Practical Tools for DSGE Modeling Part 1

Mathias Trabandt

March 2014

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Aim of the Masterclass 1

Learning how to: Set up Solve and analyze DSGE models

2

Model workhorses: Hansen’s (1985) canonical Real Business Cycle model (Part 1 and 2) Clarida, Gali, and Gertler’s (1999) canonical New Keynesian model (Part 3 and 4)

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Selection of RBC Literature Kydland & Prescott (1982), "Time to Build and Aggregate Fluctuations", Econometrica Hansen (1985), "Indivisible Labor and the Business Cycle",Journal of Monetary Economics Rogerson (1988), ”Indivisible Labor, Lotteries and Equilibrium”, Journal of Monetary Economics Cooley (1995), editor, ”Frontiers of Business Cycle Research”, Princeton University Press King & Rebelo (1999), "Resuscitating Real Business Cycles", Handbook of Macroeconomics

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Data

Let’s take a look at some data.... ....before we start building a model to explain it.

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Data: US GDP

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Data: US Private Consumption

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Data: US Private Investment

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Data: US Hours Worked

Log-Linearization

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

US Data (HP-Filtered)

Log-Linearization

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Properties of US Data (HP-Filtered)

GDP Consumption Investment Hours

Crosscorrelation with GDP t-1 t t+1 t+2

Standard Deviation

t-2

1.68% 0.98% 4.70% 1.35%

0.60 0.64 0.59 0.50

0.84 0.77 0.73 0.73

1.00 0.80 0.77 0.87

0.84 0.63 0.60 0.83

0.60 0.41 0.35 0.65

RBC literature attempts to replicate data properties in a DSGE framework

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Why DSGE Models? Dynamic: intertemporal e¤ects of optimal economic decisions e.g. investment decisions; anticipation e¤ects

Stochastic: economic environment is subject to unexpected disturbances e.g. technology shocks

General Equilibrium: all markets clear endogenously and interdependently feedback e¤ects from policy to economic behavior and vice versa explicit treatment of agent’s expectations (Lucas critique) micro foundations; optimal plans

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Solution Strategy Uhlig (1999), "A toolkit for analysing nonlinear dynamic stochastic models easily" in Marimon and Scott, eds, Computational Methods for the Study of Dynamic Economies, Oxford University Press (book contains alternative solution methods as well) 1 2 3 4 5 6 7 8

Set up model Derive …rst order conditions De…ne equilibrium Solve for the steady state Log-Linearize Solve for the dynamics Analysis (Calibration, impulse responses, hp-…ltered moments) Recently: Estimation

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 1: Set up Hansen’s (1985) RBC Model ∞

Preferences : maxfCt ,Nt ,Kt ,It g∞ E0 ∑ βt [log Ct t=0

s.t. Production : Yt = Zt Ktα 1 Nt1 α ¯ + ρ log Z TFP : log Zt = (1 ρ) log Z t Capital acc. Feasibility Endowment Information

: : : :

ANt ]

t=0

1 + εt

with εt N (0, σ2 ) iid Kt = (1 δ)Kt 1 + It Ct + It = Yt K 1 given E0 , rational expectations, complete information

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Notes Stochastic version of neoclassical growth model Social planner problem. Isomorphic to decentralized problem (representative household and representative …rm) All variables in real terms. Normalized price level Elastic aggregate - inelastic individual labor supply (see Rogerson 1988) Literature Extensions: Sticky prices, sticky wages, consumption habit, investment adjustment and capacity utilization costs Monetary and …scal policy Open economy Information frictions Financial frictions, labor market frictions Deterministic or stochastic growth ...

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 2: Derive First Order Conditions

Lagrangian representation:

L=

max ∞

fCt ,Nt ,Kt gt=0

"



E0 ∑ β t t=0

log Ct ANt Zt Ktα 1 Nt1 α

λ t ( Ct + Kt ( 1 δ ) Kt 1 )

#

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Step 2: Derive First Order Conditions “Telescope out”: 2

L=

max

fCt ,Nt ,Kt gt∞=0

6 6 6 E0 6 6 6 4

+ βt

... log Ct ANt Zt Ktα 1 N1t α

λt (Ct + Kt ( 1 δ ) Kt 1 )

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 2: Derive First Order Conditions “Telescope out”: 2

L=

max

fCt ,Nt ,Kt gt∞=0

6 6 + βt 6 E0 6 6 6 + β t+1 4

... log Ct ANt λt (Ct + Kt Zt Ktα 1 N1t α (1 δ)Kt 1 ) log Ct+1 ANt+1 λt (Ct+1 + Kt+1 Zt+1 Ktα Nt1+1α (1 δ)Kt ) +...

3 7 7 7 7 7 7 5

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 2: Derive First Order Conditions Derivatives: ∂L 1 = βt βt λt = 0 ∂Ct Ct ∂L = βt A + βt λt (1 α) Zt Ktα 1 Nt α = 0 ∂Nt ∂L αZt+1 Ktα 1 Nt1+1α = β t λ t + β t + 1 Et λ t + 1 =0 +(1 δ) ∂Kt ∂L = β t Ct + β t Kt βt Zt Ktα 1 Nt1 α βt (1 δ)Kt 1 = 0 ∂λt De…ne real return Rt = α KYt t 1 + (1 obtain...

δ) and simplify to

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 3: Equilibrium Equations Labor/Leisure :

A Ct = ( 1

Euler Equation : 1 = βEt

α)

Yt Nt

Ct Rt + 1 Ct + 1

Production : Yt = Zt Ktα 1 Nt1 α Feasibility : Ct + Kt = Yt + (1 δ)Kt 1 Yt + (1 δ ) Real Return : Rt = α Kt 1 TFP : log Zt = (1 ρ) log Z¯ + ρ log Zt Check: 6 equations in 6 unknowns

1

+ εt

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Solving the Model

No closed form solution possible (except for very special cases such as δ = 1 and constant hours) Need numerical methods to solve the model Solve for steady state (no shocks, constant variables) Solve for dynamics around steady state (‡uctuations of variables due to shocks) Uhlig (1999) and others

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 4: Solve for the Steady State Drop time subscripts of equilibrium equations 2 possibilities: solve for endogenous varables given parameters (δ, β, α, ρ, A) ¯ impose steady states (great ratios KY¯ etc) and back out corresponding parameters

Solve Euler equation for: 1 R¯ = β Solve real return equation for: ¯ Y¯ R = K¯

1+δ α

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Step 4: Solve for the Steady State TFP equation implies: ¯ =Z ¯ Z Production function yields: " Y¯ ¯ ¯ = Z N

Y¯ K¯

α

#

1 1 α

Solve labor/leisure tradeo¤ for: C¯ = (1

α)

1 Y¯ ¯ AN

Solve feasibility constraint for: ¯ = N

¯ C

(1

¯

¯

Y δ KY¯ ) N ¯

Remaining steady states trivial: Y¯ =

Y¯ ¯ ¯ N, N

K¯ =

K¯ ¯ Y Y¯

etc.

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 5: Log-Linearization

Want to solve for dynamics around steady state Equilibrium equations nonlinear - hard to solve Key steps: replace nonlinear equations with log-linearized equations thereafter use method of undetermined coe¢ cients (Uhlig 1999) to solve system of linear equations

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 5: Log-Linearization In general, for x

0,

ex

1+x

Log deviation of xt from x¯ : xˆ t = log

xt x¯

100*ˆxt is approximately the % deviation of xt from x¯ Key relation: xt = x¯ exˆ t x¯ (1 + xˆ t ) Note: results identical to a 1st order Taylor series approximation

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Log-Linearization - 2 Examples Take the labor-leisure trade o¤ equation: A Ct = ( 1

α)

Yt Nt

¯ cˆt , Yt = Ye ¯ yˆ t , Nt = Ne ¯ nˆ t : Substitute Ct = Ce ¯ cˆt Ne ¯ nˆ t = (1 α) Ye ¯ yˆ t A Ce ¯N ¯ = (1 α) Y¯ in steady state: Note that A C ecˆt +nˆ t = eyˆ t So that: 1 + cˆ t + nˆ t cˆ t + nˆ t

1 + yˆ t yˆ t

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Log-Linearization - 2 Examples Take the feasibility constraint equation: Ct + Kt = Yt + ( 1

δ ) Kt

1

¯ cˆt , Yt = Ye ¯ yˆ t , Kt = Ke ¯ kˆ t : Substitute Ct = Ce ¯ yˆ t + (1 ¯ cˆt + Ke ¯ kˆ t = Ye Ce

¯ kˆ t δ)Ke

1

So that ¯ (1 + cˆ t ) + K¯ (1 + kˆ t ) C Note that C¯ + K¯ = Y¯ + (1 ¯ ct + K¯ kˆ t Cˆ

Y¯ (1 + yˆ t ) + (1

δ)K¯ (1 + kˆ t

¯ δ)K: ¯ yt + ( 1 Yˆ

δ)K¯ kˆ t

1

1)

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Log-Linearized Equilibrium Equations

Labor/Leisure : cˆ t + nˆ t = yˆ t Euler Equation : 0 = Et cˆ t cˆ t+1 + Rˆ t+1 Production : yˆ t = zˆ t + αkˆ t 1 + (1 α) nˆ t ¯ ct + K¯ kˆ t = Yˆ ¯ yt + (1 δ)K¯ kˆ t Feasibility : Cˆ ¯ ¯R ˆ t = α Y yˆ t kˆ t 1 Real Return : R K¯ TFP : zˆ t = ρˆzt 1 + εt

1

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Comparison With Non-Linear Equations

Labor/Leisure :

A Ct = ( 1

Euler Equation : 1 = βEt

α)

Yt Nt

Ct Rt + 1 Ct + 1

Production : Yt = Zt Ktα 1 Nt1 α Feasibility : Ct + Kt = Yt + (1 δ)Kt 1 Yt Real Return : Rt = α + (1 δ ) Kt 1 TFP : log Zt = (1 ρ) log Z¯ + ρ log Zt

1

+ εt

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 6: Solve for the Dynamics

Use method of undetermined coe¢ cients (Uhlig 1999) to solve system of log-linear equations Key steps: repeated substitution of log-linear equilibrium equations until 3 equations in 3 unknows are obtained guess recursive law of motions (RLOM) compare coe¢ cients and solve

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 6: Solve for the Dynamics Combine the labor/leisure trade o¤, the production function, the real return and the Euler equation to obtain: 0 = Et [cˆ t

α1 cˆ t+1 + α2 zˆ t+1 ]

(1)

¯

¯

where α1 = 1 + KY¯ 1 R¯ α and α2 = KY¯ R1¯ . Combine feasibility constraint, production function and labor/leisure trade o¤ to obtain: h i ˆ ˆ 0 = Et α3 cˆ t + α4 kt α5 zˆ t α6 kt 1

¯ α5 = ¯ + Y¯ 1 α , α4 = K, where α3 = C α ¯ α6 = Y¯ + (1 δ)K.

Y¯ α

(2)

and

TFP equation: zˆ t = ρˆzt

1

+ εt

(3)

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 6: Solve for the Dynamics Guess recursive law of motion (RLOM) for kˆ t and cˆ t : kˆ t = η kk kˆ t cˆ t = η kˆ t ck

+ η kz zˆ t ˆt 1 + η cz z 1

(Brain teaser: why is this a good guess?) For zˆ t we have: zˆ t = ρˆzt 1 + εt Substitute RLOM into equations (1) and (2) and use also Et [zˆ t+1 ] = ρˆzt to obtain...

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 6: Solve for the Dynamics 2 equations in the date t states of the model: 0 = [(1

α1 η kk )η ck ] kˆ t

0 = [α3 η ck + α4 η kk

1

+ [η cz (1

α6 ] kˆ t

1

α1 ρ ) + α2 ρ

+ [α3 η cz + α4 η kz

α1 η ck η kz ] zˆ t α5 ] zˆ t

Both equations must hold with equality for all realizations of kˆ t 1 and zˆ t Compare coe¢ cients on kˆ t 1 (i.e. set zˆ t = 0): 0 = (1 α1 η kk )η ck 0 = α3 η ck + α4 η kk α6

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Step 6: Solve for the Dynamics Solve for η kk : η kk =

1 α1

+ 2

α6 α4

v u u t

1 α1

+

α6 α4

2

Choose stable root, i.e. kη kk k < 1. Solve for η ck : α6 α4 η ck = η α3 α3 kk

!2

α6 α1 α4

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 6: Another solution? Note that there is another candidate solution that solves: 0 = (1 α1 η kk )η ck 0 = α3 η ck + α4 η kk α6 Candidate solution: η ck = 0, η kk =

α6 α4

However, note that in this case Y¯ + (1 δ) K¯ α6 = η kk = α4 K¯ ¯ 1+δ R = +1 δ α R¯ 1 + (1 α) δ = 1+ >1 α Solution implies no stable root.

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Step 6: Solve for the Dynamics Compare coe¢ cients on zˆ t (i.e. set kˆ t

1

= 0):

0 = η cz (1 α1 ρ) + α2 ρ 0 = α3 η cz + α4 η kz α5 Solve for η cz : η cz =

α1 η ck αα54 1

α2 ρ

α1 ρ + α1 η ck αα34

Finally, solve for η kz : η kz =

α1 η ck η kz

α5 α4

α3 η α4 cz

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 7: Analysis Calibration/Parameterization, see Hansen (1985), Cooley (1995) etc: Parameter β δ α A Z¯ ρ σ

Value 0.99 0.025 0.36 2.5 1 0.95 0.71%

Description Discount factor (quarterly) Depreciation rate (quarterly) Capital share Disutility of labor parameter Steady state TFP (normalization) AR(1) parameter TFP Standard deviation of TFP shock

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 7: Analysis Using these parameters we can calculate the steady state numerically: Variable Model US Data Description K¯ Y¯ I¯ Y¯ ¯ C Y¯

N

2.56 0.26 0.74 0.34

2.38 0.25 0.61 0.25

Capital–output ratio (annual) Investment-output ratio Consumption-output ratio Labor

Note that the model abstracts from government spending ¯ which would imply lower YC¯ . Also, a higher A would imply a ¯ if desired. lower N,

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 7: Analysis Using parameters we can calculate the RLOM numerically: kˆ t = 0.94kˆ t cˆ t = 0.53kˆ t

+ 0.16ˆzt zt 1 + 0.47ˆ 1

For zˆ t we have: zˆ t = 0.95ˆzt

1

+ εt with εt

N (0, 0.00712 ) iid

We are now ready to do impulse responses, simulations etc

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Step 7: Analysis Driving force in RBC model is exogenous TFP: zˆ t = ρˆzt

1

+ εt

Impulse Responses: Analyze the dynamics in response to a one-time technology shock I.e., εt = 1 for t = 0 and εt = 0 for t 1 and simulate the endogenous model response

Simulations: Either draw εt N (0, σ2 ) iid and simulate Or construct time series for zˆ t by using data together with Yt = Zt Ktα 1 Nt1 α and simulate

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Impulse Responses to TFP Shock

Dynamics

Analysis

Data

Hansen RBC Model

FONCs

Equilibrium

Steady State

Log-Linearization

Dynamics

Analysis

Data vs. Simulation Results (all hp-…ltered) Draw εt

N (0, σ2 ) iid and simulate model many times: Crosscorrelation with GDP Standard Deviation

t-2

t-1

t

t+1

t+2

1.68%

0.60

0.84

1.00

0.84

0.60

GDP

Data Model

1.80%

0.47

0.71

1.00

0.71

0.47

Consumption

Data

0.98%

0.64

0.77

0.80

0.63

0.41

Model

0.52%

0.24

0.52

0.87

0.77

0.66

Data

4.70%

0.59

0.73

0.77

0.60

0.35

Model

5.75%

0.51

0.73

0.99

0.67

0.40

Data

1.35%

0.50

0.73

0.87

0.83

0.65

Model

1.37%

0.53

0.74

0.98

0.64

0.37

Investment

Hours

Practical Tools for DS5E Modeling

6ansen RBC Model. FONCs. Equilibrium. Steady State. Log"Linearization. Dynamics. Analysis. Data vs. Simulation Results (all hp"Zltered). " Draw εt $ N 0, σ. 2! iid and simulate model many times: Crosscorrelation with GDP. Standard Deviation t(2 t(1 t t+1 t+2. GDP. Data. 1.68%. 0.60. 0.84. 1.00. 0.84. 0.60. Model. 1.80%.

319KB Sizes 1 Downloads 139 Views

Recommend Documents

Practical Tools for DS*E Modeling
Second Order Approximations. D5NARE. # Software package developed by M. Juillard and his team. # Selection of MATLAB programmes to solve and estimate general class of models. # Code and Documentation available at: http://www.dynare.org. # Have a look

Planning in the Wild: Modeling Tools for PDDL - GitHub
converted to html by various hosting services (like GitHub or Bitbucket). mypddl-snippet ... [10] as well as general usability principles. .... received the web link to a 30-minute interactive video tutorial on AI planning and pddl. .... best practic

pdf-1414\the-kimball-group-reader-relentlessly-practical-tools-for ...
... apps below to open or edit this item. pdf-1414\the-kimball-group-reader-relentlessly-practical-tools-for-data-warehousing-and-business-intelligence.pdf.