The Journal of Neuroscience, March 7, 2007 • 27(10):2433–2434 • 2433

Journal Club Editor’s Note: These short reviews of a recent paper in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to mimic the journal clubs that exist in your own departments or institutions. For more information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml.

Prime Time for ␣-Synuclein Aaron D. Gitler and James Shorter Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142

Review of Larsen et al. (http://www.jneurosci.org/cgi/content/full/26/46/11915)

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, afflicting ⬃1% of individuals over the age of 65. PD results primarily from a severe and selective devastation of dopaminergic neurons in the substantia nigra pars compacta, although neuropathology extends to other brain regions. Overwhelming evidence implicates the presynaptic protein ␣-synuclein (␣-syn) in the pathogenesis of PD. ␣-Syn is a major constituent of Lewy Bodies, cellular inclusions that are the pathological hallmark of PD. Furthermore, several missense mutations in the ␣-syn gene and duplication or triplication of the wild-type locus are linked with early-onset PD in rare familial forms of the disease. Overexpression of ␣-syn, or PD-associated ␣-syn mutants, in mouse, rat, fly, worm, and even yeast suggest that excess accumulation of ␣-syn leads to cellular toxicity (Moore et al., 2005; Lee and Trojanowski, 2006). Despite intense study, the precise function of ␣-syn remains unresolved. However, a growing body of evidence suggests a role in the maintenance of synaptic vesicle pools (Murphy et al., 2000; Cabin et al., 2002), activity-dependent dopamine release (Abeliovich et al., 2000), or as an auxiliary chaperone for the assembly of Received Jan. 9, 2007; revised Jan. 15, 2007; accepted Jan. 15, 2007. We thank Susan Lindquist for mentorship. We are grateful to Kent Matlack, Andrew Steele, and Oliver King for reading this manuscript and for helpful suggestions and to Tom DiCesare for expert graphical assistance. Correspondence should be addressed to either Aaron D. Gitler or James Shorter, Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, E-mail: [email protected] or [email protected]. DOI:10.1523/JNEUROSCI.0094-07.2007 Copyright©2007SocietyforNeuroscience 0270-6474/07/272433-02$15.00/0

specific soluble N-ethylmaleimidesensitive factor attached protein receptor (SNARE) complexes that drive vesicle fusion with the plasma membrane (Chandra et al., 2005). Despite these indications, single and double knock-outs of ␣-, ␤-, and ␥-synuclein are viable and exhibit very little (if any) phenotype under basal conditions (Chandra et al., 2004). However, synucleins may perform subtle regulatory functions and might even become essential under specific situations of stress or injury. Indeed, an essential function for ␣-syn has been revealed in cysteine-string protein-␣-deficient mice (Chandra et al., 2005). An intriguing new study by Larsen et al. (2006) in The Journal of Neuroscience provides new insights into ␣-syn function. Previously, the authors demonstrated that high levels of human ␣-syn are cytotoxic to PC12 cells (Stefanis et al., 2001). To study ␣-syn function, they generated a new stable PC12 cell line that expressed low, nontoxic levels of wild-type human ␣-syn or the PD-associated A30P ␣-syn mutant. In these cells, ␣-syn expression caused no gross morphological defects and did not affect viability [Larsen et al. (2006), their Fig. 1 A (http://www. jneurosci.org/cgi/content/full/26/46/ 11915/F1)] but rather resulted in a significant decrease in stimulation-dependent dopamine (DA) release [Larsen et al. (2006), their Fig. 1 B (http://www.jneurosci.org/ cgi/content/full/26/46/11915/F1)]. This result was strikingly complementary to the increase in evoked DA release observed in ␣-syn knock-out mice (Abeliovich et al., 2000) and reinforces the notion

that ␣-syn can function as a negative regulator of DA release. The hunt was on for how ␣-syn inhibited DA release. First, the authors showed that the ␣-syn-dependent inhibition of DA secretion was not attributable to decreased Ca 2⫹ entry or decreased sensitivity to Ca 2⫹ [Larsen et al. (2006), their Fig. 2 (http://www.jneurosci.org/cgi/content/ full/26/46/11915/F2)]. Next, they speculated that ␣-syn overexpression might decrease the number of dense core vesicles (DCVs) docked at the plasma membrane and available to release their contents (DA). However, when the number and location of DCVs was assessed by electron microscopy, ␣-syn-expressing cells actually had more docked vesicles than control cells [Larsen et al. (2006), their Fig. 3 (http://www.jneurosci.org/cgi/content/ full/26/46/11915/F3)]! This phenotype was reminiscent of the increase in docked DCVs after exposure to botulinum toxin A, a metalloendopeptidase that cleaves certain SNAREs (Jahn and Scheller, 2006), suggesting that perhaps fusion events were reduced by ␣-syn expression. Alternatively, ␣-syn might decrease the amount of DA released per vesicle fusion event. To test these possibilities directly, the quantal size, or amount of DA released by each vesicle fusion event was measured. For these analyses, primary cultures of chromaffin cells isolated from adrenal glands of wild-type, ␣-synoverexpressing transgenic mice, or ␣-syn knock-out mice were used [Larsen et al. (2006), their Fig. 4 (http://www.jneurosci. org/cgi/content/full/26/46/11915/F4)]. Analysis of individual fusion events re-

Gitler and Shorter • Journal Club

2434 • J. Neurosci., March 7, 2007 • 27(10):2433–2434

vealed that the number of molecules released per fusion event was unaffected by ␣-syn expression (quantal size) [Larsen et al. (2006), their Table 1 (http://www. jneurosci.org/cgi/content/full/26/46/ 11915/T1)]. In contrast, the total number of fusion events in cells from ␣-synexpressing mice was significantly decreased [Larsen et al. (2006), their Fig. 5B (http://www.jneurosci.org/cgi/content/ full/26/46/11915/F5)]. Notably, the chromaffin cells from the A30P ␣-syn transgenic mice showed a similar decrease in vesicle fusion events, suggesting that perhaps not every ␣-syn function requires the protein to associate with membranes, because this mutant is partially defective in phospholipid binding (Jo et al., 2002). Together, these data are consistent with a role for ␣-syn as a regulator of the releasable pool of vesicles at the synapse (Fig. 1). Thus, in a series of elegant experiments using multiple approaches, Larsen et al. systematically dissect the role of ␣-syn in regulating neurotransmitter release. They rule out vesicle formation or morphological docking as well as Ca 2⫹-triggered fusion and suggest that ␣-syn inhibits “priming,” a reaction that transfers morphologically docked vesicles to a fusioncompetent state. This entails the initiation of SNAREpin formation, where a vesicleSNARE on the vesicle begins to engage its cognate target-SNARE complex on the target membrane. SNAREpin assembly then reaches a critical state, which is poised to catalyze bilayer mixing but is frozen by regulatory factors that preclude membrane fusion until Ca 2⫹ entry (Jahn and Scheller, 2006). Curiously, in another context, ␣-syn acted to promote SNARE complex formation (Chandra et al., 2005). Clearly, additional work will be required to decipher the precise molecular details of how ␣-syn might modulate vesicle priming, but the new study by Larsen et al. opens the way toward finally establishing the function of ␣-syn. An emerging concept from the work of Larsen et al. as well as other laboratories is that the toxic and normal functions of ␣-syn might be more closely related than previously suspected. A role for ␣-syn at the priming step in vesicle fusion at the synapse may very well be related to the types of vesicular transport defects observed in yeast cells overexpressing ␣-syn (Cooper et al., 2006). It is tempting to

Figure 1. A model for ␣-syn as a regulator of vesicle priming. a, In the presence of wild-type levels of ␣-syn, vesicles dock with the plasma membrane but are not yet fusion competent (unprimed pool) until primed (releasable pool). ␣-Syn functions as a regulator of this priming step (green arrow). b, In the presence of high levels of ␣-syn, vesicles continue to dock with the plasma membrane but now linger in a fusion-incompetent state because of an inhibition of priming. Consequently, the unprimed pool of vesicles increases, and the releasable pool of vesicles decreases, leading to an increase in the number of docked vesicles and a decrease in exocytosis. c, In the absence of ␣-syn (e.g., mouse knock-out), vesicles dock with the plasma membrane, but priming is dysregulated, leading to excessive priming and a build-up in the releasable pool of primed vesicles, potentially explaining the increased evoked neurotransmitter release observed in neurons from ␣-syn-deficient mice (Abeliovich et al., 2000).

speculate that ␣-syn, when expressed at physiological levels, functions as a negative regulator of vesicle fusion and neurotransmitter release at the synapse. However, its accumulation beyond a certain threshold might lead to an inappropriate deployment of this function at the synapse or perhaps promiscuous inhibition of additional trafficking steps. Such alterations may play an important, but underappreciated role in the early stages of PD and be particularly deleterious to dopaminergic neurons.

References Abeliovich A, Schmitz Y, Farinas I, ChoiLundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239 –252. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, Lu B, Nussbaum RL (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking ␣-synuclein. J Neurosci 22:8797– 8807. Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-knockout mice for alpha- and betasynucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101:14966 –14971. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alphasynuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383–396. Cooper AA, Gitler AD, Cashikar A, Haynes CM,

Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alphasynuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324 –328. Jahn R, Scheller RH (2006) SNAREs– engines for membrane fusion. Nat Rev Mol Cell Biol 7:631– 643. Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE (2002) Defective membrane interactions of familial Parkinson’s disease mutant A30P alpha-synuclein. J Mol Biol 315:799 – 807. Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ, Savalle M, Nemani V, Chaudhry FA, Edwards RH, Stefanis L, Sulzer D (2006) ␣-Synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26:11915–11922. Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57– 87. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214 –3220. Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type ␣-synuclein in PC12 cells induces alterations of the ubiquitindependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549 –9560.

Prime Time forα-Synuclein - Semantic Scholar

Lee VM, Trojanowski JQ (2006) Mechanisms of. Parkinson's disease linked to pathological al- pha-synuclein: new targets for drug discovery. Neuron 52:33–38.

77KB Sizes 2 Downloads 79 Views

Recommend Documents

Nonlinear time-varying compensation for ... - Semantic Scholar
z := unit right shift operator on t 2 (i.e., time ... rejection of finite-energy (i.e., ~2) disturbances for .... [21] D.C. Youla, H.A. Jabr and J.J. Bongiorno, Jr., Modern.

Nonlinear time-varying compensation for ... - Semantic Scholar
plants. It is shown via counterexample that the problem of .... robustness analysis for structured uncertainty, in: Pro- ... with unstructured uncertainty, IEEE Trans.

Multi-Window Time-Frequency Signature ... - Semantic Scholar
Hermite functions, missing samples, multi-window time-frequency representation, multiple ... These motions generate sidebands about the ... and the applications of associated sparse reconstruction techniques for effective joint-variable.

TIME OPTIMAL TRAJECTORY GENERATION FOR ... - Semantic Scholar
Aug 13, 2008 - I would like to thank my committee members Dr.V.Krovi and. Dr.T.Singh ..... points and go to zero at the boundary of the obstacle. In Ref. .... entire configuration space.thus, to satisfy 3.14b the trajectory generated after meeting.

Multi-Window Time-Frequency Signature ... - Semantic Scholar
Radar offers privacy and non-intrusive monitoring capability. Micro-. Doppler .... In order to obtain a good estimate of the. TFR, we use ..... compare the performance of sets of windows based on Slepian and Hermite functions. The measured ...

TIME OPTIMAL TRAJECTORY GENERATION FOR ... - Semantic Scholar
Aug 13, 2008 - In the near future with the increasing automation and development in ...... Once the point cloud information is available it can be translated into ...

Linear space-time precoding for OFDM systems ... - Semantic Scholar
term channel state information instead of instantaneous one and it is ... (OFDM) and multicarrier code division multiple access ..... IEEE Vehicular Technology.

StreamWeb: Real-Time Web Monitoring with ... - Semantic Scholar
Twitter streaming data, and that displays any messages including the specified keywords .... stored into relatively slow secondary storage such as a hard disk.

Prototyping Real-Time Vision Systems: An ... - Semantic Scholar
library of C++ code for real-time vision processing, into FVision (pronounced \ ssion"), a fully-featured domain-speci c language embedded in Haskell. The re-.

THE DEVELOPMENT OF THE SPACE-TIME VIEW ... - Semantic Scholar
at a point close to the source in spite of the fact that the source was producing an advanced field is this: Suppose the ... The interaction is a double integral over a δ-function of the square of the space-time interval I2 between two ... Let's say

Time Warping-Based Sequence Matching for ... - Semantic Scholar
The proliferation of digital video urges the need of ... proposed an ordinal signature generated by ... and temporal signature matching, which obtains better.

Allocating Dynamic Time-Spectrum Blocks for ... - Semantic Scholar
[email protected]. ABSTRACT. A number .... prototype we are currently developing at Microsoft [24]. The ..... three consecutive time-windows [tcur, tcur + Γ], at least one of which it ...... Assignment for Mobile Ad Hoc Networks. In I-SPAN ...

A novel time-memory trade-off method for ... - Semantic Scholar
Institute for Infocomm Research, Cryptography and Security Department, 1 ..... software encryption, lecture notes in computer science, vol. ... Vrizlynn L. L. Thing received the Ph.D. degree in Computing ... year. Currently, he is in the Digital Fore

Real-Time Particle-Based Simulation on GPUs - Semantic Scholar
tion to these platforms. Therefore, we need to ... (GPUs) as a parallel computation platform. As a result, we can ... ∗e-mail: [email protected].

A Measurement Study of Short-time Cell Outages ... - Semantic Scholar
Jan 19, 2016 - in hot-spot locations. In this scenario, we expect that. STCOs may occur, due to the possible high load experi- enced by the cells. We therefore point out the importance of load balancing and off-loading techniques [14], being low load

Human-Agent Collaboration for Time Stressed ... - Semantic Scholar
Situation Analysis. Situation ..... choice of API as the main performance measure in the analysis ..... data mining, search engines, and graph information retrieval.

Generalized Union Bound for Space-Time Codes - Semantic Scholar
Department of Electronic Engineering, King's College London (email: [email protected]) ... Index Terms⎯Gallager bounds, optimization, space-time coding, union ...

Time Scale Modification for 3G-Telephony Video - Semantic Scholar
desk call allows the caller to show the call-center expert the problem. Adding a visual back channel (expressions, gestures, posture) lessens the gap between ...

prime time intimacy meaningful ing - L3 Organization
DEDICATION. SERVICE ... You can get the best physicians and the best hospitals for your ... THE LEADERSHIP LEGACY LIFE FOUNDATION is dedicated to.

StreamWeb: Real-Time Web Monitoring with ... - Semantic Scholar
messages into what they call a “public timeline” if the users are making public “tweets” (the basic .... iPhone. By leveraging that location information with the tweets, ... Extensibility: The system needs to add and monitor additional data s