            

        

  

        

   

      

       

    

          

 

Text and page layout copyright Martin Cunningham, 2005. Majority of clipart copyright www.clipart.com, 2005.

1) CLASSICAL WAVE THEORY We have seen that electromagnetic energy (such as light) behaves as a continuous wave - It can be reflected, refracted and diffracted. More importantly, it can produce interference (which is the test for wave motion).    

λ

A continuous electromagnetic wave is shown:

    

Such a continuous electromagnetic wave has a velocity (v) of 3 x 108 m s-1 in air, a frequency (f) measured in hertz and wavelength (λ λ) measured in metres. The equation

 λ

applies to the wave.

2) QUANTUM THEORY In the early years of the 20 th century (about 100 years ago), scientists Max Planck and Albert Einstein proposed an alternative theory for electromagnetic energy - The quantum theory:  

 

Clipart copyright S.S.E.R. Ltd

Clipart copyright S.S.E.R. Ltd

Electromagnetic energy is a stream of tiny, individual "wave packets" called quanta or photons:

λ

 As with classical wave theory, each photon has a velocity (v) of 3 x 108 m s-1 in air, a frequency (f) measured in hertz and wavelength (λ λ) measured in metres. The equation

 λ

applies to each photon.

However, the energy of a photon does not depend on amplitude. The energy (E) of a photon is directly proportional to its frequency (f):



α

  

The constant is named after Max Planck (Planck's constant) and is given the symbol h:  



 

    

Example In air, a photon of yellow light has a wavelength of 589 nm (i.e., 589 x 10-9 m). Calculate: (a) the frequency of the photon;

(b) the energy of the photon.

λ λ         

λ

   



                                        

                                             

                    

                            

                         

Irradiance of Electromagnetic Radiation The irradiance () of electromagnetic radiation falling on any surface is given by the equation: 

 



  



                                          

                                                 

3) THE PHOTOELECTRIC EFFECT WORK FUNCTION On the surface of metals, there are tiny particles called electrons. The electrons are held on the metal surface by attractive forces. If an electron is to escape from the metal surface, it must overcome these attractive forces. The work function of a metal is the energy which must be supplied to enable an electron to escape from the metal surface. PHOTOELECTRIC EFFECT / PHOTOELECTRIC EMISSION If one photon of electromagnetic energy (E = hf) strikes a metal surface, it causes one electron to be emitted from the metal surface if the photon's energy (hf) is equal to or greater than the work function of the metal, part of the photon's energy being used to enable the electron to escape. The rest of the photon's energy is given to the emitted electron as kinetic energy. The photon then no longer exists - This is known as the photoelectric effect and the emission of the electron is known as photoelectric emission or photoemission. THRESHOLD FREQUENCY (fo) A photon must have a minimum energy equal to the work function of a metal and hence a minimum frequency (fo) to emit an electron from the metal surface. This minimum frequency (fo) is called the threshold frequency for the metal. Each metal has its own unique value of threshold frequency (fo).                  

 



Work function = h fo

EINSTEIN'S PHOTOELECTRIC EQUATION:

       

      







 

Clipart copyright S.S.E.R. Ltd

Photoelectric emission is described by















   







  

 

This apparatus is used to investigate the photoelectric effect: When electromagnetic radiation of sufficient energy/frequency strikes the metal surface, electrons are emitted from the metal surface (1 electron per photon). The emitted electrons are attracted to the positively-charged plate through the vacuum (there are no air molecules to stop them) - An electric current (known as a photoelectric current) is thus created in the circuit, so the ammeter displays a current reading. [The constant voltage supply is used to give the plates inside the vacuum their - and + electric charge].

  

Photoelectric current/ A

-

fo sodium

vacuum

+

  Photoelectric current/ A

 

calcium

sodium

0

electrically-charged plates

fo calcium

Frequency of

0

Irradiance of radiation/ W m-2

radiation/ Hz

            

      

Laboratory Demonstration of the Photoelectric Effect               

electrons

stem

     

                      

                

              



     

           

-

                                 

vacuum

+

      

  Photoelectric

  



Photoelectric

current/ A

0

current/ A

x fo

0

Frequency of radiation/ Hz



Irradiance of radiation/ W m-2

                    

                           

            

                                 



                                 

              

                                                          

                                                                      

Pressworks 3 Template - PDFKUL.COM

Describe an experiment to show that photoelectric emission occurs when the ... The constant is named after Max Planck (Planck's constant) and is given the ... In air, a photon of yellow light has a wavelength of 589 nm (i.e., 589 x 10-9 m).

1MB Sizes 1 Downloads 221 Views

Recommend Documents

Pressworks 3 Template - PDFKUL.COM
Draw a diagram to represent the energy levels for a hydrogen atom. .... lines of different frequency/wavelength, e.g., the sodium line emission spectrum shown below: For example: Atom X has 4 possible energy levels, as shown: .... The absorption line

Pressworks 3 Template
Electrons can move from one energy level to another energy level, but cannot .... orange lines in the sodium emission spectrum) - The brighter lines are caused ...

Pressworks 3 Template - mrmackenzie
State that each photon of electromagnetic radiation has an energy E = hf where h is Planck's constant ... and Albert Einstein proposed an alternative theory for ...

Pressworks 3 Template
the visible spectrum - in the infra-red or ultra-violet. Various such electron transitions (jumps) of different energy (and hence different frequency/wavelength) are ...

Pressworks 3 Template - with mr mackenzie
Free (unreacted) atoms consist of a tiny, central nucleus (containing particles called neutrons and protons) surrounded by particles called electrons.

Pressworks 3 Template - with mr mackenzie
4) Calculate. Calculate. Calculate the refractive refractive index of a substance substance which has a critical critical critical angle of. 42.5o. (a). (b). (c). (d). (e).

CHSinfographic TEMPLATE 3.pdf
Kate. NEW CLASSES. COLUMBINE HIGH SCHOOL. BUSINESS & MARKETING DEPARTMENT. Advanced. Marketing. Sports &. Entertainment. Marketing. Sports &. Entertainment. Marketing 2. Digital. Marketing. Marketing. Classes. Business. Classes. Intro to. Business. S

Multifunction peripheral with template registration and template ...
Jun 23, 2010 - nonvolatile memory 54; a hard disk drive (HDD) 55; a net work interface (I/F) 56; ... 54 may store display data and the like to be displayed in the.

Multifunction peripheral with template registration and template ...
Jun 23, 2010 - Io é : 100%. 5 A4. 8. Single side. 72dl I, ______ __@____I if" """"" ' f““"""_""""_ “ax—'2'?”rigs—"'1 ______ _ _,. F ' h A4 ...... play portion 93d.

Proceedings Template - WORD
This paper presents a System for Early Analysis of SoCs (SEAS) .... converted to a SystemC program which has constructor calls for ... cores contain more critical connections, such as high-speed IOs, ... At this early stage, the typical way to.

Paper Template - SAS Support
of the most popular procedures in SAS/STAT software that fit mixed models. Most of the questions ..... 10 in group 2 as shown with the following observations of the printed data set: Obs. Y ..... names are trademarks of their respective companies.

Google Case Study Template
using the API to merge in-house data. Case study | Google Analytics. Costco Uses Google Analytics To. Grow Costco Travel, Its Travel Booking Business.

Minutes template
Sep 6, 2016 - Event planning meeting (attendance optional!): 20.00 on Tuesday 1st November, 2016, at Ashington Rugby Club. Committee meeting.

Transactions Template - arXiv
the large intraclass variations and small interclass varia- tions of fingerprint classes. ..... Page 7 .... Although fingerprint classification and matching tech-.

Google Case Study Template
Ad serving made easy. With its simple interface, workflow and inventory management systems, DFP Small ... Amazon, Ask.com, and Lycos. For more information ...

Transactions Template
IKISS is accessed via user-friendly web-based applications, thus increasing image accessibility .... and uses PHP and JavaScript programming languages [3,. 5, 10]. .... mately the development of the IKISS project is to assist in- vestigators in ...

Transactions Template
to 765000 volts) then it travels long distance through wire. Again a step-down ... Telecommunication Engineering, Daffodil International University,. Dhaka ...

Transactions Template
ISSN: 2221-7258(Print) ISSN: 2221-7266 (Online) www.ijeecs.org. Physical Insight Into The Gain .... A. A.Eldek, , A. Z. Elsherbeni, and C.E.Smith,. “Characteristics of .... University of Calcutta in 1996 and B. Tech, M. Tech degree from Institute o

Transactions Template
mentation of FDTD on these platforms and suggest some solutions to solve these ..... we call it overlap algorithm. .... IEEE Symp. International Conference on.

Transactions Template
create the web-based and installed using WAMPSERVER. Then the SMS is generated by PHP scripting using SMS. Engine interface. Figure 6 The Complete ...

Transactions Template
works as internet packet sniffer. The paper is ... ing in internet [9]. The features .... Based on High Speed and Precise Genetic Algorithm Neural Network",.

Transactions Template
Index Terms— mobile ad hoc networks, broadcast, flooding, routing. ... M. Al-Shurman is with the Department of Network Engineering and Secu- rity, Jordan ..... Seungjin Park received the BE degree in civil engineering from. Hanyang ...

Transactions Template
different diameter and spacing, which simulate an inhomogeneous dielectric layer. .... Simula- tion of different element sizes shows that selecting. 2/ y x d d.

Transactions Template
3Department of Physics, The Higher Institute of Applied Science and Technology, Damascus, Syria. ... per is on experimental results for a new parameter, “active time” as recorded by an infrared camera during Dye Laser skin treat- ... Index Terms: