG B UM BT PC PO S PU W DG DT AS Ty IS PD BC LP ∑D ∑P ∑T

Sarcobatus Rhamnus Other Ranunculaceae Thalictrum Brassicaceae Other tubuliflorae Other Caryophyllaceae Fabaceae Campanulaceae Eriogonum Betula Umbelliferae Botrychium Polygonum californicum-type Polygonum undifferentiated Salix Populus-type Unknown Degraded (Indeterminate) Degraded (Indeterminate) Alnus sinuata-type Typha Isoetes Pediastrum Botryococcus Spike Total Pinus Pollen Sum Total Pollen and Spores

65

Age (cal yr BP) C/cm2 C/cm2/yr MS (emu) %O Charcoal Influx Background charcoal Ratio Peak Peak start Episode Frequency

Age in calendar years BP Charcoal concentration Charcoal accumulation rate Magnetic susceptibility in emu Percent organic matter Average of annual charcoal accumulation rates (CHAR) (10 year average) Weighted mean of charcoal influx values Ratio in log units between charcoal influx and mean (values <1.10 displayed as 1.10) Fire event or episode of fires Beginning of fire event or episode of fires Weighted mean of fire per 1000 years

66

APPENDIX B CHARCOAL CONCENTRATION, CHARCOAL ACCUMULATION, MAGNETIC SUSCEPTIBILITY, LOSS ON IGNITION, DEPOSITION RATE FOR BOLAN LAKE, 99A CORE

67 Depth (m) 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34

Age (cal yr BP) 0 3 7 13 19 26 33 41 49 57 65 72 80 87 93 100 106 111 116 121 126 130 134 138 142 146 150 155 160 166 174 182 189 197 205

MS (emu) NA NA 1.18E-06 7.20E-07 8.30E-07 7.20E-07 5.10E-07 4.90E-07 8.40E-07 3.60E-07 1.70E-07 2.00E-08 1.40E-07 2.20E-07 1.50E-07 1.00E-08 1.30E-07 4.00E-08 1.00E-07 2.90E-07 1.30E-07 9.00E-08 7.00E-08 1.20E-07 1.10E-07 1.60E-07 1.80E-07 1.70E-07 1.70E-07 1.60E-07 2.60E-07 1.20E-07 2.00E-07 8.00E-08 7.00E-08

%O

C/cm2

C/cm2/yr

NA NA 40.69 41.52 41.50 40.96 36.95 38.39 36.47 38.18 35.32 36.64 36.49 38.14 36.44 35.29 38.27 39.67 38.69 37.68 36.05 37.87 34.48 35.98 36.50 35.12 37.45 36.17 35.53 35.28 34.70 34.01 34.27 34.27 35.05

28 18 12.20 8.20 9.40 11.20 12.80 22.00 20.00 12.40 14.80 12.40 29.00 24.20 32.20 23.80 43.20 54.40 46.40 51.40 40.60 38.00 21.00 24.80 30.80 22.20 19.80 12.60 11.20 22.80 13.40 23.20 42.80 29.80 53.00

9.22 3.93 2.22 1.30 1.36 1.52 1.67 2.81 2.54 1.59 1.94 1.68 4.10 3.60 5.09 4.02 7.83 10.61 9.74 11.57 9.71 9.51 5.39 6.36 7.65 5.18 4.21 2.39 1.78 2.98 1.73 2.94 5.35 3.67 6.44

Deposition (yr/cm) 3.04 4.50 5.50 6.30 6.92 7.37 7.67 7.83 7.86 7.79 7.62 7.38 7.07 6.72 6.33 5.93 5.52 5.13 4.76 4.44 4.18 3.99 3.90 3.90 4.03 4.29 4.70 5.28 6.30 7.64 7.76 7.88 8.00 8.11 8.23

68 Depth (m) 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69

Age (cal yr BP) 214 222 231 239 248 257 265 275 284 293 302 312 321 331 341 351 361 371 381 391 401 412 422 433 444 455 466 477 488 499 511 522 534 545 557

MS (emu) 6.00E-08 6.00E-08 1.00E-07 7.00E-08 9.00E-08 1.80E-07 1.70E-07 1.40E-07 2.90E-07 3.70E-07 1.30E-07 2.40E-07 1.70E-07 2.80E-07 3.00E-07 4.00E-07 2.60E-07 3.00E-07 2.40E-07 2.10E-07 1.40E-07 1.90E-07 9.00E-08 1.40E-07 5.00E-08 5.00E-08 1.80E-07 8.00E-08 1.80E-07 1.30E-07 2.70E-07 3.60E-07 6.10E-07 9.80E-07 1.62E-06

%O

C/cm2

C/cm2/yr

33.55 33.65 33.39 33.20 33.82 33.73 33.25 32.99 33.12 33.61 33.63 30.03 32.66 33.39 33.88 31.52 32.86 31.82 31.55 27.49 28.63 29.89 32.92 31.42 34.69 33.78 34.03 34.89 33.95 32.68 30.83 28.94 23.15 18.72 18.96

23.20 19.00 17.60 24.00 30.00 27.00 31.00 23.60 22.80 20.00 16.60 10.60 10.20 9.40 23.00 21.80 55.00 24.00 27.60 11.00 42.20 24.40 28.80 44.40 40.40 11.60 47.20 59.20 44.80 55.40 19.40 37.40 8.80 12.80 55.80

2.78 2.25 2.05 2.76 3.41 3.03 3.44 2.59 2.47 2.14 1.76 1.11 1.06 0.96 2.33 2.19 5.46 2.36 2.68 1.06 4.03 2.31 2.70 4.12 3.72 1.06 4.27 5.31 3.98 4.89 1.70 3.25 0.76 1.09 4.73

Deposition (yr/cm) 8.35 8.46 8.57 8.69 8.80 8.91 9.02 9.13 9.24 9.34 9.45 9.56 9.66 9.77 9.87 9.98 10.08 10.18 10.28 10.38 10.48 10.58 10.68 10.77 10.87 10.96 11.06 11.15 11.25 11.34 11.43 11.52 11.61 11.70 11.79

69 Depth (m) 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04

Age (cal yr BP) 569 581 592 605 617 629 641 654 666 679 691 704 717 730 743 756 769 782 795 809 822 836 849 863 876 890 904 918 932 946 960 974 989 1003 1017

MS (emu) 1.82E-06 1.70E-07 2.40E-07 1.90E-07 2.60E-07 6.00E-08 2.80E-07 3.00E-07 2.40E-07 1.00E-07 1.50E-07 1.40E-07 1.50E-07 1.40E-07 1.00E-08 1.00E-07 5.00E-08 1.00E-07 1.00E-07 1.10E-07 1.60E-07 2.40E-07 1.90E-07 2.40E-07 2.60E-07 2.80E-07 2.70E-07 2.60E-07 2.50E-07 2.90E-07 2.80E-07 1.80E-07 1.90E-07 3.00E-07 3.10E-07

%O

C/cm2

C/cm2/yr

16.87 30.64 33.31 33.37 33.42 33.61 32.03 32.68 32.42 32.30 32.72 32.80 32.60 32.62 34.33 34.17 34.35 34.10 33.22 32.41 32.37 31.35 26.95 31.14 30.36 29.17 30.19 29.17 29.58 29.04 29.25 32.07 31.65 32.23 30.33

68.40 34.80 47.67 54.33 25.00 27.33 38.67 36.33 37.67 29.33 23.33 28.00 17.33 28.67 44.33 47.00 61.00 134.67 145.33 135.33 50.33 31.67 45.00 30.33 52.33 30.67 46.67 95.33 58.33 36.00 18.33 31.67 18.67 35.67 35.33

5.76 2.91 3.95 4.48 2.04 2.22 3.12 2.91 3.00 2.32 1.83 2.19 1.35 2.21 3.40 3.58 4.62 10.15 10.89 10.08 3.73 2.33 3.30 2.21 3.80 2.21 3.35 6.81 4.15 2.55 1.29 2.22 1.30 2.48 2.44

Deposition (yr/cm) 11.88 11.97 12.05 12.14 12.23 12.31 12.39 12.48 12.56 12.64 12.72 12.80 12.88 12.96 13.04 13.12 13.19 13.27 13.35 13.42 13.50 13.57 13.64 13.71 13.79 13.86 13.93 14.00 14.07 14.13 14.20 14.27 14.33 14.40 14.47

70 Depth (m) 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39

Age (cal yr BP) 1032 1046 1061 1076 1090 1105 1120 1135 1150 1165 1180 1195 1210 1226 1241 1256 1272 1287 1303 1318 1334 1350 1365 1381 1397 1413 1429 1445 1461 1477 1493 1509 1525 1542 1558

MS (emu) 2.80E-07 2.20E-07 2.00E-07 1.40E-07 1.50E-07 1.40E-07 1.30E-07 1.30E-07 1.00E-07 1.60E-07 1.50E-07 1.50E-07 2.00E-07 2.60E-07 3.40E-07 2.40E-07 1.30E-07 3.50E-07 3.70E-07 5.60E-07 6.40E-07 4.80E-07 5.30E-07 8.40E-07 5.10E-07 6.50E-07 5.30E-07 6.70E-07 9.10E-07 5.10E-07 3.70E-07 3.10E-07 4.60E-07 5.40E-07 5.00E-07

%O

C/cm2

C/cm2/yr

32.59 32.52 32.70 33.33 37.73 31.59 30.89 31.64 32.70 30.82 29.99 30.13 32.93 31.13 32.24 29.52 31.87 30.22 31.59 31.42 31.15 31.79 31.14 30.88 32.07 30.19 29.97 28.67 27.84 29.68 29.73 29.84 28.52 30.01 27.38

34.67 30.33 30.33 28.67 20.67 32.67 41.67 38.33 52.33 40.67 41.33 20.33 69.33 44.33 34.67 47.67 69.67 69.00 87.00 65.33 47.00 55.00 50.67 71.00 130.67 98.67 145.00 94.67 153.00 51.67 78.00 46.33 49.67 34.00 20.67

2.39 2.08 2.07 1.95 1.40 2.20 2.80 2.56 3.48 2.70 2.73 1.34 4.55 2.90 2.26 3.09 4.50 4.44 5.58 4.18 3.00 3.49 3.21 4.48 8.22 6.19 9.07 5.90 9.51 3.20 4.82 2.86 3.05 2.08 1.26

Deposition (yr/cm) 14.53 14.59 14.66 14.72 14.78 14.84 14.90 14.96 15.02 15.08 15.14 15.20 15.25 15.31 15.37 15.42 15.48 15.53 15.58 15.64 15.69 15.74 15.79 15.84 15.89 15.94 15.99 16.04 16.09 16.13 16.18 16.22 16.27 16.31 16.36

71 Depth (m) 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74

Age (cal yr BP) 1574 1591 1607 1624 1640 1657 1673 1690 1707 1724 1740 1757 1774 1791 1808 1825 1842 1859 1876 1893 1910 1927 1944 1962 1979 1996 2013 2031 2048 2066 2083 2101 2118 2136 2153

MS (emu) 4.40E-07 4.00E-07 3.00E-07 6.30E-07 6.90E-07 5.30E-07 3.80E-07 4.50E-07 1.70E-07 3.40E-07 2.00E-07 2.10E-07 1.80E-07 2.50E-07 3.00E-07 5.00E-07 2.20E-07 3.00E-07 2.90E-07 3.90E-07 3.90E-07 4.70E-07 4.50E-07 8.90E-07 6.50E-07 3.20E-07 2.40E-07 4.20E-07 5.60E-07 5.80E-07 5.00E-07 7.30E-07 5.30E-07 3.90E-07 5.00E-07

%O

C/cm2

C/cm2/yr

27.47 27.53 27.58 28.27 28.21 29.14 30.92 31.30 32.32 31.26 31.32 30.84 29.00 28.53 28.97 30.25 30.61 32.12 32.15 33.47 32.68 32.76 32.69 31.99 31.53 33.23 31.96 NA 30.89 32.43 31.12 29.60 29.47 30.93 NA

34.33 10.00 40.00 27.67 32.00 39.67 29.33 33.00 67.67 52.00 91.67 67.33 43.00 60.33 44.33 59.33 48.67 37.00 55.67 51.33 60.67 71.33 81.67 51.00 24.67 82.00 77.00 65.67 31.00 46.67 60.67 47.00 24.67 37.33 42.50

2.09 0.61 2.43 1.67 1.93 2.39 1.76 1.98 4.04 3.10 5.45 4.00 2.55 3.57 2.61 3.49 2.86 2.17 3.26 3.00 3.53 4.15 4.74 2.95 1.43 4.73 4.44 3.78 1.78 2.68 3.47 2.69 1.41 2.13 2.42

Deposition (yr/cm) 16.40 16.45 16.49 16.53 16.57 16.61 16.65 16.69 16.73 16.77 16.81 16.85 16.88 16.92 16.96 16.99 17.03 17.06 17.10 17.13 17.16 17.20 17.23 17.26 17.29 17.32 17.35 17.38 17.41 17.44 17.47 17.50 17.52 17.55 17.58

72 Depth (m) 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09

Age (cal yr BP) 2171 2188 2206 2224 2241 2259 2277 2294 2312 2330 2348 2366 2384 2401 2419 2437 2455 2473 2491 2509 2527 2545 2563 2581 2599 2617 2635 2654 2672 2690 2708 2726 2744 2763 2781

MS (emu) 5.20E-06 9.20E-07 6.10E-07 6.50E-07 5.90E-07 6.30E-07 5.60E-07 8.70E-07 3.70E-07 3.50E-07 3.80E-07 3.70E-07 5.20E-07 6.00E-07 5.30E-07 6.70E-07 6.50E-07 5.10E-07 5.70E-07 5.20E-07 5.40E-07 7.00E-07 8.40E-07 9.30E-07 6.50E-07 8.30E-07 8.80E-07 8.10E-07 6.70E-07 5.30E-07 6.50E-07 1.02E-06 9.40E-07 6.80E-07 1.16E-06

%O

C/cm2

C/cm2/yr

NA 30.59 29.51 30.33 28.61 31.49 32.27 31.41 32.57 32.84 33.30 30.82 29.11 28.81 30.06 17.36 29.60 26.70 29.71 27.75 27.70 28.05 37.47 27.58 27.10 28.23 26.44 26.63 24.27 24.94 23.75 23.71 25.81 26.02 24.22

28.00 63.00 50.33 66.67 42.33 84.67 56.00 68.67 51.00 57.67 66.33 46.33 42.67 32.67 43.33 69.00 56.00 42.67 84.00 70.00 60.00 72.67 48.00 82.00 52.33 29.00 87.33 90.33 59.67 69.00 88.67 156.33 66.67 48.67 179.67

1.59 3.57 2.85 3.77 2.39 4.78 3.16 3.86 2.87 3.24 3.72 2.59 2.39 1.83 2.42 3.85 3.12 2.37 4.67 3.89 3.33 4.03 2.66 4.54 2.89 1.60 4.82 4.98 3.29 3.80 4.88 8.59 3.66 2.67 9.86

Deposition (yr/cm) 17.60 17.63 17.65 17.68 17.70 17.73 17.75 17.77 17.79 17.82 17.84 17.86 17.88 17.90 17.92 17.94 17.96 17.98 17.99 18.01 18.03 18.04 18.06 18.08 18.09 18.11 18.12 18.14 18.15 18.16 18.18 18.19 18.20 18.21 18.23

73 Depth (m) 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44

Age (cal yr BP) 2799 2817 2836 2854 2872 2890 2909 2927 2945 2964 2982 3000 3019 3037 3055 3074 3092 3110 3129 3147 3165 3184 3202 3221 3239 3257 3276 3294 3313 3331 3349 3368 3386 3405 3423

MS (emu) 8.60E-07 7.30E-07 7.90E-07 1.00E-06 9.30E-07 5.80E-07 3.70E-07 4.50E-07 2.60E-07 2.70E-07 3.30E-07 4.00E-07 4.80E-07 8.40E-07 5.40E-07 1.12E-06 8.20E-07 1.90E-07 4.90E-07 3.60E-07 7.50E-07 7.30E-07 5.00E-07 7.10E-07 5.40E-07 8.20E-07 1.04E-06 3.50E-07 3.50E-07 4.40E-07 3.20E-07 5.50E-07 8.60E-07 9.10E-07 8.10E-07

%O

C/cm2

C/cm2/yr

24.45 25.37 26.03 26.77 26.62 28.67 29.54 31.08 32.88 31.72 30.96 29.71 27.91 25.07 26.12 24.22 25.19 27.05 27.91 29.09 28.35 25.65 26.87 27.98 26.52 27.63 26.56 30.12 31.03 30.54 31.62 30.53 28.87 27.87 29.42

162.00 153.33 82.67 109.33 172.00 75.33 100.00 146.33 65.67 43.33 22.33 87.67 61.00 125.67 37.67 121.67 103.67 68.00 36.00 25.00 65.33 77.67 69.00 44.33 40.33 124.67 128.00 68.50 101.00 90.00 146.50 88.00 47.00 70.00 61.50

8.88 8.40 4.53 5.98 9.41 4.12 5.47 7.99 3.59 2.37 1.22 4.78 3.33 6.85 2.05 6.63 5.64 3.70 1.96 1.36 3.55 4.22 3.75 2.41 2.19 6.77 6.96 3.72 5.49 4.89 7.96 4.78 2.55 3.80 3.34

Deposition (yr/cm) 18.24 18.25 18.26 18.27 18.28 18.29 18.30 18.31 18.31 18.32 18.33 18.34 18.34 18.35 18.36 18.36 18.37 18.37 18.38 18.38 18.39 18.39 18.39 18.40 18.40 18.40 18.40 18.41 18.41 18.41 18.41 18.41 18.41 18.41 18.41

74 Depth (m) 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79

Age (cal yr BP) 3441 3460 3478 3497 3515 3534 3552 3570 3589 3607 3626 3644 3662 3681 3699 3717 3736 3754 3773 3791 3809 3828 3846 3864 3883 3901 3919 3937 3956 3974 3992 4011 4029 4047 4065

MS (emu) 1.13E-06 5.90E-07 5.30E-07 5.20E-07 4.70E-07 3.90E-07 5.60E-07 4.40E-07 4.50E-07 6.50E-07 1.03E-06 1.14E-06 1.01E-06 7.30E-07 5.20E-07 4.60E-07 3.90E-07 6.10E-07 8.90E-07 1.03E-06 4.10E-07 2.80E-07 3.10E-07 3.90E-07 3.80E-07 3.60E-07 5.20E-07 5.40E-07 5.30E-07 6.00E-07 7.90E-07 9.50E-07 4.80E-07 5.90E-07 6.90E-07

%O

C/cm2

C/cm2/yr

28.20 29.58 29.67 31.60 30.40 27.98 28.79 30.40 29.19 28.31 24.97 24.06 25.89 26.57 27.22 27.05 29.42 27.61 26.33 26.63 30.00 29.66 30.00 30.55 29.10 29.18 27.55 28.64 29.14 29.05 NA NA 25.36 26.71 27.13

80.50 41.50 68.50 47.00 54.50 45.50 109.00 59.50 43.00 88.00 100.00 152.50 84.00 50.50 53.00 67.50 62.00 64.50 60.50 66.00 44.50 52.00 41.50 51.50 59.50 35.50 40.50 55.50 66.50 62.00 48.50 53.33 93.00 67.00 48.00

4.37 2.25 3.72 2.55 2.96 2.47 5.92 3.23 2.34 4.78 5.44 8.29 4.57 2.75 2.88 3.67 3.38 3.51 3.30 3.60 2.43 2.84 2.26 2.81 3.25 1.94 2.21 3.03 3.64 3.39 2.65 2.92 5.09 3.67 2.63

Deposition (yr/cm) 18.41 18.41 18.41 18.41 18.40 18.40 18.40 18.40 18.40 18.39 18.39 18.39 18.38 18.38 18.37 18.37 18.36 18.36 18.35 18.35 18.34 18.34 18.33 18.32 18.32 18.31 18.30 18.29 18.29 18.28 18.27 18.26 18.25 18.24 18.24

75 Depth (m) 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14

Age (cal yr BP) 4084 4102 4120 4138 4156 4175 4193 4211 4229 4247 4265 4284 4302 4320 4338 4356 4374 4392 4410 4428 4446 4464 4482 4500 4518 4536 4554 4572 4590 4608 4626 4643 4661 4679 4697

MS (emu) 7.00E-07 3.10E-07 4.70E-07 5.70E-07 9.30E-07 6.70E-07 8.40E-07 1.15E-06 1.06E-06 8.50E-07 1.34E-06 1.02E-06 1.13E-06 1.03E-06 9.90E-07 1.58E-06 1.10E-06 9.50E-07 7.00E-07 7.80E-07 8.80E-07 8.30E-07 6.40E-07 6.60E-07 7.90E-07 4.40E-07 5.70E-07 5.70E-07 4.60E-07 8.70E-07 8.60E-07 7.20E-07 1.21E-06 1.18E-06 1.05E-06

%O

C/cm2

C/cm2/yr

26.00 25.75 25.34 25.24 23.47 24.32 25.08 26.08 23.85 21.42 21.35 24.39 22.52 21.42 23.52 22.05 22.32 22.15 23.86 24.32 24.88 25.08 27.43 45.00 28.55 28.19 28.17 29.45 30.72 23.50 23.88 25.18 21.87 21.88 23.20

62.00 51.67 41.00 59.33 60.67 48.33 32.67 29.33 46.00 61.33 118.67 104.67 70.67 119.00 46.33 128.67 37.33 90.33 26.00 29.67 50.33 74.33 26.67 45.00 42.67 27.33 27.00 42.00 21.00 44.00 60.00 45.33 62.67 75.00 75.00

3.40 2.84 2.25 3.26 3.34 2.66 1.80 1.62 2.53 3.38 6.55 5.78 3.90 6.58 2.56 7.12 2.07 5.01 1.44 1.65 2.80 4.13 1.48 2.51 2.38 1.52 1.51 2.35 1.17 2.46 3.36 2.54 3.51 4.21 4.21

Deposition (yr/cm) 18.23 18.22 18.21 18.20 18.19 18.18 18.17 18.16 18.15 18.14 18.12 18.11 18.10 18.09 18.08 18.07 18.05 18.04 18.03 18.02 18.00 17.99 17.98 17.96 17.95 17.94 17.92 17.91 17.90 17.88 17.87 17.85 17.84 17.82 17.81

76 Depth (m) 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49

Age (cal yr BP) 4715 4733 4750 4768 4786 4804 4821 4839 4857 4874 4892 4910 4927 4945 4962 4980 4998 5015 5033 5050 5068 5085 5103 5120 5137 5155 5172 5190 5207 5224 5242 5259 5276 5294 5311

MS (emu) 5.30E-07 6.40E-07 5.90E-07 5.70E-07 8.30E-07 1.26E-06 4.80E-07 5.90E-07 6.30E-07 8.20E-07 9.00E-07 1.80E-07 6.10E-07 6.00E-07 1.01E-06 4.50E-07 6.30E-07 6.80E-07 6.90E-07 7.90E-07 6.00E-07 3.60E-07 4.40E-07 4.80E-07 6.70E-07 3.10E-07 4.30E-07 4.60E-07 5.00E-07 5.00E-07 5.40E-07 3.70E-07 1.30E-07 4.50E-07 5.10E-07

%O

C/cm2

C/cm2/yr

25.34 26.28 27.41 27.70 24.94 25.61 28.91 30.11 30.77 28.61 26.99 26.55 27.67 27.01 26.16 28.47 29.08 27.44 27.97 28.57 29.23 32.06 30.80 30.38 28.17 29.55 30.07 29.28 29.21 27.31 22.40 21.55 22.56 22.22 26.29

42.67 36.67 42.33 35.00 90.33 50.67 125.67 69.67 81.33 47.33 48.33 43.00 41.33 50.67 84.00 38.33 72.67 24.33 55.67 50.00 66.00 63.00 51.00 34.00 51.33 43.67 45.67 51.00 103.00 34.33 62.33 46.67 49.67 50.67 46.33

2.40 2.06 2.38 1.97 5.09 2.86 7.10 3.94 4.60 2.68 2.74 2.44 2.35 2.88 4.78 2.18 4.14 1.39 3.18 2.86 3.78 3.61 2.92 1.95 2.95 2.51 2.63 2.94 5.94 1.98 3.60 2.70 2.88 2.94 2.69

Deposition (yr/cm) 17.79 17.78 17.76 17.75 17.73 17.72 17.70 17.69 17.67 17.65 17.64 17.62 17.61 17.59 17.57 17.56 17.54 17.52 17.51 17.49 17.47 17.46 17.44 17.42 17.41 17.39 17.37 17.36 17.34 17.32 17.30 17.29 17.27 17.25 17.23

77 Depth (m) 3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59 3.60 3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69 3.70 3.71 3.72 3.73 3.74 3.75 3.76 3.77 3.78 3.79 3.80 3.81 3.82 3.83 3.84

Age (cal yr BP) 5328 5345 5362 5380 5397 5414 5431 5448 5465 5482 5499 5516 5533 5550 5567 5584 5601 5618 5635 5652 5669 5686 5703 5719 5736 5753 5770 5787 5803 5820 5837 5853 5870 5887 5903

MS (emu) 5.40E-07 1.90E-07 3.30E-07 2.70E-07 3.50E-07 2.60E-07 4.80E-07 6.80E-07 4.40E-07 4.00E-07 2.20E-07 3.80E-07 2.40E-07 3.40E-07 3.80E-07 4.30E-07 6.90E-07 8.60E-07 7.00E-07 1.03E-06 8.30E-07 8.80E-07 8.80E-07 9.20E-07 8.90E-07 9.40E-07 8.80E-07 9.90E-07 1.08E-06 1.22E-06 9.60E-07 8.70E-07 8.00E-07 8.30E-07 8.30E-07

%O

C/cm2

C/cm2/yr

NA 29.86 30.25 31.09 30.55 30.19 27.29 26.47 27.91 28.11 29.00 31.74 31.79 28.83 28.31 27.15 25.16 24.24 22.01 24.63 24.17 24.23 24.14 24.60 24.39 24.40 20.53 20.07 19.23 18.39 21.06 23.48 22.78 23.70 24.54

52.33 84.33 60.67 45.67 54.67 43.33 43.33 64.33 42.00 40.00 69.00 42.33 45.33 28.00 41.33 54.33 33.33 57.67 44.67 54.00 45.33 49.33 64.00 75.00 77.00 86.00 72.33 107.67 142.33 118.00 86.33 47.67 82.33 67.00 58.33

3.04 4.90 3.53 2.66 3.19 2.53 2.53 3.76 2.46 2.35 4.05 2.49 2.67 1.65 2.44 3.21 1.97 3.41 2.64 3.20 2.69 2.93 3.80 4.46 4.59 5.13 4.32 6.43 8.51 7.06 5.17 2.86 4.94 4.03 3.51

Deposition (yr/cm) 17.22 17.20 17.18 17.16 17.15 17.13 17.11 17.09 17.08 17.06 17.04 17.02 17.00 16.99 16.97 16.95 16.93 16.92 16.90 16.88 16.86 16.84 16.83 16.81 16.79 16.77 16.76 16.74 16.72 16.70 16.69 16.67 16.65 16.63 16.62

78 Depth (m) 3.85 3.86 3.87 3.88 3.89 3.90 3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98 3.99 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19

Age MS (cal yr BP) (emu) 5920 1.01E-06 5937 4.70E-07 5953 6.70E-07 5970 7.20E-07 5986 5.40E-07 6003 4.80E-07 6019 6.00E-07 6036 5.50E-07 6052 5.60E-07 6069 6.10E-07 6085 9.20E-07 6102 4.80E-07 6118 7.10E-07 6135 4.80E-07 6151 7.00E-07 6167 4.30E-07 6184 4.10E-07 6200 4.50E-07 6216 6.80E-07 6233 7.70E-07 6249 6.50E-07 6265 6.40E-07 6281 8.00E-07 6298 -9.99E+02 6314 1.37E-06 6330 4.00E-07 6346 2.00E-08 6362 7.30E-07 6379 5.60E-07 6395 6.00E-07 6411 1.10E-06 6427 5.10E-07 6443 1.01E-06 6459 7.90E-07 6475 6.90E-07

%O

C/cm2

C/cm2/yr

23.67 19.09 25.62 25.39 29.15 29.94 26.83 27.23 28.13 26.77 27.03 30.17 27.57 26.37 27.17 30.09 32.19 27.93 NA 23.30 28.79 27.85 27.32 27.70 27.25 28.35 28.15 27.14 22.92 26.57 25.21 27.54 26.15 27.16 26.70

94.67 38.67 91.33 69.00 78.33 74.00 56.67 54.00 52.33 56.67 112.67 63.33 54.00 47.00 43.67 37.33 92.33 75.00 77.67 81.33 66.33 47.67 50.67 74.67 106.67 73.33 58.33 59.67 51.33 50.67 108.33 72.67 80.67 77.33 55.67

5.70 2.33 5.51 4.17 4.74 4.48 3.43 3.28 3.18 3.45 6.86 3.86 3.29 2.87 2.67 2.28 5.65 4.60 4.76 4.99 4.08 2.93 3.12 4.60 6.58 4.53 3.61 3.69 3.18 3.14 6.72 4.51 5.01 4.81 3.47

Deposition (yr/cm) 16.60 16.58 16.57 16.55 16.53 16.52 16.50 16.48 16.46 16.45 16.43 16.42 16.40 16.38 16.37 16.35 16.33 16.32 16.30 16.29 16.27 16.26 16.24 16.22 16.21 16.19 16.18 16.16 16.15 16.14 16.12 16.11 16.09 16.08 16.06

79 Depth (m) 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54

Age (cal yr BP) 6491 6507 6523 6539 6555 6571 6587 6603 6619 6635 6651 6667 6683 6699 6715 6731 6747 6762 6778 6794 6810 6826 6842 6857 6873 6889 6905 6920 6936 6952 6968 6983 6999 7015 7030

MS (emu) 5.70E-07 7.60E-07 4.90E-07 8.00E-07 5.50E-07 5.20E-07 8.00E-07 1.14E-06 7.70E-07 6.40E-07 3.90E-07 7.30E-07 5.80E-07 4.70E-07 4.90E-07 4.70E-07 5.00E-07 3.80E-07 2.80E-07 3.00E-07 4.20E-07 5.70E-07 5.70E-07 3.60E-07 3.00E-07 5.20E-07 5.10E-07 7.90E-07 6.40E-07 7.70E-07 8.70E-07 7.70E-07 8.10E-07 1.11E-06 1.07E-06

%O

C/cm2

C/cm2/yr

27.41 30.14 28.29 23.58 25.98 25.70 24.75 25.42 27.17 28.80 29.23 27.11 29.15 27.38 28.74 29.54 25.10 27.02 27.79 27.00 27.95 27.29 29.30 29.32 30.36 27.36 28.39 26.66 26.62 25.76 26.12 25.77 26.15 22.70 25.38

93.00 75.33 116.67 94.33 45.00 46.00 68.67 90.67 48.33 91.33 74.00 77.67 72.33 69.33 82.33 90.00 48.67 27.00 57.33 40.67 77.00 53.67 71.33 38.33 67.00 66.67 70.00 101.00 64.00 102.67 110.67 55.67 82.00 101.67 66.33

5.79 4.70 7.28 5.89 2.81 2.88 4.30 5.68 3.03 5.73 4.65 4.88 4.55 4.36 5.19 5.67 3.07 1.70 3.62 2.57 4.87 3.40 4.52 2.43 4.25 4.23 4.45 6.42 4.07 6.53 7.04 3.54 5.22 6.48 4.23

Deposition (yr/cm) 16.05 16.04 16.02 16.01 16.00 15.98 15.97 15.96 15.95 15.93 15.92 15.91 15.90 15.88 15.87 15.86 15.85 15.84 15.83 15.82 15.81 15.80 15.79 15.78 15.77 15.76 15.75 15.74 15.73 15.72 15.71 15.70 15.70 15.69 15.68

80 Depth (m) 4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89

Age (cal yr BP) 7046 7062 7077 7093 7109 7124 7140 7156 7171 7187 7203 7218 7234 7249 7265 7281 7296 7312 7327 7343 7358 7374 7390 7405 7421 7436 7452 7467 7483 7499 7514 7530 7545 7561 7576

MS (emu) 7.60E-07 6.10E-07 6.50E-07 4.90E-07 6.50E-07 6.70E-07 6.30E-07 4.80E-07 2.40E-07 2.00E-07 2.70E-07 2.20E-07 4.00E-07 5.00E-07 6.60E-07 6.70E-07 4.20E-07 1.59E-06 7.60E-07 4.10E-07 8.90E-07 6.70E-07 8.50E-07 1.57E-06 7.10E-07 7.80E-07 1.06E-06 1.88E-05 5.50E-07 4.50E-07 3.70E-07 4.20E-07 3.70E-07 6.50E-07 6.70E-07

%O

C/cm2

C/cm2/yr

24.05 23.68 24.18 24.06 24.98 24.95 23.39 29.68 30.45 32.52 31.43 31.42 31.60 26.76 26.17 24.26 26.39 23.72 24.56 24.62 23.60 25.07 24.99 21.01 23.98 22.29 21.16 12.92 26.68 28.30 29.69 28.86 27.54 24.95 25.40

52.67 35.00 54.00 39.00 60.33 48.67 50.67 30.33 44.33 31.33 37.67 81.67 95.67 63.00 57.67 37.33 24.00 49.33 52.33 44.67 38.67 48.67 50.33 97.00 49.67 48.00 63.67 50.67 69.00 54.67 67.33 42.00 44.67 69.33 28.67

3.36 2.23 3.45 2.49 3.86 3.11 3.24 1.94 2.84 2.01 2.41 5.23 6.13 4.04 3.70 2.39 1.54 3.17 3.36 2.87 2.48 3.13 3.23 6.23 3.19 3.08 4.09 3.25 4.43 3.51 4.33 2.70 2.87 4.45 1.84

Deposition (yr/cm) 15.67 15.67 15.66 15.65 15.65 15.64 15.63 15.63 15.62 15.62 15.61 15.61 15.60 15.60 15.59 15.59 15.59 15.58 15.58 15.58 15.58 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57 15.57

81 Depth (m) 4.90 4.91 4.92 4.93 4.94 4.95 4.96 4.97 4.98 4.99 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24

Age (cal yr BP) 7592 7608 7623 7639 7654 7670 7685 7701 7717 7732 7748 7763 7779 7795 7810 7826 7842 7857 7873 7889 7904 7920 7936 7951 7967 7983 7998 8014 8030 8046 8062 8077 8093 8109 8125

MS (emu) 6.70E-07 8.60E-07 5.30E-07 7.10E-07 7.80E-07 7.30E-07 1.24E-06 9.50E-07 6.30E-07 6.10E-07 5.80E-07 4.90E-07 4.30E-07 6.10E-07 6.80E-07 8.90E-07 8.70E-07 1.31E-06 1.20E-06 1.20E-06 1.45E-06 5.90E-07 7.80E-07 8.70E-07 8.20E-07 7.90E-07 7.10E-07 7.60E-07 8.30E-07 8.00E-07 8.80E-07 6.90E-07 7.00E-07 7.30E-07 8.00E-07

%O

C/cm2

C/cm2/yr

25.71 25.32 26.94 27.86 28.17 25.95 23.68 23.84 25.83 25.91 26.07 27.23 26.30 25.05 23.99 22.59 22.68 18.87 20.20 20.20 16.76 23.72 23.42 22.58 21.75 24.00 23.95 23.62 23.66 23.77 24.13 23.73 23.20 22.94 23.55

91.00 54.67 20.33 46.67 63.00 62.00 50.33 47.00 51.67 24.00 30.00 41.00 40.33 12.67 11.33 37.67 75.33 60.33 65.00 70.67 55.00 15.67 20.33 57.67 40.33 79.33 72.00 56.33 61.00 45.33 44.33 50.33 42.67 58.67 70.67

5.84 3.51 1.31 3.00 4.04 3.98 3.23 3.01 3.31 1.54 1.92 2.63 2.58 0.81 0.72 2.41 4.81 3.85 4.15 4.51 3.51 1.00 1.30 3.67 2.57 5.04 4.57 3.58 3.87 2.87 2.81 3.19 2.70 3.71 4.46

Deposition (yr/cm) 15.57 15.58 15.58 15.58 15.58 15.59 15.59 15.60 15.60 15.61 15.61 15.62 15.62 15.63 15.64 15.64 15.65 15.66 15.66 15.67 15.68 15.69 15.70 15.71 15.72 15.73 15.74 15.75 15.76 15.78 15.79 15.80 15.82 15.83 15.84

82 Depth (m) 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.40 5.41 5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.50 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59

Age (cal yr BP) 8141 8156 8172 8188 8204 8220 8236 8252 8268 8284 8300 8316 8332 8348 8364 8380 8396 8412 8429 8445 8461 8477 8494 8510 8526 8542 8559 8575 8592 8608 8624 8641 8657 8674 8691

MS (emu) 7.40E-07 6.60E-07 5.40E-07 7.30E-07 7.00E-07 6.90E-07 5.80E-07 5.20E-07 4.60E-07 5.90E-07 4.90E-07 3.50E-07 3.70E-07 4.30E-07 2.60E-07 2.40E-07 7.10E-07 5.40E-07 8.00E-07 7.80E-07 6.70E-07 9.80E-07 8.00E-07 6.20E-07 7.10E-07 6.50E-07 6.50E-07 6.90E-07 6.40E-07 8.20E-07 1.01E-06 9.00E-07 5.10E-07 4.30E-07 3.00E-07

%O

C/cm2

C/cm2/yr

24.54 25.52 25.69 25.88 24.66 25.70 26.67 25.84 26.67 26.42 26.53 26.31 28.52 26.42 26.83 28.54 25.61 26.38 25.29 25.09 24.81 25.47 25.46 27.35 25.83 25.91 26.15 24.48 24.29 23.46 24.52 25.04 29.19 29.74 32.23

66.00 65.33 43.67 42.67 45.00 36.33 45.67 33.33 37.33 38.67 40.33 36.33 36.00 40.33 46.67 54.33 53.00 55.33 51.67 53.67 48.33 55.67 49.00 40.33 37.67 43.33 47.67 51.33 49.00 60.67 90.00 58.00 59.67 157.00 48.67

4.16 4.12 2.75 2.68 2.83 2.28 2.86 2.09 2.34 2.42 2.52 2.26 2.24 2.51 2.90 3.37 3.28 3.42 3.19 3.31 2.98 3.42 3.01 2.47 2.31 2.65 2.91 3.13 2.98 3.69 5.46 3.51 3.61 9.47 2.93

Deposition (yr/cm) 15.86 15.87 15.89 15.90 15.92 15.94 15.95 15.97 15.99 16.00 16.02 16.04 16.06 16.08 16.10 16.12 16.14 16.16 16.19 16.21 16.23 16.26 16.28 16.30 16.33 16.35 16.38 16.40 16.43 16.46 16.49 16.51 16.54 16.57 16.60

83 Depth (m) 5.60 5.61 5.62 5.63 5.64 5.65 5.66 5.67 5.68 5.69 5.70 5.71 5.72 5.73 5.74 5.75 5.76 5.77 5.78 5.79 5.80 5.81 5.82 5.83 5.84 5.85 5.86 5.87 5.88 5.89 5.90 5.91 5.92 5.93 5.94

Age (cal yr BP) 8707 8724 8740 8757 8774 8791 8807 8824 8841 8858 8875 8892 8909 8926 8943 8960 8977 8994 9012 9029 9046 9063 9081 9098 9116 9133 9151 9168 9186 9204 9221 9239 9257 9275 9293

MS (emu) 2.70E-07 3.00E-07 2.20E-07 2.50E-07 3.30E-07 2.00E-07 3.80E-07 4.60E-07 3.40E-07 5.30E-07 7.50E-07 4.70E-07 4.90E-07 2.50E-07 2.90E-07 4.00E-07 3.40E-07 3.90E-07 3.10E-07 2.50E-07 2.10E-07 1.90E-07 1.50E-07 4.50E-07 2.60E-07 3.20E-07 1.90E-07 1.40E-07 3.10E-07 4.80E-07 4.10E-07 3.40E-07 2.90E-07 4.00E-07 4.20E-07

%O

C/cm2

C/cm2/yr

31.53 32.59 35.18 37.26 33.72 35.17 31.30 25.58 28.96 28.37 27.61 28.40 29.17 34.51 34.22 33.87 32.71 32.57 32.86 34.68 35.22 35.50 33.38 32.34 34.20 34.30 34.11 34.66 32.27 31.32 31.76 29.28 28.52 27.20 29.42

30.33 44.67 42.00 38.00 42.33 50.67 76.00 58.67 54.00 64.33 83.33 84.33 66.67 24.33 102.33 46.33 78.67 50.00 51.67 38.67 33.00 29.33 66.00 87.33 54.33 51.67 40.67 37.00 29.00 35.67 28.67 31.67 29.00 43.67 39.33

1.82 2.68 2.52 2.27 2.53 3.02 4.52 3.48 3.20 3.80 4.91 4.96 3.92 1.43 5.98 2.70 4.58 2.90 2.99 2.24 1.90 1.69 3.79 5.00 3.11 2.95 2.31 2.10 1.64 2.01 1.61 1.78 1.62 2.44 2.19

Deposition (yr/cm) 16.63 16.66 16.69 16.72 16.75 16.79 16.82 16.85 16.89 16.92 16.96 16.99 17.03 17.06 17.10 17.14 17.17 17.21 17.25 17.29 17.33 17.37 17.41 17.45 17.50 17.54 17.58 17.63 17.67 17.72 17.76 17.81 17.85 17.90 17.95

84 Depth (m) 5.95 5.96 5.97 5.98 5.99 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29

Age MS (cal yr BP) (emu) 9311 3.80E-07 9329 2.50E-07 9347 1.00E-07 9365 1.50E-07 9383 1.70E-07 9401 9.00E-08 9419 -9.99E+02 9438 3.00E-07 9456 2.60E-07 9474 4.80E-07 9493 5.20E-07 9511 3.50E-07 9530 3.10E-07 9548 4.50E-07 9567 3.40E-07 9586 7.80E-07 9605 1.05E-06 9624 6.30E-07 9642 7.30E-07 9661 8.50E-07 9680 3.40E-07 9700 6.10E-07 9719 8.10E-07 9738 5.00E-07 9757 2.90E-07 9776 2.00E-08 9796 3.20E-07 9815 2.80E-07 9835 7.90E-07 9854 6.40E-07 9874 4.90E-07 9894 3.20E-07 9914 3.60E-07 9933 4.90E-07 9953 3.50E-07

%O

C/cm2

C/cm2/yr

30.27 32.34 32.35 30.82 30.20 31.62 35.48 30.07 32.46 26.01 19.62 25.36 26.87 25.29 28.21 24.42 22.33 26.38 26.71 29.46 32.17 25.78 25.56 28.24 25.91 33.56 35.32 34.12 29.31 31.09 32.52 36.81 29.57 25.90 30.15

31.67 41.33 25.67 39.67 45.00 76.00 23.00 63.00 51.67 67.67 38.00 19.00 57.67 27.00 43.67 53.33 115.33 107.33 185.33 140.00 26.67 56.67 59.00 37.67 38.33 15.67 31.33 43.33 64.67 61.33 20.33 37.67 56.33 96.00 49.33

1.76 2.29 1.42 2.19 2.47 4.17 1.26 3.43 2.81 3.67 2.05 1.02 3.10 1.45 2.33 2.84 6.12 5.68 9.77 7.36 1.40 2.96 3.07 1.95 1.98 0.81 1.61 2.22 3.30 3.12 1.03 1.90 2.84 4.82 2.47

Deposition (yr/cm) 18.00 18.05 18.09 18.14 18.20 18.25 18.30 18.35 18.40 18.46 18.51 18.57 18.62 18.68 18.73 18.79 18.85 18.91 18.97 19.03 19.09 19.15 19.21 19.27 19.33 19.40 19.46 19.52 19.59 19.66 19.72 19.79 19.86 19.92 19.99

85 Depth (m) 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61 6.62 6.63 6.64

Age (cal yr BP) 9973 9993 10014 10034 10054 10074 10095 10115 10136 10157 10177 10198 10219 10240 10261 10282 10303 10324 10346 10367 10389 10410 10432 10454 10476 10498 10520 10542 10564 10586 10609 10631 10654 10676 10699

MS (emu) 3.90E-07 3.60E-07 2.80E-07 6.30E-07 7.80E-07 8.10E-07 1.02E-06 8.60E-07 1.35E-06 7.20E-07 5.10E-07 1.16E-06 1.26E-06 6.50E-07 4.80E-07 3.60E-07 3.80E-07 8.60E-07 1.13E-06 1.41E-06 9.50E-07 1.92E-06 1.73E-06 7.00E-07 7.60E-07 7.50E-07 7.30E-07 9.00E-07 2.25E-06 3.65E-06 5.66E-06 3.36E-06 1.22E-06 3.21E-06 2.27E-06

%O

C/cm2

C/cm2/yr

30.84 29.19 27.50 24.32 24.78 23.74 21.33 19.22 19.93 25.43 29.08 24.12 21.94 29.35 33.44 36.20 37.11 24.99 22.10 22.85 25.58 20.98 20.48 29.07 30.76 31.27 32.62 32.63 22.57 18.40 21.89 29.54 26.41 23.54 20.56

46.00 48.33 56.33 48.00 48.00 48.33 36.00 54.00 60.33 55.67 23.67 50.33 53.00 78.33 30.67 68.00 36.00 36.67 48.33 43.33 43.00 90.33 104.00 150.00 62.00 112.33 36.67 52.67 58.67 63.33 56.33 61.00 48.00 51.00 64.33

2.29 2.40 2.79 2.37 2.36 2.37 1.76 2.63 2.92 2.69 1.14 2.41 2.53 3.72 1.45 3.21 1.69 1.72 2.26 2.01 1.99 4.17 4.78 6.86 2.83 5.10 1.66 2.37 2.63 2.83 2.51 2.70 2.12 2.24 2.82

Deposition (yr/cm) 20.06 20.13 20.21 20.28 20.35 20.42 20.50 20.57 20.65 20.72 20.80 20.87 20.95 21.03 21.11 21.19 21.27 21.35 21.43 21.52 21.60 21.68 21.77 21.85 21.94 22.03 22.11 22.20 22.29 22.38 22.47 22.56 22.66 22.75 22.84

86 Depth (m) 6.65 6.66 6.67 6.68 6.69 6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79 6.80 6.81 6.82 6.83 6.84 6.85 6.86 6.87 6.88 6.89 6.90 6.91 6.92 6.93 6.94 6.95 6.96 6.97 6.98 6.99

Age (cal yr BP) 10722 10745 10768 10791 10814 10838 10861 10885 10908 10932 10956 10980 11004 11028 11052 11076 11101 11125 11150 11175 11200 11225 11250 11275 11300 11326 11351 11377 11403 11428 11454 11481 11507 11533 11560

MS (emu) 9.60E-07 3.10E-07 2.90E-07 7.00E-07 5.40E-07 5.00E-07 2.09E-06 1.43E-06 4.00E-07 1.10E-07 6.60E-07 1.55E-06 1.24E-06 1.91E-06 2.40E-06 2.92E-06 3.75E-06 2.87E-06 3.44E-06 2.72E-06 3.67E-06 5.66E-06 5.76E-06 3.88E-06 2.57E-06 2.79E-06 3.11E-06 2.82E-06 3.28E-06 3.18E-06 3.38E-06 3.22E-06 3.57E-06 3.16E-06 3.86E-06

%O

C/cm2

C/cm2/yr

25.32 33.88 35.76 29.24 NA NA NA 18.97 32.27 38.31 31.56 21.43 17.03 12.25 10.79 9.06 8.25 9.87 9.46 9.49 8.76 5.86 8.16 9.27 10.31 10.60 10.72 10.60 10.42 10.60 10.44 10.32 9.44 8.96 9.00

81.00 43.67 70.33 60.67 34.67 37.33 101.00 72.50 97.50 123.00 47.00 65.00 81.50 78.50 39.50 42.00 36.50 30.00 29.00 29.00 20.00 47.50 29.00 18.50 20.50 27.00 25.00 24.50 19.00 24.00 21.50 40.00 55.00 45.00 69.50

3.53 1.90 3.04 2.61 1.49 1.59 4.29 3.07 4.11 5.16 1.96 2.71 3.38 3.24 1.62 1.72 1.49 1.22 1.17 1.17 0.80 1.89 1.15 0.73 0.81 1.06 0.97 0.95 0.73 0.92 0.82 1.52 2.09 1.70 2.61

Deposition (yr/cm) 22.94 23.03 23.13 23.22 23.32 23.42 23.52 23.62 23.72 23.82 23.92 24.02 24.13 24.23 24.33 24.44 24.55 24.65 24.76 24.87 24.98 25.09 25.20 25.31 25.43 25.54 25.65 25.77 25.89 26.00 26.12 26.24 26.36 26.48 26.60

87 Depth (m) 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 7.18 7.19 7.20 7.21 7.22 7.23 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34

Age (cal yr BP) 11586 11613 11640 11667 11694 11721 11748 11776 11803 11831 11859 11887 11915 11943 11972 12000 12029 12058 12087 12116 12145 12174 12204 12233 12263 12293 12323 12353 12383 12414 12445 12475 12506 12537 12569

MS (emu) 3.78E-06 3.01E-06 2.87E-06 3.47E-06 3.48E-06 3.33E-06 3.33E-06 3.29E-06 9.48E-06 7.63E-06 4.41E-06 3.83E-06 2.80E-06 3.09E-06 2.97E-06 3.29E-06 4.15E-06 2.71E-06 3.31E-06 3.47E-06 4.04E-06 4.55E-06 5.30E-06 1.74E-06 1.18E-06 2.07E-06 1.48E-06 1.54E-06 1.67E-06 1.57E-06 1.39E-06 1.66E-06 1.83E-06 2.81E-06 1.72E-06

%O

C/cm2

C/cm2/yr

9.03 10.74 9.99 9.44 8.05 7.88 8.25 8.58 3.19 3.79 8.86 10.06 12.05 11.39 12.63 12.04 11.05 10.61 12.58 10.43 8.86 8.00 9.11 19.18 21.36 17.67 17.80 19.52 20.50 19.58 20.81 19.24 17.40 15.72 18.96

68.00 34.00 27.50 28.50 29.00 22.50 28.50 26.50 8.00 26.50 31.50 24.00 21.50 12.50 36.00 44.00 55.00 60.50 17.50 41.00 54.00 49.50 39.00 10.50 13.50 28.00 26.50 15.50 25.00 34.50 18.50 29.50 13.00 33.00 15.00

2.54 1.27 1.02 1.05 1.07 0.82 1.04 0.96 0.29 0.95 1.13 0.85 0.76 0.44 1.26 1.54 1.91 2.09 0.60 1.40 1.84 1.68 1.32 0.35 0.45 0.93 0.88 0.51 0.82 1.13 0.60 0.95 0.42 1.06 0.48

Deposition (yr/cm) 26.72 26.84 26.97 27.09 27.21 27.34 27.47 27.60 27.72 27.85 27.98 28.11 28.25 28.38 28.51 28.65 28.78 28.92 29.05 29.19 29.33 29.47 29.61 29.75 29.90 30.04 30.18 30.33 30.47 30.62 30.77 30.92 31.07 31.22 31.37

88 Depth (m) 7.35 7.36 7.37 7.38 7.39 7.40 7.41 7.42 7.43 7.44 7.45 7.46 7.47 7.48 7.49 7.50 7.51 7.52 7.53 7.54 7.55 7.56 7.57 7.58 7.59 7.60 7.61 7.62 7.63 7.64 7.65 7.66 7.67 7.68 7.69

Age (cal yr BP) 12600 12631 12663 12695 12727 12759 12791 12824 12856 12889 12922 12955 12988 13022 13055 13089 13123 13157 13191 13226 13260 13295 13330 13365 13401 13436 13472 13507 13543 13580 13616 13652 13689 13726 13763

MS (emu) 2.94E-06 1.55E-06 1.96E-06 1.26E-06 1.56E-06 2.62E-06 4.21E-06 1.40E-06 1.88E-06 1.98E-06 2.21E-06 1.32E-06 1.37E-06 1.48E-06 1.09E-06 1.63E-06 2.06E-06 1.21E-06 9.40E-07 2.86E-06 1.25E-06 9.30E-07 9.30E-07 8.90E-07 1.92E-06 1.68E-06 1.62E-06 1.87E-06 3.13E-06 4.06E-06 2.52E-06 2.30E-06 2.35E-06 2.23E-06 1.90E-06

%O

C/cm2

C/cm2/yr

15.93 20.02 17.80 22.32 23.27 15.75 8.57 21.67 17.58 14.94 15.16 19.37 21.22 18.31 18.80 17.09 16.86 21.48 21.30 12.45 19.47 20.40 17.59 20.49 16.14 16.42 14.40 12.17 9.21 7.79 11.23 13.40 12.40 NA 13.54

30.50 15.00 46.00 35.00 12.50 25.00 37.00 9.00 15.00 20.00 23.50 24.50 49.00 31.00 15.00 34.00 50.00 5.00 38.50 42.00 26.00 28.00 13.50 13.50 12.50 22.50 2.00 54.00 62.50 92.00 52.00 38.50 14.00 20.00 20.80

0.97 0.47 1.45 1.09 0.39 0.77 1.14 0.28 0.46 0.61 0.71 0.74 1.47 0.92 0.44 1.00 1.47 0.15 1.12 1.21 0.75 0.80 0.38 0.38 0.35 0.63 0.06 1.50 1.73 2.53 1.42 1.05 0.38 0.54 0.56

Deposition (yr/cm) 31.52 31.67 31.83 31.98 32.14 32.29 32.45 32.61 32.77 32.93 33.09 33.26 33.42 33.58 33.75 33.91 34.08 34.25 34.42 34.59 34.76 34.93 35.10 35.28 35.45 35.63 35.81 35.98 36.16 36.34 36.52 36.71 36.89 37.07 37.26

89 Depth (m) 7.70 7.71 7.72 7.73 7.74 7.75 7.76 7.77 7.78 7.79 7.80 7.81 7.82 7.83 7.84 7.85 7.86 7.87 7.88 7.89 7.90 7.91 7.92 7.93 7.94 7.95 7.96 7.97 7.98 7.99 8.00 8.01 8.02 8.03 8.04

Age (cal yr BP) 13800 13838 13875 13913 13951 13989 14028 14066 14105 14144 14183 14223 14262 14302 14342 14382 14422 14463 14504 14545 14586 14627 14669 14711 14753 14795 14837 14880 14923 14966 15009 15052 15096 15140 15184

MS (emu) 1.26E-06 1.23E-06 1.46E-06 1.20E-06 2.03E-06 2.15E-06 2.03E-06 3.12E-06 7.16E-06 4.27E-06 3.66E-06 4.21E-06 4.28E-06 6.27E-06 6.82E-06 6.51E-06 6.61E-06 7.17E-06 6.78E-06 8.64E-06 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

%O

C/cm2

C/cm2/yr

13.68 13.24 12.76 11.79 10.39 9.44 6.83 5.28 3.86 5.79 5.05 4.38 2.65 2.37 2.46 2.41 3.12 2.75 3.28 3.13 NA NA 2.63 NA NA NA NA NA NA NA NA NA 2.57 NA NA

16.40 22.00 14.20 15.20 10.40 4.80 19.60 12.00 11.40 11.40 12.40 7.40 12.20 6.20 4.80 7.00 10.60 12.60 10.80 3.00 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

0.44 0.58 0.38 0.40 0.27 0.13 0.51 0.31 0.29 0.29 0.32 0.19 0.31 0.16 0.12 0.17 0.26 0.31 0.26 0.07 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Deposition (yr/cm) 37.44 37.63 37.82 38.01 38.20 38.39 38.58 38.77 38.96 39.16 39.36 39.55 39.75 39.95 40.15 40.35 40.55 40.76 40.96 41.16 41.37 41.58 41.79 42.00 42.21 42.42 42.63 42.84 43.06 43.28 43.49 43.71 43.93 44.15 44.37

90 Depth (m) 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 8.29 8.30 8.31 8.32 8.33 8.34 8.35 8.36 8.37 8.38 8.39

Age (cal yr BP) 15229 15273 15318 15363 15408 15454 15500 15546 15592 15638 15685 15732 15779 15826 15874 15922 15970 16018 16066 16115 16164 16213 16263 16313 16363 16413 16464 16514 16565 16617 16668 16720 16772 16824 16877

MS (emu) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

%O

C/cm2

C/cm2/yr

NA NA NA NA NA NA NA 2.23 NA NA NA NA NA NA NA NA NA 2.76 NA NA NA NA NA NA NA NA NA 1.81 NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Deposition (yr/cm) 44.59 44.82 45.04 45.27 45.49 45.72 45.95 46.18 46.41 46.64 46.88 47.11 47.35 47.58 47.82 48.06 48.30 48.54 48.78 49.03 49.27 49.52 49.76 50.01 50.26 50.51 50.76 51.01 51.27 51.52 51.78 52.04 52.29 52.55 52.81

91 Depth (m) 8.40 8.41 8.42 8.43 8.44 8.45 8.46 8.47 8.48 8.49 8.50 8.51 8.52

Age (cal yr BP) 16930 16983 17036 17090 17143 17198 17252 17307 17362 17417 17472 17528 17584

MS (emu) NA NA NA NA NA NA NA NA NA NA NA NA NA

%O

C/cm2

C/cm2/yr

NA NA 2.34 NA NA NA NA NA NA NA NA NA 2.14

NA NA NA NA NA NA NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA NA NA NA NA NA

Deposition (yr/cm) 53.08 53.34 53.60 53.87 54.14 54.40 54.67 54.94 55.21 55.49 55.76 56.03 56.31

92

APPENDIX C CHARCOAL INFLUX, BACKGROUND CHARCOAL, PEAKS, AND EPISODE FREQUENCY FOR BOLAN LAKE, 99A CORE

93 Age Charcoal (cal yr BP) influx 1 3.37 11 1.33 21 1.48 31 2.08 41 2.65 51 1.84 61 1.84 71 2.72 81 3.88 91 4.59 101 7.30 111 10.27 121 10.27 131 6.58 141 5.70 151 2.52 161 2.56 171 2.10 181 4.12 191 4.34 201 5.48 211 2.86 221 2.19 231 2.47 241 3.20 251 3.15 261 3.26 271 2.69 281 2.42 291 2.05 301 1.57 311 1.11 321 0.98 331 1.56 341 2.27 351 3.68 361 4.06 371 2.52 381 1.97 391 2.39

Background charcoal 3.70 3.68 3.65 3.62 3.60 3.57 3.54 3.52 3.49 3.47 3.45 3.43 3.42 3.41 3.39 3.38 3.37 3.37 3.36 3.35 3.35 3.34 3.34 3.34 3.33 3.33 3.33 3.32 3.31 3.31 3.30 3.29 3.28 3.26 3.25 3.23 3.21 3.19 3.17 3.15

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.12 1.22 1.50 1.73 1.73 1.45 1.36 1.10 1.10 1.10 1.17 1.20 1.34 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.12 1.18 1.10 1.10 1.10

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Episode frequency 9.21 9.19 9.17 9.16 9.14 9.12 9.10 9.08 9.06 9.03 9.01 8.99 8.97 8.94 8.92 8.90 8.87 8.85 8.83 8.80 8.78 8.76 8.73 8.71 8.69 8.66 8.64 8.62 8.60 8.58 8.56 8.54 8.52 8.50 8.48 8.47 8.45 8.44 8.42 8.41

94 Age Charcoal (cal yr BP) influx 401 3.29 411 2.45 421 3.16 431 3.94 441 3.21 451 1.76 461 3.92 471 5.02 481 4.35 491 4.55 501 3.12 511 2.30 521 2.46 531 0.96 541 1.54 551 4.17 561 5.41 571 4.20 581 3.35 591 4.09 601 4.13 611 2.48 621 2.18 631 2.71 641 3.05 651 2.94 661 2.94 671 2.50 681 2.06 691 1.96 701 2.03 711 1.52 721 1.91 731 2.72 741 3.41 751 3.64 761 4.38 771 7.39 781 10.31 791 10.75

Background charcoal 3.13 3.12 3.10 3.09 3.09 3.09 3.09 3.10 3.11 3.12 3.14 3.16 3.19 3.22 3.25 3.28 3.31 3.34 3.38 3.41 3.44 3.46 3.49 3.51 3.53 3.55 3.56 3.57 3.58 3.58 3.58 3.57 3.57 3.56 3.54 3.53 3.52 3.50 3.48 3.47

Ratio

Peak

1.10 1.10 1.10 1.18 1.10 1.10 1.17 1.32 1.23 1.26 1.10 1.10 1.10 1.10 1.10 1.18 1.33 1.17 1.10 1.15 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.17 1.49 1.70 1.73

0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Peak start 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 8.40 8.39 8.37 8.36 8.35 8.34 8.33 8.32 8.31 8.31 8.30 8.29 8.28 8.28 8.27 8.27 8.26 8.26 8.25 8.25 8.25 8.25 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.23 8.22 8.22 8.22

95 Age Charcoal (cal yr BP) influx 801 10.24 811 6.90 821 3.42 831 2.56 841 3.03 851 2.79 861 2.58 871 3.50 881 2.72 891 2.66 901 3.82 911 6.06 921 5.38 931 3.75 941 2.63 951 1.69 961 1.66 971 2.05 981 1.53 991 1.85 1001 2.45 1011 2.45 1021 2.41 1031 2.31 1041 2.11 1051 2.07 1061 2.03 1071 1.92 1081 1.57 1091 1.69 1101 2.21 1111 2.62 1121 2.71 1131 2.67 1141 3.21 1151 3.19 1161 2.75 1171 2.72 1181 2.22 1191 1.75

Background charcoal 3.45 3.43 3.42 3.40 3.39 3.37 3.36 3.34 3.33 3.31 3.30 3.29 3.28 3.27 3.26 3.25 3.24 3.23 3.22 3.21 3.20 3.20 3.19 3.18 3.18 3.18 3.18 3.18 3.19 3.19 3.21 3.22 3.24 3.26 3.28 3.31 3.34 3.38 3.41 3.44

Ratio

Peak

1.71 1.46 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.13 1.41 1.34 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 8.22 8.22 8.21 8.21 8.21 8.20 8.20 8.20 8.19 8.19 8.19 8.18 8.18 8.17 8.17 8.16 8.15 8.15 8.14 8.13 8.12 8.11 8.10 8.09 8.08 8.06 8.05 8.04 8.03 8.02 8.00 7.99 7.98 7.96 7.95 7.94 7.93 7.91 7.90 7.89

96 Age Charcoal (cal yr BP) influx 1201 3.59 1211 3.98 1221 3.01 1231 2.49 1241 2.51 1251 3.10 1261 3.93 1271 4.48 1281 4.49 1291 5.05 1301 5.30 1311 4.42 1321 3.62 1331 3.11 1341 3.35 1351 3.39 1361 3.35 1371 4.05 1381 5.54 1391 7.66 1401 7.14 1411 6.73 1421 8.40 1431 7.78 1441 6.44 1451 8.27 1461 7.73 1471 4.09 1481 4.06 1491 4.45 1501 3.30 1511 2.94 1521 2.96 1531 2.45 1541 1.91 1551 1.42 1561 1.65 1571 1.88 1581 1.09 1591 1.12

Background charcoal 3.48 3.52 3.55 3.58 3.61 3.64 3.66 3.69 3.71 3.72 3.74 3.75 3.76 3.77 3.78 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.78 3.78 3.78 3.77 3.76 3.76 3.75 3.73 3.72 3.71 3.69 3.67 3.65 3.63 3.60 3.58 3.55

Ratio

Peak

1.10 1.11 1.10 1.10 1.10 1.10 1.10 1.15 1.15 1.21 1.24 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.26 1.45 1.41 1.37 1.50 1.46 1.35 1.50 1.46 1.10 1.10 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Peak start 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Episode frequency 7.88 7.87 7.85 7.84 7.83 7.82 7.81 7.80 7.79 7.78 7.77 7.76 7.76 7.75 7.74 7.74 7.73 7.72 7.72 7.72 7.71 7.71 7.71 7.70 7.70 7.70 7.70 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.69 7.70 7.70 7.70

97 Age Charcoal (cal yr BP) influx 1601 2.16 1611 2.05 1621 1.73 1631 1.86 1641 2.08 1651 2.31 1661 2.06 1671 1.81 1681 1.92 1691 2.65 1701 3.76 1711 3.57 1721 3.44 1731 4.79 1741 4.98 1751 4.13 1761 3.27 1771 2.72 1781 3.24 1791 3.31 1801 2.79 1811 3.00 1821 3.38 1831 3.10 1841 2.72 1851 2.32 1861 2.59 1871 3.15 1881 3.11 1891 3.09 1901 3.39 1911 3.73 1921 4.09 1931 4.44 1941 4.51 1951 3.60 1961 2.64 1971 1.77 1981 2.69 1991 4.43

Background charcoal 3.52 3.49 3.46 3.43 3.39 3.36 3.33 3.30 3.27 3.24 3.21 3.18 3.15 3.13 3.11 3.09 3.07 3.05 3.04 3.03 3.02 3.02 3.02 3.02 3.02 3.03 3.03 3.04 3.05 3.06 3.06 3.07 3.08 3.09 3.09 3.10 3.10 3.10 3.11 3.11

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.13 1.10 1.10 1.28 1.31 1.20 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.13 1.18 1.22 1.23 1.10 1.10 1.10 1.10 1.22

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

Peak start 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Episode frequency 7.70 7.71 7.71 7.72 7.72 7.73 7.74 7.74 7.75 7.76 7.77 7.77 7.78 7.79 7.81 7.82 7.83 7.84 7.85 7.87 7.88 7.89 7.91 7.92 7.94 7.95 7.97 7.98 8.00 8.01 8.03 8.05 8.06 8.08 8.10 8.12 8.14 8.15 8.17 8.19

98 Age Charcoal (cal yr BP) influx 2001 4.57 2011 4.34 2021 3.98 2031 3.25 2041 2.12 2051 2.15 2061 2.65 2071 3.12 2081 3.34 2091 2.93 2101 2.35 2111 1.63 2121 1.71 2131 2.08 2141 2.29 2151 2.28 2161 1.84 2171 2.12 2181 3.24 2191 3.27 2201 2.96 2211 3.34 2221 3.57 2231 2.84 2241 2.99 2251 4.29 2261 4.19 2271 3.37 2281 3.51 2291 3.72 2301 3.23 2311 2.95 2321 3.14 2331 3.38 2341 3.63 2351 3.25 2361 2.68 2371 2.49 2381 2.32 2391 2.01

Background charcoal 3.11 3.11 3.11 3.10 3.10 3.10 3.09 3.09 3.08 3.08 3.07 3.07 3.06 3.06 3.05 3.05 3.05 3.05 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.06 3.06 3.07 3.08 3.10 3.11 3.13 3.15 3.17 3.19 3.22 3.24

Ratio

Peak

1.23 1.20 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.21 1.19 1.10 1.10 1.12 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Episode frequency 8.21 8.23 8.25 8.27 8.28 8.30 8.32 8.34 8.36 8.38 8.39 8.41 8.43 8.44 8.46 8.47 8.49 8.50 8.52 8.53 8.55 8.56 8.57 8.58 8.60 8.61 8.62 8.63 8.64 8.65 8.66 8.67 8.68 8.69 8.70 8.71 8.71 8.72 8.73 8.73

99 Age Charcoal (cal yr BP) influx 2401 1.97 2411 2.31 2421 2.93 2431 3.66 2441 3.50 2451 3.10 2461 2.68 2471 2.74 2481 3.97 2491 4.47 2501 4.04 2511 3.69 2521 3.42 2531 3.66 2541 3.87 2551 3.23 2561 2.97 2571 3.96 2581 4.13 2591 3.21 2601 2.43 2611 1.86 2621 3.12 2631 4.65 2641 4.91 2651 4.78 2661 3.90 2671 3.40 2681 3.67 2691 4.13 2701 4.77 2711 6.43 2721 8.01 2731 5.99 2741 3.72 2751 3.06 2761 3.81 2771 7.66 2781 9.61 2791 9.08

Background charcoal 3.27 3.31 3.34 3.38 3.42 3.46 3.51 3.56 3.61 3.66 3.71 3.77 3.82 3.88 3.94 4.00 4.06 4.12 4.18 4.24 4.29 4.35 4.40 4.45 4.50 4.55 4.60 4.64 4.68 4.72 4.76 4.79 4.82 4.85 4.88 4.90 4.92 4.94 4.96 4.97

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.18 1.29 1.14 1.10 1.10 1.10 1.25 1.37 1.34

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1

Peak start 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Episode frequency 8.74 8.75 8.75 8.76 8.76 8.77 8.77 8.78 8.78 8.79 8.79 8.79 8.79 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.79 8.79 8.79 8.78 8.78 8.77 8.77 8.76 8.75 8.74 8.73 8.72 8.71 8.70 8.68 8.67 8.65 8.64

100 Age Charcoal (cal yr BP) influx 2801 8.71 2811 8.34 2821 6.67 2831 4.92 2841 5.30 2851 6.34 2861 8.17 2871 8.33 2881 5.44 2891 4.51 2901 5.23 2911 6.38 2921 7.55 2931 5.91 2941 3.73 2951 2.91 2961 2.27 2971 1.63 2981 1.94 2991 3.89 3001 4.36 3011 3.62 3021 4.60 3031 6.28 3041 4.58 3051 2.68 3061 4.58 3071 6.37 3081 6.00 3091 5.26 3101 4.19 3111 3.20 3121 2.29 3131 1.74 3141 1.50 3151 2.40 3161 3.48 3171 3.92 3181 4.15 3191 3.92

Background charcoal 4.98 4.99 5.00 5.00 5.00 5.00 5.00 4.99 4.98 4.97 4.96 4.95 4.94 4.92 4.91 4.89 4.87 4.85 4.83 4.81 4.78 4.76 4.73 4.70 4.67 4.64 4.61 4.58 4.55 4.51 4.48 4.45 4.42 4.38 4.35 4.32 4.29 4.26 4.23 4.20

Ratio

Peak

1.31 1.29 1.18 1.10 1.10 1.15 1.28 1.29 1.10 1.10 1.10 1.16 1.25 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.18 1.10 1.10 1.10 1.20 1.18 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Episode frequency 8.62 8.60 8.58 8.57 8.55 8.53 8.50 8.48 8.46 8.44 8.42 8.40 8.37 8.35 8.33 8.30 8.28 8.25 8.23 8.20 8.18 8.15 8.12 8.09 8.06 8.04 8.01 7.98 7.95 7.92 7.89 7.86 7.82 7.79 7.76 7.73 7.70 7.67 7.64 7.61

101 Age Charcoal (cal yr BP) influx 3201 3.50 3211 2.80 3221 2.36 3231 2.26 3241 3.85 3251 6.25 3261 6.86 3271 6.76 3281 5.25 3291 4.03 3301 4.79 3311 5.37 3321 5.07 3331 5.66 3341 7.33 3351 6.87 3361 5.21 3371 3.85 3381 2.80 3391 3.18 3401 3.70 3411 3.53 3421 3.51 3431 4.06 3441 3.87 3451 2.76 3461 2.70 3471 3.48 3481 3.26 3491 2.70 3501 2.75 3511 2.90 3521 2.69 3531 2.89 3541 4.68 3551 5.37 3561 3.91 3571 2.98 3581 2.52 3591 3.22

Background charcoal 4.18 4.16 4.14 4.12 4.11 4.09 4.08 4.07 4.07 4.07 4.07 4.07 4.07 4.07 4.07 4.08 4.08 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.08 4.08 4.07 4.05 4.04 4.02 4.00 3.97 3.95 3.92 3.89 3.86 3.83 3.79

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.25 1.30 1.30 1.16 1.10 1.11 1.17 1.14 1.20 1.34 1.30 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.19 1.10 1.10 1.10 1.10

0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Episode frequency 7.58 7.55 7.53 7.50 7.47 7.45 7.42 7.40 7.37 7.35 7.33 7.31 7.29 7.27 7.25 7.23 7.22 7.20 7.19 7.17 7.16 7.15 7.14 7.13 7.12 7.10 7.09 7.08 7.07 7.07 7.06 7.05 7.04 7.03 7.02 7.00 6.99 6.98 6.97 6.96

102 Age Charcoal (cal yr BP) influx 3601 4.52 3611 5.08 3621 5.55 3631 6.95 3641 7.77 3651 5.92 3661 4.25 3671 3.28 3681 2.78 3691 2.86 3701 3.17 3711 3.57 3721 3.54 3731 3.41 3741 3.45 3751 3.49 3761 3.38 3771 3.35 3781 3.51 3791 3.30 3801 2.66 3811 2.57 3821 2.77 3831 2.60 3841 2.34 3851 2.55 3861 2.84 3871 3.08 3881 3.04 3891 2.34 3901 2.01 3911 2.16 3921 2.51 3931 2.96 3941 3.30 3951 3.58 3961 3.51 3971 3.31 3981 2.92 3991 2.71

Background charcoal 3.76 3.73 3.70 3.67 3.64 3.61 3.59 3.57 3.55 3.53 3.51 3.50 3.49 3.48 3.46 3.45 3.44 3.43 3.42 3.41 3.40 3.38 3.37 3.35 3.33 3.31 3.29 3.27 3.25 3.23 3.21 3.19 3.18 3.16 3.15 3.14 3.13 3.13 3.13 3.13

Ratio

Peak

1.12 1.18 1.24 1.37 1.44 1.29 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 6.95 6.94 6.92 6.91 6.90 6.89 6.88 6.87 6.85 6.84 6.83 6.82 6.81 6.80 6.79 6.78 6.77 6.76 6.75 6.74 6.73 6.73 6.72 6.72 6.71 6.71 6.70 6.70 6.70 6.70 6.70 6.70 6.71 6.71 6.71 6.72 6.72 6.73 6.74 6.75

103 Age Charcoal (cal yr BP) influx 4001 2.84 4011 3.46 4021 4.65 4031 4.58 4041 3.80 4051 3.18 4061 2.75 4071 3.06 4081 3.31 4091 3.04 4101 2.72 4111 2.40 4121 2.56 4131 3.11 4141 3.29 4151 3.29 4161 3.00 4171 2.62 4181 2.16 4191 1.78 4201 1.67 4211 1.85 4221 2.36 4231 2.84 4241 3.39 4251 4.88 4261 6.31 4271 6.12 4281 5.59 4291 4.58 4301 4.45 4311 5.91 4321 5.35 4331 3.26 4341 4.46 4351 6.46 4361 4.46 4371 2.58 4381 3.95 4391 4.28

Background charcoal 3.14 3.15 3.16 3.18 3.19 3.21 3.23 3.25 3.27 3.28 3.30 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.38 3.38 3.38 3.37 3.36 3.35 3.34 3.33 3.32 3.30 3.29 3.27 3.26 3.24 3.23 3.22 3.21 3.20 3.19 3.18 3.17 3.16

Ratio

Peak

1.10 1.10 1.23 1.22 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.24 1.40 1.39 1.34 1.22 1.21 1.38 1.33 1.10 1.22 1.45 1.23 1.10 1.16 1.21

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1

Peak start 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

Episode frequency 6.75 6.76 6.77 6.79 6.80 6.81 6.82 6.84 6.85 6.86 6.88 6.89 6.91 6.92 6.94 6.95 6.97 6.99 7.00 7.02 7.04 7.05 7.07 7.09 7.10 7.12 7.14 7.16 7.17 7.19 7.21 7.22 7.24 7.26 7.27 7.29 7.30 7.32 7.33 7.35

104 Age Charcoal (cal yr BP) influx 4401 2.33 4411 1.51 4421 1.63 4431 2.13 4441 2.77 4451 3.50 4461 3.78 4471 2.44 4481 1.70 4491 2.25 4501 2.47 4511 2.38 4521 2.02 4531 1.59 4541 1.52 4551 1.61 4561 2.04 4571 2.11 4581 1.47 4591 1.57 4601 2.28 4611 2.83 4621 3.24 4631 2.90 4641 2.71 4651 3.22 4661 3.69 4671 4.07 4681 4.21 4691 4.15 4701 3.36 4711 2.47 4721 2.20 4731 2.12 4741 2.30 4751 2.26 4761 2.09 4771 3.27 4781 4.71 4791 3.92

Background charcoal 3.15 3.14 3.14 3.13 3.12 3.12 3.12 3.11 3.11 3.10 3.10 3.09 3.09 3.08 3.07 3.07 3.06 3.05 3.04 3.03 3.02 3.01 3.00 3.00 2.99 2.99 2.98 2.99 2.99 2.99 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.08 3.09 3.10

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.21 1.22 1.21 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.26 1.15

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1

Peak start 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Episode frequency 7.36 7.38 7.39 7.40 7.42 7.43 7.44 7.45 7.47 7.48 7.49 7.50 7.51 7.51 7.52 7.53 7.54 7.54 7.55 7.55 7.56 7.56 7.57 7.57 7.57 7.57 7.58 7.58 7.58 7.58 7.58 7.58 7.58 7.58 7.59 7.59 7.59 7.59 7.59 7.60

105 Age Charcoal (cal yr BP) influx 4801 3.46 4811 5.73 4821 6.31 4831 4.58 4841 4.18 4851 4.46 4861 3.64 4871 2.76 4881 2.72 4891 2.68 4901 2.52 4911 2.41 4921 2.38 4931 2.60 4941 3.02 4951 4.05 4961 4.25 4971 2.83 4981 2.78 4991 3.79 5001 2.93 5011 1.70 5021 2.43 5031 3.10 5041 2.94 5051 3.14 5061 3.63 5071 3.70 5081 3.56 5091 3.21 5101 2.78 5111 2.21 5121 2.27 5131 2.81 5141 2.74 5151 2.55 5161 2.58 5171 2.69 5181 2.86 5191 3.91

Background charcoal 3.11 3.12 3.13 3.15 3.16 3.17 3.18 3.18 3.19 3.20 3.20 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.20 3.20 3.19 3.19 3.18 3.18 3.17 3.17 3.16 3.15 3.15 3.14 3.13 3.12 3.12 3.11 3.10 3.09 3.09 3.08 3.07

Ratio

Peak

1.10 1.37 1.43 1.23 1.18 1.21 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.14 1.17 1.10 1.10 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.14

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Peak start 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 7.60 7.60 7.60 7.61 7.61 7.61 7.62 7.62 7.62 7.62 7.63 7.63 7.63 7.64 7.64 7.64 7.64 7.64 7.65 7.65 7.65 7.65 7.65 7.65 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.66 7.65

106 Age Charcoal (cal yr BP) influx 5201 5.43 5211 3.96 5221 2.31 5231 3.02 5241 3.40 5251 2.89 5261 2.77 5271 2.86 5281 2.91 5291 2.90 5301 2.77 5311 2.78 5321 3.01 5331 3.86 5341 4.67 5351 4.06 5361 3.37 5371 2.88 5381 2.83 5391 3.10 5401 2.86 5411 2.55 5421 2.53 5431 2.86 5441 3.54 5451 3.19 5461 2.53 5471 2.39 5481 2.71 5491 3.68 5501 3.45 5511 2.64 5521 2.59 5531 2.50 5541 1.92 5551 1.90 5561 2.37 5571 2.82 5581 3.03 5591 2.37

Background charcoal 3.07 3.06 3.06 3.05 3.05 3.05 3.04 3.04 3.03 3.03 3.02 3.02 3.01 3.01 3.01 3.00 3.00 3.00 3.01 3.01 3.02 3.03 3.04 3.05 3.07 3.09 3.11 3.13 3.16 3.19 3.22 3.25 3.28 3.31 3.35 3.38 3.41 3.45 3.48 3.52

Ratio

Peak

1.34 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.26 1.18 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.65 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.65 7.65 7.65 7.65 7.66 7.66 7.67 7.67 7.68 7.69 7.70 7.71 7.71 7.73 7.74 7.75 7.76 7.77 7.79 7.80 7.82 7.83

107 Age Charcoal (cal yr BP) influx 5601 2.35 5611 3.16 5621 3.07 5631 2.74 5641 2.99 5651 3.09 5661 2.80 5671 2.78 5681 2.96 5691 3.42 5701 3.90 5711 4.31 5721 4.51 5731 4.61 5741 4.89 5751 4.98 5761 4.53 5771 5.00 5781 6.25 5791 7.54 5801 8.24 5811 7.45 5821 6.45 5831 5.32 5841 3.95 5851 3.25 5861 4.39 5871 4.65 5881 4.12 5891 3.75 5901 3.88 5911 5.12 5921 4.61 5931 2.87 5941 4.02 5951 5.23 5961 4.53 5971 4.37 5981 4.67 5991 4.59

Background charcoal 3.55 3.59 3.62 3.65 3.69 3.72 3.75 3.78 3.81 3.84 3.87 3.90 3.93 3.95 3.98 4.01 4.04 4.06 4.09 4.11 4.13 4.16 4.18 4.20 4.22 4.24 4.26 4.27 4.29 4.30 4.31 4.32 4.33 4.34 4.34 4.34 4.34 4.34 4.34 4.33

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.13 1.14 1.10 1.13 1.24 1.34 1.39 1.33 1.25 1.14 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.10 1.10 1.10 1.10

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

Episode frequency 7.85 7.86 7.88 7.89 7.91 7.92 7.94 7.95 7.96 7.98 7.99 8.00 8.02 8.03 8.04 8.05 8.07 8.08 8.09 8.11 8.12 8.14 8.15 8.17 8.18 8.20 8.22 8.24 8.26 8.28 8.30 8.32 8.35 8.37 8.40 8.42 8.45 8.47 8.50 8.53

108 Age Charcoal (cal yr BP) influx 6001 4.30 6011 3.67 6021 3.37 6031 3.28 6041 3.22 6051 3.24 6061 3.41 6071 4.83 6081 6.38 6091 5.01 6101 3.75 6111 3.38 6121 3.11 6131 2.88 6141 2.74 6151 2.56 6161 2.45 6171 3.97 6181 5.40 6191 4.89 6201 4.65 6211 4.76 6221 4.89 6231 4.83 6241 4.28 6251 3.61 6261 3.02 6271 3.06 6281 3.51 6291 4.40 6301 5.53 6311 6.24 6321 5.11 6331 4.21 6341 3.70 6351 3.66 6361 3.58 6371 3.29 6381 3.16 6391 3.48

Background charcoal 4.32 4.32 4.30 4.29 4.28 4.27 4.25 4.24 4.22 4.21 4.20 4.19 4.18 4.17 4.17 4.16 4.16 4.16 4.17 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.25 4.26 4.27 4.29 4.30 4.31 4.33 4.34 4.36 4.37 4.38 4.40 4.41 4.42

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.22 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.14 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.14 1.20 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Episode frequency 8.56 8.58 8.61 8.64 8.67 8.70 8.73 8.76 8.79 8.82 8.85 8.88 8.91 8.94 8.96 8.99 9.02 9.05 9.07 9.10 9.13 9.15 9.18 9.20 9.22 9.24 9.27 9.29 9.31 9.33 9.34 9.36 9.38 9.40 9.42 9.44 9.45 9.47 9.49 9.51

109 Age Charcoal (cal yr BP) influx 6401 5.49 6411 6.10 6421 4.82 6431 4.78 6441 4.97 6451 4.85 6461 4.26 6471 3.77 6481 4.99 6491 5.49 6501 4.94 6511 6.07 6521 6.99 6531 6.19 6541 4.64 6551 3.01 6561 2.86 6571 3.28 6581 4.17 6591 5.03 6601 5.19 6611 3.65 6621 4.13 6631 5.46 6641 5.02 6651 4.71 6661 4.84 6671 4.71 6681 4.52 6691 4.41 6701 4.70 6711 5.18 6721 5.51 6731 4.94 6741 3.36 6751 2.30 6761 2.15 6771 3.27 6781 3.13 6791 2.91

Background charcoal 4.43 4.44 4.45 4.46 4.46 4.47 4.47 4.47 4.47 4.47 4.47 4.46 4.46 4.45 4.45 4.44 4.44 4.43 4.43 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.43 4.43 4.43 4.43 4.43 4.43 4.43 4.42 4.42 4.41 4.40 4.39 4.38 4.36

Ratio

Peak

1.12 1.17 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.10 1.17 1.24 1.18 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.12 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.12 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Peak start 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Episode frequency 9.52 9.54 9.56 9.58 9.60 9.62 9.64 9.66 9.68 9.69 9.71 9.73 9.75 9.77 9.79 9.81 9.83 9.85 9.87 9.89 9.91 9.92 9.94 9.96 9.97 9.98 10.00 10.01 10.02 10.03 10.05 10.05 10.06 10.07 10.08 10.09 10.09 10.10 10.10 10.11

110 Age Charcoal (cal yr BP) influx 6801 4.22 6811 4.37 6821 3.61 6831 4.06 6841 4.01 6851 2.79 6861 3.40 6871 4.21 6881 4.24 6891 4.32 6901 4.63 6911 5.83 6921 5.61 6931 4.44 6941 5.53 6951 6.63 6961 6.88 6971 5.30 6981 3.91 6991 4.85 7001 5.73 7011 6.18 7021 4.91 7031 3.93 7041 3.37 7051 2.69 7061 2.53 7071 3.24 7081 2.94 7091 2.75 7101 3.54 7111 3.53 7121 3.16 7131 3.21 7141 2.79 7151 2.12 7161 2.51 7171 2.60 7181 2.13 7191 2.22

Background charcoal 4.35 4.33 4.31 4.29 4.27 4.25 4.23 4.21 4.18 4.16 4.14 4.12 4.10 4.09 4.07 4.05 4.03 4.01 3.99 3.97 3.95 3.94 3.92 3.91 3.89 3.87 3.86 3.85 3.83 3.82 3.80 3.79 3.77 3.76 3.74 3.72 3.70 3.68 3.66 3.64

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.20 1.18 1.10 1.18 1.28 1.30 1.16 1.10 1.12 1.22 1.26 1.14 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.11 10.10 10.10 10.10 10.09 10.09 10.09 10.08 10.08 10.07 10.07 10.06 10.06 10.05 10.04 10.04 10.03 10.02 10.01 10.00 9.99 9.98 9.97 9.95 9.94 9.93 9.91 9.89 9.88 9.86

111 Age Charcoal (cal yr BP) influx 7201 2.93 7211 4.72 7221 5.65 7231 5.81 7241 4.54 7251 3.90 7261 3.60 7271 2.84 7281 2.14 7291 1.73 7301 2.51 7311 3.20 7321 3.31 7331 3.10 7341 2.81 7351 2.57 7361 2.78 7371 3.12 7381 3.20 7391 4.33 7401 5.75 7411 4.24 7421 3.16 7431 3.16 7441 3.68 7451 3.88 7461 3.42 7471 3.88 7481 4.25 7491 3.73 7501 3.86 7511 4.08 7521 3.16 7531 2.76 7541 3.01 7551 3.91 7561 3.67 7571 2.35 7581 4.22 7591 5.29

Background charcoal 3.62 3.60 3.58 3.56 3.54 3.52 3.51 3.49 3.48 3.46 3.45 3.44 3.43 3.43 3.42 3.42 3.42 3.41 3.41 3.41 3.40 3.40 3.40 3.39 3.38 3.38 3.37 3.36 3.35 3.34 3.33 3.31 3.30 3.29 3.28 3.27 3.26 3.25 3.24 3.22

Ratio

Peak

1.10 1.17 1.27 1.29 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.31 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.10 1.10 1.13 1.10 1.10 1.10 1.12 1.10 1.10 1.17 1.31

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1

Peak start 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0

Episode frequency 9.84 9.82 9.79 9.77 9.74 9.72 9.69 9.66 9.64 9.61 9.58 9.54 9.51 9.48 9.44 9.41 9.37 9.33 9.30 9.26 9.22 9.18 9.14 9.10 9.06 9.01 8.97 8.93 8.89 8.85 8.81 8.77 8.73 8.69 8.65 8.61 8.57 8.53 8.50 8.46

112 Age Charcoal (cal yr BP) influx 7601 3.87 7611 2.41 7621 1.65 7631 2.62 7641 3.45 7651 3.99 7661 4.00 7671 3.70 7681 3.26 7691 3.09 7701 3.10 7711 3.20 7721 2.31 7731 1.64 7741 1.87 7751 2.27 7761 2.60 7771 2.58 7781 1.86 7791 0.91 7801 0.75 7811 1.30 7821 2.40 7831 3.84 7841 4.57 7851 4.00 7861 4.01 7871 4.21 7881 4.42 7891 4.08 7901 3.22 7911 1.70 7921 1.10 7931 1.43 7941 2.80 7951 3.36 7961 2.80 7971 3.88 7981 4.91 7991 4.64

Background charcoal 3.21 3.21 3.20 3.19 3.18 3.18 3.17 3.17 3.16 3.15 3.15 3.14 3.13 3.13 3.12 3.12 3.11 3.11 3.11 3.11 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.11

Ratio

Peak

1.13 1.10 1.10 1.10 1.10 1.16 1.16 1.12 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.26 1.18 1.18 1.21 1.23 1.19 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.29 1.26

1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

Peak start 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Episode frequency 8.43 8.39 8.36 8.33 8.29 8.26 8.23 8.20 8.17 8.14 8.12 8.09 8.06 8.04 8.02 7.99 7.97 7.95 7.93 7.91 7.89 7.87 7.86 7.84 7.83 7.81 7.80 7.79 7.78 7.76 7.75 7.74 7.74 7.73 7.72 7.71 7.71 7.70 7.70 7.69

113 Age Charcoal (cal yr BP) influx 8001 4.11 8011 3.65 8021 3.79 8031 3.53 8041 2.96 8051 2.83 8061 2.90 8071 3.11 8081 2.93 8091 2.88 8101 3.48 8111 4.01 8121 4.39 8131 4.27 8141 4.15 8151 4.04 8161 3.30 8171 2.74 8181 2.70 8191 2.75 8201 2.75 8211 2.43 8221 2.48 8231 2.76 8241 2.40 8251 2.15 8261 2.29 8271 2.37 8281 2.43 8291 2.49 8301 2.43 8311 2.29 8321 2.25 8331 2.30 8341 2.47 8351 2.69 8361 2.95 8371 3.24 8381 3.34 8391 3.30

Background charcoal 3.11 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.09 3.09 3.09 3.08 3.08 3.07 3.06 3.06 3.05 3.04 3.03 3.03 3.02 3.02 3.01 3.01 3.01 3.01 3.01 3.01 3.01 3.02 3.02 3.03 3.03 3.04 3.05

Ratio

Peak

1.19 1.12 1.14 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.16 1.21 1.20 1.18 1.17 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 7.69 7.68 7.68 7.67 7.67 7.67 7.66 7.66 7.66 7.65 7.65 7.65 7.64 7.64 7.63 7.63 7.62 7.62 7.61 7.60 7.59 7.58 7.57 7.56 7.55 7.54 7.53 7.51 7.50 7.49 7.47 7.46 7.45 7.43 7.42 7.40 7.39 7.37 7.36 7.34

114 Age Charcoal (cal yr BP) influx 8401 3.37 8411 3.37 8421 3.24 8431 3.24 8441 3.27 8451 3.09 8461 3.10 8471 3.35 8481 3.22 8491 2.95 8501 2.62 8511 2.42 8521 2.34 8531 2.51 8541 2.70 8551 2.86 8561 3.00 8571 3.10 8581 3.04 8591 3.14 8601 3.60 8611 4.52 8621 5.15 8631 4.14 8641 3.54 8651 3.80 8661 6.54 8671 8.46 8681 5.05 8691 2.62 8701 2.00 8711 2.25 8721 2.63 8731 2.56 8741 2.44 8751 2.31 8761 2.40 8771 2.58 8781 2.86 8791 3.44

Background charcoal 3.06 3.06 3.07 3.08 3.09 3.10 3.11 3.13 3.14 3.15 3.16 3.18 3.20 3.21 3.23 3.25 3.27 3.29 3.30 3.32 3.34 3.36 3.38 3.39 3.41 3.42 3.44 3.45 3.46 3.47 3.48 3.48 3.49 3.49 3.50 3.50 3.50 3.50 3.50 3.50

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.18 1.25 1.13 1.10 1.10 1.38 1.53 1.23 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 7.33 7.32 7.30 7.29 7.28 7.26 7.25 7.24 7.23 7.22 7.21 7.20 7.19 7.19 7.18 7.17 7.17 7.17 7.16 7.16 7.16 7.16 7.16 7.16 7.17 7.17 7.18 7.19 7.19 7.20 7.21 7.22 7.24 7.25 7.26 7.28 7.29 7.31 7.32 7.34

115 Age Charcoal (cal yr BP) influx 8801 4.29 8811 4.00 8821 3.48 8831 3.29 8841 3.36 8851 3.72 8861 4.29 8871 4.85 8881 4.95 8891 4.74 8901 4.12 8911 2.96 8921 1.91 8931 3.98 8941 5.36 8951 3.57 8961 3.31 8971 4.29 8981 3.74 8991 2.97 9001 2.96 9011 2.83 9021 2.40 9031 2.11 9041 1.92 9051 1.78 9061 2.02 9071 3.15 9081 4.11 9091 4.77 9101 4.21 9111 3.25 9121 3.02 9131 2.85 9141 2.51 9151 2.26 9161 2.13 9171 1.91 9181 1.70 9191 1.84

Background charcoal 3.49 3.49 3.48 3.47 3.46 3.44 3.43 3.41 3.39 3.37 3.35 3.32 3.30 3.27 3.24 3.21 3.18 3.15 3.12 3.09 3.06 3.04 3.01 2.98 2.95 2.93 2.90 2.88 2.85 2.83 2.80 2.78 2.75 2.73 2.71 2.68 2.66 2.63 2.61 2.59

Ratio

Peak

1.13 1.10 1.10 1.10 1.10 1.10 1.15 1.22 1.23 1.21 1.14 1.10 1.10 1.13 1.31 1.10 1.10 1.20 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.24 1.34 1.27 1.12 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Peak start 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Episode frequency 7.36 7.37 7.39 7.41 7.43 7.45 7.46 7.48 7.50 7.52 7.54 7.55 7.57 7.59 7.61 7.62 7.64 7.66 7.67 7.69 7.70 7.72 7.73 7.75 7.76 7.78 7.79 7.80 7.82 7.83 7.84 7.85 7.86 7.87 7.88 7.89 7.90 7.90 7.91 7.92

116 Age Charcoal (cal yr BP) influx 9201 1.95 9211 1.74 9221 1.66 9231 1.75 9241 1.72 9251 1.67 9261 2.01 9271 2.37 9281 2.30 9291 2.13 9301 1.89 9311 1.89 9321 2.18 9331 1.98 9341 1.55 9351 1.78 9361 2.17 9371 2.35 9381 2.73 9391 3.65 9401 3.44 9411 1.85 9421 2.00 9431 3.10 9441 3.17 9451 2.91 9461 3.26 9471 3.46 9481 2.69 9491 1.92 9501 1.34 9511 1.52 9521 2.61 9531 2.59 9541 1.72 9551 1.80 9561 2.25 9571 2.56 9581 2.97 9591 4.48

Background charcoal 2.57 2.55 2.53 2.51 2.50 2.49 2.49 2.49 2.49 2.50 2.51 2.52 2.54 2.56 2.58 2.61 2.63 2.65 2.68 2.71 2.73 2.76 2.78 2.80 2.82 2.85 2.87 2.88 2.90 2.92 2.94 2.95 2.96 2.98 2.99 3.00 3.00 3.01 3.02 3.02

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.22 1.18 1.10 1.10 1.10 1.11 1.10 1.12 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.29

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 7.92 7.92 7.93 7.93 7.93 7.93 7.93 7.92 7.92 7.91 7.91 7.90 7.90 7.89 7.88 7.87 7.86 7.85 7.83 7.82 7.81 7.79 7.77 7.76 7.74 7.72 7.70 7.68 7.66 7.64 7.61 7.59 7.56 7.54 7.51 7.48 7.45 7.42 7.39 7.36

117 Age Charcoal (cal yr BP) influx 9601 5.91 9611 5.87 9621 6.17 9631 8.30 9641 9.29 9651 8.06 9661 5.94 9671 2.81 9681 1.83 9691 2.61 9701 2.99 9711 3.05 9721 2.69 9731 2.12 9741 1.97 9751 1.94 9761 1.46 9771 0.94 9781 1.19 9791 1.58 9801 1.92 9811 2.27 9821 2.79 9831 3.23 9841 3.20 9851 2.91 9861 1.92 9871 1.19 9881 1.53 9891 1.98 9901 2.44 9911 3.03 9921 4.04 9931 4.46 9941 3.35 9951 2.48 9961 2.36 9971 2.31 9981 2.36 9991 2.45

Background charcoal 3.03 3.03 3.03 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.03 3.03 3.02 3.01 3.00 2.99 2.97 2.96 2.94 2.92 2.90 2.87 2.85 2.82 2.80 2.77 2.74 2.71 2.69 2.66 2.63 2.60 2.57 2.55 2.53 2.51 2.49 2.47

Ratio

Peak

1.46 1.46 1.49 1.68 1.76 1.66 1.46 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.29 1.36 1.19 1.10 1.10 1.10 1.10 1.10

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

Peak start 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Episode frequency 7.33 7.30 7.26 7.23 7.20 7.16 7.12 7.09 7.05 7.01 6.97 6.94 6.90 6.86 6.82 6.78 6.74 6.70 6.66 6.63 6.59 6.55 6.51 6.48 6.44 6.41 6.37 6.34 6.30 6.27 6.24 6.21 6.18 6.15 6.12 6.09 6.06 6.03 6.00 5.97

118 Age Charcoal (cal yr BP) influx 10001 2.63 10011 2.73 10021 2.55 10031 2.38 10041 2.36 10051 2.36 10061 2.36 10071 2.31 10081 2.03 10091 1.85 10101 2.21 10111 2.60 10121 2.77 10131 2.89 10141 2.82 10151 2.66 10161 2.03 10171 1.34 10181 1.65 10191 2.24 10201 2.45 10211 2.52 10221 2.90 10231 3.47 10241 3.13 10251 2.05 10261 1.83 10271 2.67 10281 2.94 10291 2.23 10301 1.72 10311 1.71 10321 1.77 10331 2.00 10341 2.21 10351 2.15 10361 2.04 10371 2.01 10381 2.01 10391 2.67

Background charcoal 2.46 2.45 2.44 2.44 2.44 2.44 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.52 2.53 2.55 2.57 2.58 2.60 2.61 2.63 2.65 2.66 2.68 2.69 2.71 2.72 2.73 2.74 2.76 2.77 2.78 2.79 2.79 2.80 2.81 2.82 2.83 2.83 2.84

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.18 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 5.95 5.92 5.90 5.87 5.85 5.83 5.81 5.78 5.76 5.74 5.72 5.70 5.69 5.67 5.65 5.63 5.61 5.60 5.58 5.56 5.54 5.53 5.51 5.49 5.47 5.45 5.44 5.42 5.40 5.38 5.36 5.34 5.32 5.30 5.27 5.25 5.23 5.21 5.19 5.16

119 Age Charcoal (cal yr BP) influx 10401 3.70 10411 4.32 10421 4.60 10431 5.12 10441 6.06 10451 6.42 10461 4.75 10471 3.20 10481 3.81 10491 4.76 10501 3.92 10511 2.36 10521 1.84 10531 2.16 10541 2.41 10551 2.53 10561 2.64 10571 2.74 10581 2.80 10591 2.70 10601 2.56 10611 2.57 10621 2.65 10631 2.59 10641 2.33 10651 2.15 10661 2.18 10671 2.26 10681 2.48 10691 2.73 10701 3.02 10711 3.33 10721 3.27 10731 2.57 10741 2.04 10751 2.42 10761 2.90 10771 2.90 10781 2.72 10791 2.39

Background charcoal 2.84 2.85 2.85 2.86 2.86 2.87 2.87 2.87 2.88 2.88 2.88 2.89 2.89 2.89 2.90 2.90 2.91 2.91 2.92 2.92 2.93 2.93 2.93 2.93 2.94 2.94 2.94 2.93 2.93 2.92 2.92 2.91 2.90 2.88 2.87 2.86 2.84 2.82 2.81 2.79

Ratio

Peak

1.18 1.27 1.31 1.37 1.48 1.52 1.32 1.10 1.19 1.32 1.20 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 5.14 5.12 5.10 5.07 5.05 5.03 5.01 4.99 4.97 4.95 4.93 4.91 4.89 4.87 4.85 4.83 4.82 4.80 4.78 4.77 4.75 4.74 4.72 4.71 4.69 4.68 4.67 4.65 4.64 4.62 4.61 4.59 4.58 4.56 4.55 4.53 4.51 4.50 4.48 4.46

120 Age Charcoal (cal yr BP) influx 10801 1.90 10811 1.53 10821 1.54 10831 1.62 10841 2.48 10851 3.65 10861 4.06 10871 3.55 10881 3.19 10891 3.55 10901 4.00 10911 4.44 10921 4.88 10931 4.68 10941 3.36 10951 2.20 10961 2.26 10971 2.57 10981 2.86 10991 3.14 11001 3.35 11011 3.31 11021 3.24 11031 2.73 11041 2.06 11051 1.64 11061 1.68 11071 1.70 11081 1.63 11091 1.54 11101 1.44 11111 1.32 11121 1.23 11131 1.20 11141 1.18 11151 1.17 11161 1.17 11171 1.14 11181 1.01 11191 0.87

Background charcoal 2.77 2.75 2.73 2.71 2.69 2.68 2.66 2.64 2.62 2.60 2.57 2.55 2.53 2.50 2.48 2.45 2.42 2.39 2.36 2.33 2.30 2.27 2.23 2.20 2.16 2.13 2.09 2.05 2.01 1.97 1.94 1.90 1.86 1.82 1.78 1.74 1.70 1.66 1.62 1.59

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.21 1.28 1.21 1.15 1.22 1.30 1.38 1.45 1.44 1.23 1.10 1.10 1.10 1.16 1.24 1.29 1.30 1.29 1.19 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 4.44 4.43 4.41 4.39 4.37 4.35 4.33 4.31 4.29 4.27 4.26 4.24 4.22 4.20 4.18 4.16 4.15 4.13 4.11 4.09 4.08 4.06 4.05 4.03 4.02 4.00 3.99 3.98 3.96 3.95 3.94 3.93 3.92 3.91 3.89 3.88 3.87 3.86 3.85 3.84

121 Age Charcoal (cal yr BP) influx 11201 1.04 11211 1.48 11221 1.81 11231 1.58 11241 1.28 11251 1.06 11261 0.89 11271 0.75 11281 0.76 11291 0.79 11301 0.86 11311 0.96 11321 1.04 11331 1.03 11341 0.99 11351 0.97 11361 0.96 11371 0.95 11381 0.88 11391 0.80 11401 0.76 11411 0.83 11421 0.90 11431 0.89 11441 0.86 11451 0.88 11461 1.12 11471 1.38 11481 1.62 11491 1.84 11501 2.03 11511 1.96 11521 1.81 11531 1.80 11541 2.12 11551 2.46 11561 2.60 11571 2.57 11581 2.50 11591 2.09

Background charcoal 1.56 1.52 1.49 1.47 1.44 1.42 1.40 1.38 1.36 1.35 1.34 1.32 1.32 1.31 1.30 1.30 1.29 1.29 1.29 1.29 1.28 1.28 1.28 1.28 1.28 1.28 1.27 1.27 1.27 1.27 1.27 1.26 1.26 1.26 1.25 1.25 1.25 1.24 1.24 1.24

Ratio

Peak

1.10 1.10 1.18 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.21 1.31 1.40 1.37 1.31 1.30 1.45 1.58 1.63 1.63 1.60 1.45

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Peak start 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 3.83 3.82 3.82 3.81 3.80 3.79 3.78 3.78 3.77 3.77 3.76 3.76 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.76 3.76 3.77 3.78 3.79 3.80 3.81 3.82 3.84 3.85 3.87 3.88 3.90 3.92 3.94 3.97 3.99 4.01 4.04 4.07 4.09

122 Age Charcoal (cal yr BP) influx 11601 1.62 11611 1.26 11621 1.15 11631 1.06 11641 1.03 11651 1.04 11661 1.05 11671 1.06 11681 1.06 11691 1.05 11701 0.96 11711 0.87 11721 0.86 11731 0.94 11741 1.02 11751 1.02 11761 0.99 11771 0.94 11781 0.72 11791 0.48 11801 0.36 11811 0.59 11821 0.82 11831 0.98 11841 1.04 11851 1.10 11861 1.06 11871 0.97 11881 0.87 11891 0.83 11901 0.79 11911 0.75 11921 0.64 11931 0.53 11941 0.52 11951 0.80 11961 1.08 11971 1.30 11981 1.40 11991 1.49

Background charcoal 1.23 1.23 1.23 1.22 1.22 1.22 1.22 1.21 1.21 1.21 1.21 1.20 1.20 1.20 1.19 1.19 1.18 1.18 1.17 1.17 1.17 1.16 1.16 1.15 1.15 1.15 1.14 1.14 1.14 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13

Ratio

Peak

1.24 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.14 1.19 1.25

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Peak start 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 4.12 4.15 4.18 4.21 4.25 4.28 4.32 4.35 4.39 4.42 4.46 4.50 4.53 4.57 4.61 4.64 4.68 4.72 4.75 4.79 4.82 4.86 4.89 4.93 4.96 5.00 5.03 5.06 5.09 5.13 5.16 5.19 5.22 5.25 5.28 5.31 5.35 5.38 5.41 5.44

123 Age Charcoal (cal yr BP) influx 12001 1.61 12011 1.74 12021 1.87 12031 1.95 12041 2.01 12051 2.06 12061 1.71 12071 1.19 12081 0.73 12091 0.84 12101 1.12 12111 1.38 12121 1.55 12131 1.70 12141 1.82 12151 1.78 12161 1.73 12171 1.66 12181 1.54 12191 1.42 12201 1.25 12211 0.93 12221 0.60 12231 0.37 12241 0.39 12251 0.43 12261 0.50 12271 0.65 12281 0.81 12291 0.92 12301 0.91 12311 0.89 12321 0.84 12331 0.73 12341 0.60 12351 0.54 12361 0.64 12371 0.74 12381 0.85 12391 0.94

Background charcoal 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.12 1.12 1.12 1.12 1.11 1.11 1.11 1.10 1.10 1.09 1.09 1.08 1.07 1.06 1.06 1.05 1.04 1.03 1.01 1.00 0.99 0.98 0.97 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.88

Ratio

Peak

1.31 1.38 1.44 1.48 1.51 1.53 1.37 1.10 1.10 1.10 1.10 1.20 1.29 1.37 1.44 1.42 1.40 1.37 1.31 1.25 1.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 5.47 5.50 5.53 5.56 5.59 5.63 5.66 5.69 5.72 5.76 5.79 5.82 5.86 5.89 5.93 5.96 6.00 6.03 6.07 6.10 6.13 6.17 6.20 6.24 6.27 6.30 6.34 6.37 6.40 6.43 6.46 6.49 6.52 6.55 6.58 6.61 6.63 6.66 6.68 6.71

124 Age Charcoal (cal yr BP) influx 12401 1.04 12411 1.09 12421 0.93 12431 0.76 12441 0.64 12451 0.73 12461 0.84 12471 0.92 12481 0.77 12491 0.60 12501 0.47 12511 0.62 12521 0.82 12531 1.00 12541 0.90 12551 0.72 12561 0.55 12571 0.58 12581 0.74 12591 0.90 12601 0.88 12611 0.72 12621 0.56 12631 0.61 12641 0.92 12651 1.22 12661 1.41 12671 1.31 12681 1.20 12691 1.07 12701 0.86 12711 0.64 12721 0.44 12731 0.49 12741 0.61 12751 0.73 12761 0.85 12771 0.96 12781 1.08 12791 1.02

Background charcoal 0.87 0.86 0.85 0.84 0.84 0.83 0.82 0.82 0.81 0.81 0.81 0.80 0.80 0.79 0.79 0.79 0.79 0.79 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.79 0.79 0.79

Ratio

Peak

1.17 1.21 1.10 1.10 1.10 1.10 1.10 1.11 1.10 1.10 1.10 1.10 1.10 1.21 1.12 1.10 1.10 1.10 1.10 1.13 1.11 1.10 1.10 1.10 1.15 1.41 1.56 1.48 1.40 1.29 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.19 1.29 1.24

1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1

Peak start 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Episode frequency 6.73 6.75 6.77 6.80 6.82 6.83 6.85 6.87 6.89 6.90 6.92 6.93 6.95 6.96 6.97 6.99 7.00 7.01 7.02 7.02 7.03 7.04 7.05 7.05 7.06 7.06 7.06 7.07 7.07 7.07 7.07 7.07 7.07 7.06 7.06 7.05 7.05 7.04 7.03 7.02

125 Age Charcoal (cal yr BP) influx 12801 0.76 12811 0.50 12821 0.30 12831 0.34 12841 0.40 12851 0.45 12861 0.50 12871 0.55 12881 0.59 12891 0.63 12901 0.66 12911 0.69 12921 0.71 12931 0.72 12941 0.73 12951 0.77 12961 0.97 12971 1.19 12981 1.40 12991 1.35 13001 1.19 13011 1.03 13021 0.87 13031 0.73 13041 0.58 13051 0.48 13061 0.62 13071 0.78 13081 0.95 13091 1.09 13101 1.23 13111 1.37 13121 1.35 13131 0.98 13141 0.59 13151 0.24 13161 0.39 13171 0.68 13181 0.96 13191 1.13

Background charcoal 0.79 0.79 0.80 0.80 0.80 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.80 0.80 0.80 0.79 0.79 0.79 0.79 0.79 0.79

Ratio

Peak

1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.16 1.35 1.50 1.46 1.34 1.21 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.28 1.40 1.50 1.50 1.20 1.10 1.10 1.10 1.10 1.20 1.35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1

Peak start 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Episode frequency 7.01 7.00 6.99 6.98 6.96 6.94 6.93 6.91 6.89 6.87 6.85 6.82 6.80 6.77 6.75 6.72 6.69 6.66 6.63 6.60 6.57 6.54 6.51 6.47 6.44 6.41 6.37 6.34 6.30 6.27 6.24 6.20 6.17 6.13 6.10 6.06 6.03 6.00 5.96 5.93

126 Age Charcoal (cal yr BP) influx 13201 1.16 13211 1.19 13221 1.20 13231 1.08 13241 0.95 13251 0.81 13261 0.76 13271 0.77 13281 0.79 13291 0.78 13301 0.68 13311 0.56 13321 0.44 13331 0.38 13341 0.38 13351 0.38 13361 0.38 13371 0.37 13381 0.37 13391 0.36 13401 0.39 13411 0.47 13421 0.55 13431 0.60 13441 0.48 13451 0.32 13461 0.16 13471 0.21 13481 0.62 13491 1.03 13501 1.42 13511 1.56 13521 1.62 13531 1.68 13541 1.79 13551 2.00 13561 2.22 13571 2.43 13581 2.36 13591 2.05

Background charcoal 0.79 0.79 0.79 0.80 0.80 0.81 0.81 0.82 0.83 0.84 0.84 0.85 0.86 0.87 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87

Ratio

Peak

1.37 1.39 1.40 1.30 1.18 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.18 1.47 1.57 1.61 1.66 1.73 1.86 1.98 2.10 2.07 1.91

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Peak start 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 5.90 5.86 5.83 5.80 5.76 5.73 5.70 5.67 5.63 5.60 5.57 5.54 5.51 5.48 5.45 5.42 5.38 5.35 5.32 5.30 5.27 5.24 5.21 5.18 5.15 5.13 5.10 5.07 5.05 5.02 5.00 4.97 4.95 4.93 4.91 4.88 4.86 4.84 4.82 4.81

127 Age Charcoal (cal yr BP) influx 13601 1.75 13611 1.46 13621 1.32 13631 1.22 13641 1.12 13651 0.99 13661 0.80 13671 0.62 13681 0.45 13691 0.41 13701 0.45 13711 0.49 13721 0.53 13731 0.54 13741 0.55 13751 0.55 13761 0.55 13771 0.52 13781 0.49 13791 0.45 13801 0.46 13811 0.50 13821 0.54 13831 0.57 13841 0.54 13851 0.49 13861 0.43 13871 0.38 13881 0.38 13891 0.39 13901 0.40 13911 0.39 13921 0.36 13931 0.32 13941 0.29 13951 0.26 13961 0.22 13971 0.18 13981 0.14 13991 0.19

Background charcoal 0.87 0.87 0.86 0.86 0.85 0.85 0.84 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.76 0.75 0.73 0.72 0.70 0.68 0.66 0.64 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.49 0.47 0.45 0.44 0.42 0.41 0.40 0.39 0.38 0.37 0.36

Ratio

Peak

1.74 1.55 1.46 1.39 1.31 1.20 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 4.79 4.77 4.76 4.74 4.73 4.72 4.70 4.69 4.68 4.67 4.66 4.65 4.65 4.64 4.63 4.63 4.62 4.61 4.61 4.60 4.60 4.60 4.59 4.59 4.59 4.58 4.58 4.58 4.57 4.57 4.57 4.57 4.57 4.57 4.57 4.57 4.57 4.57 4.57 4.57

128 Age Charcoal (cal yr BP) influx 14001 0.29 14011 0.39 14021 0.48 14031 0.47 14041 0.42 14051 0.36 14061 0.32 14071 0.31 14081 0.30 14091 0.30 14101 0.29 14111 0.29 14121 0.29 14131 0.29 14141 0.29 14151 0.30 14161 0.30 14171 0.31 14181 0.31 14191 0.28 14201 0.24 14211 0.21 14221 0.20 14231 0.23 14241 0.26 14251 0.29 14261 0.29 14271 0.26 14281 0.22 14291 0.18 14301 0.15 14311 0.14 14321 0.13 14331 0.13 14341 0.13 14351 0.14 14361 0.15 14371 0.17 14381 0.18 14391 0.20

Background charcoal 0.35 0.35 0.34 0.33 0.33 0.32 0.32 0.31 0.31 0.30 0.30 0.29 0.29 0.28 0.28 0.28 0.27 0.27 0.27 0.27 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23

Ratio

Peak

1.10 1.12 1.36 1.36 1.25 1.13 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.11 1.14 1.14 1.10 1.10 1.10 1.10 1.10 1.10 1.13 1.16 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak start 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Episode frequency 4.57 4.57 4.57 4.57 4.57 4.57 4.58 4.58 4.58 4.59 4.59 4.60 4.60 4.61 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.70 4.71 4.73 4.75 4.76 4.78 4.80 4.82 4.84 4.86 4.89 4.91 4.93 4.96 4.98 5.01 5.04 5.06

129 Age Charcoal (cal yr BP) influx 14401 0.23 14411 0.25 14421 0.27 14431 0.28 14441 0.29 14451 0.30 14461 0.31 14471 0.30 14481 0.28 14491 0.27 14501 0.26 14511 0.21 14521 0.16 14531 0.12 14541 0.08

Background charcoal 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.21

Ratio

Peak

1.10 1.10 1.17 1.23 1.28 1.33 1.36 1.32 1.28 1.24 1.17 1.10 1.10 1.10 1.10

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

Peak start 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Episode frequency 5.09 5.12 5.15 5.18 5.21 5.23 5.26 5.29 5.32 5.35 5.38 5.41 5.44 5.47 5.50

130

APPENDIX D POLLEN COUNTS AND SUMS FOR BOLAN LAKE, 99A CORE

131 Depth (m) 0 0.08 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25 4.45 4.65 4.84 5.05 5.25 5.45 5.65 5.85 6.05 6.25 6.45 6.65 6.85 7.05 7.25 7.45 7.65 7.85

Age (cal yr BP) 0 49 146 302 511 756 1032 1334 1657 1996 2348 2708 3074 3441 3809 4175 4536 4892 5242 5584 5920 6249 6571 6889 7203 7499 7826 8141 8461 8791 9133 9493 9874 10282 10722 11200 11721 12293 12922 13616 14382

H

LX

CU

I

AB

TM

TS

CY

Q2

AR

51 61 31 40 24 55 41 38 55 32 73 58 47 78 59 41 36 54 54 55 46 70 68 78 83 136 144 175 145 111 109 88 168 123 133 84 61 75 76 69 178

22 43 13 21 28 39 27 37 17 40 17 9 18 18 18 12 11 11 7 20 12 10 9 10 15 12 8 5 6 7 9 8 21 15 20 16 8 11 29 14 6

5 3 1 0 3 5 0 3 1 5 2 2 1 1 1 1 13 6 7 8 5 6 9 15 1 2 0 1 1 28 42 14 7 2 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 7 6 6 3 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 6 6 12 5 0 0

56 71 18 32 56 49 36 26 33 39 56 28 41 78 45 37 48 18 25 17 13 32 18 17 14 13 30 16 15 9 0 6 9 2 34 31 33 51 27 22 37

29 16 9 9 3 2 2 1 0 0 0 0 0 0 0 5 0 2 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 2 3 35 58 7 21 24 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1

0 1 0 3 1 0 0 1 2 0 0 1 0 1 3 1 0 1 2 0 1 0 2 0 2 0 2 0 0 0 2 3 2 0 3 3 2 1 1 0 0

4 1 4 4 1 4 3 0 2 1 1 1 1 2 1 1 3 3 4 2 4 6 1 4 1 1 4 3 2 4 3 4 3 8 4 0 1 2 3 0 0

32 2 3 5 3 16 6 8 11 6 10 6 8 8 5 10 23 21 32 13 8 12 17 6 2 2 3 10 19 7 10 4 7 17 16 9 4 4 7 8 3

132 Depth (m) 8.05 8.25 8.45

Age (cal yr BP) 15229 16164 17198

H

LX

CU

I

AB

TM

TS

CY

Q2

AR

109 71 50

1 8 4

15 3 7

6 4 0

2 1 10

15 7 37

5 0 1

0 1 0

1 0 0

3 0 3

133 Depth (m) 0 0.08 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25 4.45 4.65 4.84 5.05 5.25 5.45 5.65 5.85 6.05 6.25 6.45 6.65 6.85 7.05 7.25 7.45 7.65 7.85

Age (cal yr BP) 0 49 146 302 511 756 1032 1334 1657 1996 2348 2708 3074 3441 3809 4175 4536 4892 5242 5584 5920 6249 6571 6889 7203 7499 7826 8141 8461 8791 9133 9493 9874 10282 10722 11200 11721 12293 12922 13616 14382

CE

Q1

CH

R

G

Y

M

K

dy

t

1 1 3 2 1 3 1 5 1 0 2 2 1 2 3 0 3 1 4 2 3 4 8 1 3 2 1 1 1 4 0 4 1 4 0 0 0 0 2 0 0

13 11 11 9 5 19 18 16 17 14 12 11 9 10 9 5 10 20 15 9 24 9 15 19 17 10 7 2 13 10 6 7 8 13 14 0 6 2 3 4 3

7 7 2 2 6 0 2 1 1 3 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

5 1 4 5 5 5 1 5 8 6 3 3 4 3 2 0 1 3 3 5 3 6 9 1 1 4 3 2 0 1 2 5 2 1 1 4 7 10 3 4 7

5 2 0 6 2 1 8 4 4 5 1 1 2 7 5 5 5 6 0 2 3 3 2 1 3 4 4 1 3 1 6 1 2 3 2 1 2 5 3 3 7

5 0 0 0 1 0 0 1 0 0 4 0 5 3 7 0 1 1 0 0 0 0 0 0 0 12 1 4 2 0 0 0 1 0 0 0 3 5 10 12 0

0 0 0 0 0 0 0 0 0 0 1 3 5 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 2 0 1 0 0 4 11 8 17 2 0

1 1 1 0 1 1 1 0 1 3 0 0 0 0 2 1 0 0 0 0 1 0 0 0 2 1 0 1 0 0 1 0 0 1 3 0 4 6 2 2 0

7 0 0 0 5 8 2 2 8 2 12 3 9 6 10 6 4 4 1 6 2 5 4 0 5 12 13 5 15 2 3 1 0 4 0 1 2 3 10 6 5

0 0 0 2 1 0 2 5 5 2 0 0 0 0 1 2 1 1 1 3 1 1 0 4 0 1 2 0 2 0 4 3 1 5 6 3 1 3 1 2 7

134 Depth (m) 8.05 8.25 8.45

Age (cal yr BP) 15229 16164 17198

CE

Q1

CH

R

G

Y

M

K

dy

t

0 0 0

4 0 0

0 0 0

31 42 41

4 21 8

2 12 0

0 0 0

1 0 1

0 1 0

0 2 2

135 Depth (m) 0 0.08 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25 4.45 4.65 4.84 5.05 5.25 5.45 5.65 5.85 6.05 6.25 6.45 6.65 6.85 7.05 7.25 7.45 7.65 7.85

Age (cal yr BP) 0 49 146 302 511 756 1032 1334 1657 1996 2348 2708 3074 3441 3809 4175 4536 4892 5242 5584 5920 6249 6571 6889 7203 7499 7826 8141 8461 8791 9133 9493 9874 10282 10722 11200 11721 12293 12922 13616 14382

E

P

SQ

A

RS

R3

RO

AX

J

SM

8 4 0 5 1 1 0 1 0 1 1 0 2 1 3 3 2 1 0 2 1 1 0 0 4 1 2 0 3 0 1 0 5 0 2 4 2 6 4 9 1

30 51 44 62 39 46 23 37 38 50 18 27 32 33 25 33 53 22 44 24 36 49 36 59 62 17 41 37 41 90 62 67 58 56 93 110 121 68 73 91 112

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 4 2 0 1 1 0 1 2 4 3 3 0 0 0 4 0 1 1 0 0 0 1 1 2 2 0 1 0 1 0 1 2 3 0 1 3 0

0 2 0 0 0 0 0 2 3 6 3 3 3 5 5 1 4 0 1 1 5 2 3 0 1 3 0 0 1 4 0 3 5 4 0 0 1 3 2 2 0

2 1 1 0 0 2 5 1 2 1 5 4 0 2 3 1 1 2 4 0 7 2 1 0 0 3 4 1 1 2 0 0 0 1 2 2 1 3 1 0 0

0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 1 0 0 2 1 1 0 1 1 0 3 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

136 Depth (m) 8.05 8.25 8.45

Age (cal yr BP) 15229 16164 17198

E

P

SQ

A

RS

R3

RO

AX

J

SM

17 2 2

94 123 193

0 0 1

0 0 0

4 0 0

0 0 0

0 0 1

1 0 0

0 0 0

0 0 0

137 Depth (m) 0 0.08 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25 4.45 4.65 4.84 5.05 5.25 5.45 5.65 5.85 6.05 6.25 6.45 6.65 6.85 7.05 7.25 7.45 7.65 7.85

Age (cal yr BP) 0 49 146 302 511 756 1032 1334 1657 1996 2348 2708 3074 3441 3809 4175 4536 4892 5242 5584 5920 6249 6571 6889 7203 7499 7826 8141 8461 8791 9133 9493 9874 10282 10722 11200 11721 12293 12922 13616 14382

AM

AC

CP

PR

VC

ME

ER

VA

VI

SR

1 0 0 1 0 0 1 0 0 2 0 0 1 0 0 0 1 1 0 2 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138 Depth (m) 8.05 8.25 8.45

Age (cal yr BP) 15229 16164 17198

AM

AC

CP

PR

VC

ME

ER

VA

VI

SR

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

139 Depth (m) 0 0.08 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25 4.45 4.65 4.84 5.05 5.25 5.45 5.65 5.85 6.05 6.25 6.45 6.65 6.85 7.05 7.25 7.45 7.65 7.85

Age (cal yr BP) 0 49 146 302 511 756 1032 1334 1657 1996 2348 2708 3074 3441 3809 4175 4536 4892 5242 5584 5920 6249 6571 6889 7203 7499 7826 8141 8461 8791 9133 9493 9874 10282 10722 11200 11721 12293 12922 13616 14382

RH

RA

TH

BR

RA

OT

CR

LE

CM

EG

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 4 2 1 0 2 0

0 0 0 0 1 0 3 0 0 0 0 3 1 2 4 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 2 0 0 3 1 6 1 1 1

0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

1 0 5 3 2 3 2 0 1 3 1 5 1 3 2 2 0 5 1 4 0 2 2 1 1 0 2 2 0 2 0 0 0 1 1 1 1 1 1 5 2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 5 1 0

140 Depth (m) 8.05 8.25 8.45

Age (cal yr BP) 15229 16164 17198

RH

RA

TH

BR

RA

OT

CR

LE

CM

EG

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2 5 3

0 0 0

1 0 0

0 0 0

0 0 0

141 Depth (m) 0 0.08 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25 4.45 4.65 4.84 5.05 5.25 5.45 5.65 5.85 6.05 6.25 6.45 6.65 6.85 7.05 7.25 7.45 7.65 7.85

Age (cal yr BP) 0 49 146 302 511 756 1032 1334 1657 1996 2348 2708 3074 3441 3809 4175 4536 4892 5242 5584 5920 6249 6571 6889 7203 7499 7826 8141 8461 8791 9133 9493 9874 10282 10722 11200 11721 12293 12922 13616 14382

B

UM

BT

PC

PO

S

PU

W

DG

DT

0 2 1 0 0 1 1 1 0 0 0 0 0 1 0 1 4 0 3 3 1 2 0 9 8 2 7 8 4 5 2 5 5 3 1 0 0 0 1 0 0

2 2 3 3 4 0 1 2 2 1 3 5 3 1 1 0 5 0 0 1 0 3 1 0 0 1 0 0 1 0 0 0 0 0 0 4 1 1 6 2 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 3 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

3 1 2 2 4 4 1 1 2 1 4 2 4 4 2 2 3 5 2 0 2 1 2 0 1 5 2 0 2 0 2 2 0 0 0 1 1 2 4 4 1

1 0 0 0 0 0 0 0 0 0 0 5 0 1 1 2 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 1 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 1 1 1 1 0

142 Depth (m) 8.05 8.25 8.45

Age (cal yr BP) 15229 16164 17198

B

UM

BT

PC

PO

S

PU

W

DG

DT

0 0 0

1 1 0

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 3

3 1 0

0 0 0

143 Depth (m) 0 0.08 0.25 0.45 0.65 0.85 1.05 1.25 1.45 1.65 1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 3.45 3.65 3.85 4.05 4.25 4.45 4.65 4.84 5.05 5.25 5.45 5.65 5.85 6.05 6.25 6.45 6.65 6.85 7.05 7.25 7.45 7.65 7.85

Age (cal yr BP) 0 49 146 302 511 756 1032 1334 1657 1996 2348 2708 3074 3441 3809 4175 4536 4892 5242 5584 5920 6249 6571 6889 7203 7499 7826 8141 8461 8791 9133 9493 9874 10282 10722 11200 11721 12293 12922 13616 14382

AS

ty

IS

PD

BC

LP

∑D

∑P

129 58 151 123 108 122 147 132 144 204 138 138 129 88 134 128 101 115 86 122 154 131 117 102 79 84 57 73 76 63 74 82 46 53 5 8 6 2 3 17 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 20 118 248 131 30 183 50 112 61 55 179 249 54 82 148 119 341 1254 132 114 130 144 37 24 65 55 229 209 19 61 68 47 146 255 0 0 0 1 0 7

65 45 319 156 178 83 138 66 152 81 64 149 199 39 119 68 96 66 276 52 98 128 111 36 118 143 105 182 348 189 106 101 63 103 60 170 177 163 237 299 29

19 4 67 19 38 17 34 32 22 40 50 80 97 34 40 73 43 29 88 14 27 22 24 18 29 37 48 48 32 9 17 7 8 16 22 47 83 31 23 20 2

158 43 39 52 60 59 52 32 41 36 30 40 42 28 44 29 23 30 119 25 29 22 25 25 22 21 28 34 39 24 21 18 17 18 15 34 46 43 58 42 79

89 116 75 107 64 102 64 76 93 83 92 85 81 112 87 77 91 77 98 81 83 120 104 137 149 154 187 212 189 201 172 155 231 179 228 198 184 149 153 169 291

293 538 286 413 159 814 218 764 206 661 266 518 188 690 204 484 216 646 223 609 232 539 187 733 204 878 291 506 229 604 183 600 237 596 191 742 220 1925 183 503 188 581 228 639 212 608 227 420 228 478 251 580 288 553 280 812 282 947 290 570 269 527 231 489 313 477 268 586 344 686 333 558 347 613 305 501 327 591 303 639 406 447

∑Τ

144 Depth (m) 8.05 8.25 8.45

Age (cal yr BP) 15229 16164 17198

AS

ty

IS

PD

BC

LP

∑D

∑P

∑Τ

5 2 1

0 0 0

0 0 4

0 0 0

0 0 0

124 304 314

220 196 245

325 305 367

330 307 372

145

BIBLIOGRAPHY Agee, J.K. (1993). Fire Ecology of Pacific Northwest Forests. Island Press, Washington, D.C. Agee, J.K. (1991). Fire history along an elevational gradient in the Siskiyou Mountains, Oregon. Northwest Science 65, 188-199. Alley, R.B., Meese, D.D., Shuman, C.A., et al. (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527-529. Barnosky, C.W. (1985). Late Quaternary Vegetation near Battle Ground Lake, southern Puget Trough, Washington. Geological Society of America Bulletin 96, 221-239. Bartlein, P. J., Anderson, K. H., Anderson, P. M., et al. (1998). Paleoclimate simulations for North America over the past 21,000 years: features of the simulated climate and comparisons with paleoenvironmental data. Quaternary Science Reviews 17, 549585. Birks, H.J.B. and Gordon, A.D. (1985). Numerical Methods in Quaternary Pollen Analysis. Academic Press Inc. London Ltd. Burns, R. M. and Honkala, B.H., tech. coords. (1990). Silvics of North America: 1. Conifers; 2. Hardwoods. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. Vol. 2. Clark, J.S. and Royal, P.D. (1995). Particle-size evidence for source areas of charcoal accumulation in Late Holocene sediments of eastern North American lakes. Quaternary Research 43, 80-89. COHMAP Members.(1988). Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 1043-1052. Coleman, R.G. and Kruckeberg, A.R. (1999). Geology and Plant Life of the KlamathSiskiyou Mountain Region. Natural Areas Journal 19, 320-341. Critchfield, W.B. (1984). Impact of the Pleistocene on the genetic structure of North American conifers. In Proceedings, North American Forest Biology Workshop, 8th. Logan, Utah. 70-118.

146 Crowley, T.J. (2000). Causes of Climate Change Over the Past 1000 Years. Science 289, 270-277. Davis, M.B., Brubaker, L.B., and Webb, T. III. (1973). Calibration of absolute influx. In Quaternary Plant Ecology, H.J.B. Birks and R.G. West, Eds., 109-116. John Wiley and Sons, New York. Dean, W.E., Jr. (1974). Determination of carbonate and organic matter in calcareous sediments by loss on ignition comparison to other methods. Journal of Sedimentary Petrology 44, 242-248. DellaSala, D.A., Reid, S.R., Frest, T.J, Strittholt, J.R. and Olson, D.M. (1999). A Global Perspective on the Biodiversity of the Klamath-Siskiyou Ecoregion. Natural Areas Journal 19, 300-319. Faegri, K., Kaland, P.E. and Krzywinski, K. (1989). Textbook of pollen analysis. John Wiley and Sons, New York, New York, USA. Fall, P. (1992). Spatial patterns of atmospherical pollen dispersal in the Colorado Rocky Mountains, USA. Reviews of Palaeobotany and Palynology 74, 293-313. Franklin, J.F. and Dyrness, C.T. (1988). Natural Vegetation of Oregon and Washington. Gen. Tech. Rep. PNW-8. USDA Forest Service, Pacific Northwest Research Station, Portland. Grigg, L.D. and Whitlock, C. (1998). Late-Glacial Vegetation and Climate Change in Western Oregon. Quaternary Research 49, 287-298. Grimm, E.C. (1988). Data analysis and display. In Vegetation History, B. Huntley and T. Webb III, Eds., 43-76, Kluwer Acadenic, Dordrecht, Netherlands. Hajdas, I., Zolitschka, B., Ivy-Ochs, S.D., et al. (1995). AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quaternary Science Reviews 14, 137-143. Hebda, R.J., Chinnappa, C.C., and Smith, B.M. (1988a). Pollen morphology of the Rosaceae of Western Canada, I. Agrimonia to Crataegus. Grana 27, 5-113. Hebda, R.J., Chinnappa, C.C., and Smith, B.M. (1988b). Pollen morphology of the Rosaceae of Western Canada, II. Dryas, Fragaria, Holodiscus. Canadian Journal of Botany 66, 5-113. Hickman, J.C. ed. (1993). The Jepson Manual: Higher Plants in California. University of California Press, Berkeley and Los Angeles, California.

147

Hughes, M.K, and Diaz, H.F. (1994). The Medieval Warm Period. Dordrecht: Kluwer Academic. Jarvis, D.I., Leopold, E.B., and Liu, Y. (1992). Distinguishing the pollen of deciduous oaks, evergreen oaks and certain rosaceous species of southwestern Sichuan Province, China. Review of Palaeobotany and Palynology 75, 259-271. Kapp, R.O., Davis, O.K., and King J.E. (2000). Pollen and Spores. The American Association of Stratigraphic Palynologists. Texas A&M University, College Station, Texas. Lamb, H.H. (1965). The early Medieval Warm Epoch and its sequel. Palaeogeography, Paleoclimatology, Palaeoecology 1, 13-27. Long, C.J., Whitlock, C., Bartlein, P.J. and Millspaugh, S.H. (1998). A 9000-year fire history from the Oregon Coast Range, based on a high-resolution charcoal study. Canadian Journal of Forestry 28, 774-787. Long, W.A. (1977). Reconnaissance of the glacial geology of the Siskiyou Mountains of Northwestern California. USDA Forest Service, Eureka, California. McNeil , R.C. and Zobel, D.B. (1980). Vegetation and fire history of a ponderosa pinewhite fir forest in Crater Lake National Park. Northwest Science 54, 30-46. Millspaugh, S.H. and Whitlock, C. (1995). A 750-year fire history based on lake sediment records in central Yellowstone National Park. The Holocene 3, 283-292. Mock, C.J. (1996). Climatic controls and spatial variations of precipitation in the western United States. Journal of Climate 9, 1111-1125. Mohr, J.A., Whitlock, C., and Skinner, C.N. (2000). Postglacial vegetation and fire history, Eastern Klamath Mountains, California. The Holocene 10, 587-601. Moore, P.O. and Webb, J.A. (1978). An Illustrated Guide to Pollen Analysis. John Wiley and Sons, Pub., New York. Pisias, N. G., Mix, A. C., and Heusser, L. (2001). Millennial scale climate variability of the northeast Pacific Ocean and northwest North America based on radiolaria and pollen. Quaternary Science Reviews 20, 1561-1576. Ritchie, J.C. and Lichti-Federovich, S. (1967). Pollen dispersal phenomena in Arcticsubarctic Canada. Review of Paleobotany and Palynology 3, 255-266.

148 Ryan, K.C. (1991). Vegetation and Wildland Fire: Implications of Global Climate Change. Environment International 17, 169-178. Sawyer, J.O. and Thornburgh, D.A. (1988). Montane and subalpine vegetation of the Klamath Mountains. In Terrestrial Vegetation of California, Barbour, M.G. and Major, J., Eds., 699-732. California Native Plant Society, Special Publication No. 9. Sea, D.S. and Whitlock, C. (1995). Postglacial vegetation history of the high Cascade Range, central Oregon. Quaternary Research 43, 370-381. Smith, S.J. and Anderson, R.S. (1992). Late Wisconsin paleoecologic record from Swamp Lake, Yosemite National Park, California. Quaternary Research 38, 91102. Stromberg, B. (1994). Younger Dryas deglaciation at Mt. Billinen and clay varve dating of the Younger Dryas/Preboreal transition. Boreas 23, 177-193. Stuiver, M., Reimer, P.J., Bard, E., et al. (1998). INTCAL98 Radiocarbon age calibration 24,000 - 0 cal BP. Radiocarbon 40,1041-1083. Taylor A. and Skinner C.N. (1998). Fire history and landscape dynamics in a latesuccessional reserve, Klamath Mountains, California, USA. Forest Ecology and Management 111, 285-301. Taylor, G. and Hannan C. (1999). The climate of Oregon: from rain forest to desert. Oregon State University Press, Corvallis, OR. Thompson, R.S., Hostetler, S.W., Bartlein, P.J. and Anderson, K.H. (1998). A strategy for assessing potential future changes in climate, hydrology, and vegetation in western United States. USGS Circular 1153 (http://geology.usgs.gov/circular.html). West, G.J. (1989). Late Pleistocene/Holocene vegetation and climate. In Prehistory of the Sacramento River Canyon, Shasta County, California, Basgall, M.E. and Hildebrandt, W.R., Eds., 36-55. Center for Archaeological Research, Davis, CA. Whitlock, C. and Millspaugh, S.H. (1996). Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. The Holocene 6, 7-15. Whittaker, R.H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30, 279-338.

149 Worona, M.A., and Whitlock, C. (1995). Late-Quaternary vegetation and climate history near Little Lake, central Coast Range, Oregon. Geological Society of America Bulletin. 107, 867-876. Wright, H.E., Jr., Mann, D.H. and Glaser, P.H. (1983). Piston cores for peat and lake sediments. Ecology 65, 657-659. Zdanowicz, C.M. and Zielinski, G.A.. (1999). Mount Mazama eruption: Calendrical age verified and atmospheric impact assessed. Geology 27, 621-625.

postglacial vegetation and fire history near bolan lake

Agriculture, Forest Service, Pacific Southwest Forest Research Station (PSW-95-. 0022CA) and from the ..... isolated population of Picea breweriana is located west and south of Bolan Lake but the species is not ...... south to reconstruct a regional picture of postglacial vegetation, fire, and climate change. Pollen records are ...

2MB Sizes 1 Downloads 162 Views

Recommend Documents

Regional and local controls on postglacial vegetation ...
spurred federal management decisions (e.g. Health Forest Initiative of. 2003; USDA ... A 6.66-m-long sediment core and a 60-cm-short core were recovered.

Chloroplast DNA variation and postglacial ... - Semantic Scholar
Peninsula, as had been suggested from fossil pollen data. ..... The sAMoVA algorithm did not allow us to unambiguously ..... PhD Thesis. .... Science, 300,.

Homes For Rent Near Me Lake Worth, FL.pdf
Suite 1-240 Lake Worth, Florida 33467. Page 3 of 5. Homes For Rent Near Me Lake Worth, FL.pdf. Homes For Rent Near Me Lake Worth, FL.pdf. Open. Extract.

Grand Lake Fire Scholarship.pdf
Download. Connect more apps... Try one of the apps below to open or edit this item. Grand Lake Fire Scholarship.pdf. Grand Lake Fire Scholarship.pdf. Open.

Homes For Rent Near Me Lake Worth, FL.pdf
Not everybody has good credit and can qualify for a loan, but. everybody needs a place to live. Earn​ ​income:​ ​If you don't need to sell right away and use ...

Art History Sumeria and Ancient Near East.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Art History Sumeria and Ancient Near East.pdf. Art History Sumeria and Ancient Near East.pdf. Open. Extract.

Chloroplast DNA variation and postglacial ...
8079, Bâtiment 360, Université Paris-XI, Orsay F−91405, France; ††Université de Lille 1, Laboratoire ..... H05, in agreement with the view that refugium popula-.

(Galemys pyrenaicus) - Phylogeography and postglacial expansion ...
PDF File: Whisky In Your Pocket: A New Edition Of Wallace Milroy's The Origin 2. Page 2 of 8 .... Igea et al. BMC Evolutionary Biology 2013, 13:115 Page 3 of 19.

Phylogeography and postglacial expansion of the 1471-2148-13 ...
Page 1 of 19. R E S EAR CH A R TIC L E Open Access. Phylogeography and postglacial expansion of the. endangered semi-aquatic mammal Galemys. pyrenaicus. Javier Igea1,2, Pere Aymerich3. , Angel Fernández-González4. , Jorge González-Esteban5. , Asun

Fire frequency, agricultural history and the multivariate ...
recovery on post-agricultural land and highlight the conservation value of fre- quently burned savanna remnants. Introduction .... the world, and provide insight into the future of other fire-dependent ecosystems that are currently ... restoration of

Eastside Cascades Fire Ecology History and Patterns.pdf ...
Eastside Cascades Fire Ecology History and Patterns.pdf. Eastside Cascades Fire Ecology History and Patterns.pdf. Open. Extract. Open with. Sign In.

pdf-1833\detroit-fire-department-apparatus-history-a-pictorial-history ...
... the apps below to open or edit this item. pdf-1833\detroit-fire-department-apparatus-history-a-p ... ipment-that-served-detroit-michigan-by-matthew-lee.pdf.

Lake to Lake Greenway and Bikeway Network Map.pdf
Lake to Lake Greenway and Bikeway Network Map.pdf. Lake to Lake Greenway and Bikeway Network Map.pdf. Open. Extract. Open with. Sign In. Main menu.

Rent To Own Homes By Owner Near Me Lake Worth, FL.pdf ...
Note: Not all states allow lease options on residential property, so the buyer should ensure that. the contract is legal. How​ ​It​ ​Benefits​ ​Sellers. One of the ...

Desert and Vegetation States and Asymptotic ...
[16] J. A. Sherratt, An analysis of vegetation stripe formation in semi-arid landscapes,. J. Math. Bio. 51 (2005) 183–197. [17] J. A. Sherratt and G. J. Lord, Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-ari

Chapter 1000-YEAR ENVIRONMENTAL HISTORY OF LAKE ... - CSIC
Digital Elevation Model (DEM) of. Lake Issyk-Kul and its ..... have a distinctive chemical signature with predominant calcium, silica and aluminum (Ma et al., ...

pdf-15103\a-history-of-lake-herring-with-introductory ...
Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. pdf-15103\a-history-of-lake-herring-with-introductory-legend-the-bride-of-mystery-by-john-h-howard.pdf. pdf-15103\a-history-of-lake-herring-with-introduct

Rent To Own Homes By Owner Near Me Lake Worth, FL.pdf ...
Rent To Own Homes By Owner Near Me Lake Worth, FL.pdf. Rent To Own Homes By Owner Near Me Lake Worth, FL.pdf. Open. Extract. Open with. Sign In.

Vegetation and ES&R Monitoring Technician Great Basin Institute ...
preparation of ES (Emergency Stabilization) and BAR (Burned Area Rehabilitation) plans, ... The District encompasses roughly 11 million acres, of which 7.38 million acres are public lands managed by the. BLM. ... No phone inquiries, please.

Vegetation response to midstorey mulching and ...
Apr 7, 2009 - Published by Oxford University Press on behalf of the Institute of Chartered Foresters, 2009 ... along the Coastal Plain from Texas to Florida.