

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Problems, Solutions and New Opportunities: Using Pagelet-Based Templates in Development of Flexible and Extensible Web Applications Hao Han

Bo Liu

National Institute of Informatics, Japan

Fuji Xerox

ABSTRACT As a standard programming model for Web application development, HTML template engines (systems) are used to separate the business logic and data computations from the Web page presentation. In this paper, we present the current problems about template engines in Web application development and propose the solution: construction of an XML-based template engine for developing ﬂexible and extensible Web applications. We explain that the approach supports the demands of users well and could reduce the cost of development. We also discuss the new opportunities brought to the eﬀective browser cache usage, code reuse, data integration, etc.

General Terms Algorithms, Design, Experimentation, Performance

Categories and Subject Descriptors H.4 [Information Systems Applications]: Miscellaneous

Keywords Template Engine, Application Framework, XML, XSLT, Script, DHTML, Mashup, Web UI

1. INTRODUCTION As an important method of information distribution, Web applications become more and more complicated in order to realize the demands of new techniques for the diﬀerent kinds of users. The users prefer the Web applications containing the friendly user interface and easy operations. This trend accelerates the development of interactive and animated Web sites. For example, many Web sites use the DHTML or DOM scripting technology to create the interactive Web pages, which contains HTML, client scripts, DOM, etc. The scripts change variables programmatically in an HTML document, and aﬀect the look and function of static

contents. Although the interactive Web pages bring the users various visual eﬀects, the Web pages are still not ﬂexible in the further usages such as customization, information extraction and integration, etc. Moreover, in the opinions of developers, it is diﬃcult to develop, debug and upgrade the DHTML documents. The interactive and animated parts might be coarse-grained components since they depend on the DOM structure of Web page. The developers want to develop the extensible Web applications quickly and easily including the processes of coding, debug, maintenance, etc. Also, the developed applications are expected to be convenient in the case of version upgrade, code reuse and even extension to other platforms. However, the current Web application architectures can not arrive at a solution satisfactory to both users and developers. The dynamic visual eﬀects are realized by client script functions, which bring the ﬂexible operation but increase the development cost. Therefore, the developers need to make a proper balance between the opinions and options of users and themselves usually. In this paper, we propose an XML-based framework for developing ﬂexible and extensible Web applications. Each Web page is divided as a set of pagelets, which are combined into an HTML page at the client side by using XML, XSLT and script. Our research emphasis is laid on the presentation and functionalities at client side instead of the business logic (or other server-side program logic) such as the database retrieval at server side. The organization of the rest of this paper is as follows. In Section 2, we present the current problems about template engines in Web application development, and give the research motivation and an overview of the related work. In Section 3 we explain the pagelet-based framework in detail. We discuss the new opportunities brought to the Web applications by the evaluation and comparison of the proposed approach with the traditional development approaches in Section 4. Finally, the conclusion and the future work are given in Section 5.

2.

CURRENT PROBLEMS AND RESEARCH MOTIVATION

A template engine is designed to process Web templates and contents to generate the output Web documents such as HTML/XHTML ﬁles. In general, a template engine speciﬁes a template and ﬁlls in the template with the assigned values to obtain the output page. Templates are frequently used to separate the Web page presentation from the underlying business logic and data computations in the con-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. iiWAS2010, 8-10 November, 2010, Paris, France. Copyright 2010 ACM 978-1-4503-0421-4/10/11 ...$10.00.

1

text of Web application development. In the case of Web application development, this means that no logic computation in HTML and no HTML in logic computation roughly. Several works have given the discussion about whether the enforcing strict model-view separation in template engines is possible [11] or impossible [5] to achieve in practice. Besides the widely used and general-purpose JSP/ASP/PHP technologies, several template generators/systems are proposed for diﬀerent purposes. Some systems are based on the page transition or data navigation modeling. T-Web (Template-Web) is a software application generator for design and construction of Web applications and Web services based on the Web Transition Diagram [13], which reﬂects the Web page Transition. By only composing a diagram using T-Web editor without manual programming, T-Web generator can automatically generate a Web application or Web service from the diagram. Without the manual programming, the calculation ability of generated Web application is still weak. Some are the partitioning systems. Hilda [15] is a high-level language for data-driven web applications, which allows dynamic partitioning of the web application between the client and the server in a manner that is completely transparent to the developer. FlyingTemplate [14] produces a skeletal script which includes only the dynamic values of the template parameters and the bootstrap code. It is an automatic partitioning system that transfers more of the task of generating HTML to the client browsers. There are some component-based framework such as Fiz [3], which provides a library of ﬂexible components ranging various kinds of objects and value editors. Although these proposed systems decrease the development cost, there are some unsolved problems. For example, by using DHTML, some Web pages could be merged into a single Web page and the sum of developed Web pages is reduced. However, the development of DHTML pages is a time-consuming job. The developing engineers had to write large quantities of scripts to deal with the DOM and hidden values programmatically. Therefore, although the sum of pages is reduced, the cost of programming and test becomes higher. Moreover, the presentation of rendered Web pages is not the ﬁnal phase at the client side. The further usage of Web application includes reuse, information extraction, data integration and others. For example, the popular mashup technology needs to reuse the components of Web applications. Many approaches are proposed to realize the integration of HTML-based Web applications by end-user programming [7], or clipping [4], or extracting [6, 8]. These approaches scratch the surface of problem, not the cause brought by server-side page rendering mechanism.

Figure 1: A possible example of pagelet layout the static and dynamic types. A static pagelet is a static segment of a rendered Web page. It always comprises and displays the same information in response to all download requests from all users and all contexts (e.g. Service Tool Pagelet and Site Info Pagelet in Fig. 1). A dynamic pagelet is a dynamically generated segment of a rendered Web page. It presents content that can change in response to diﬀerent contexts or conditions. There are two ways to create this kind of eﬀect/change. Generally, server-side program is used to change the page source determined by such conditions as data in a posted form, parameters in the URL, the type of Web browser, or a database. At the client, client-side scripting is used to change interface behaviors within a speciﬁc Web page in response to mouse or keyboard actions or speciﬁed timing events. In this case the dynamic behavior occurs within the page presentation.

3. SOLUTIONS We give the solution, an XML-based framework for developing ﬂexible and extensible Web applications. Here, each Web page is divided as a set of pagelets. A pagelet presents an individual topic or functionality region of Web page as shown in Fig. 1. Instead of a full rendered HTML page, the proposed template engine produces skeletal segments, which are combined and transformed into an HTML page at client-side Web browser. XML, XSLT and script library (JavaScript class package) are used to generate or update the dynamic contents (interactive and animated parts) at client side. As shown in Fig. 2, the pagelets in client are classiﬁed into

Figure 2: Outline of pagelet-based templates Fig. 2 describes the workﬂow and data ﬂow as follows. 1. The server responds to the request of client with the pagelet container ﬁle. A container is a pagelet layout page that surrounds or references static pagelets, XML data/segment (e.g. database query result data), XSLT ﬁles (template processor used to transform XML data into HTML or XHTML documents), or external ﬁles (e.g. JavaScript, CSS ﬁles) in its page body. 2

The XML data/segments are encapsulated into a single XML document in order to reduce the connection time before they are sent to client side. The container ﬁle also contains the mapping information, which reﬂects the one-to-one correspondence between the XML data/segment and XSLT ﬁle.

template of each XML segment, and set the attribute (e.g. writable or read-only, event type) of XML data.

 XML01.load(EncapsulatedXML.xml, path01) XSL01.load(XSL01.xslt) pagelet01.write(XML01.transformNode(XSL01)) pagelet02 pagelet03

2. The dynamic pagelet is generated at client-side browser. The XSLT processor transforms the corresponding XML segment into HTML or XHTML segment based on the one-to-one mapping. The static pagelets and generated dynamic pagelets comprise the main source of an entire client-side Web page. 3. When the end-users trigger the mouse/keyboard events (deﬁned in XSLT processors, see Fig. 3) of dynamic pagelets, the variables in corresponding XML segments are changed by JavaScript functions (See Table 1). Then the XSLT processors retransform the updated XML data into the new HTML pagelets.

... ... List clear(this);

Figure 4: An example of container ﬁle

4.

We compare the pagelet-based system with other developed systems (introduced in Section 2) in development eﬃciency, applicability, reuse, programming skill requirement, security, server/client caching, extensibility and other ﬁelds. The pagelet approach is based on the separation of topic and functionality region of Web page. We implement not only the model-view separation in template but also the static-dynamic separation in pagelet. In the model-view separation, XSLT works as client-side template and oﬀers a great expressiveness, allowing a translator to produce complex HTML documents from XML data. This separation leads to the division of labor and high eﬃciency. The Web page designer can adjust the presentation or layout without having to change the program logic, which is always much riskier. However, XSLT ﬁles development requires mastering a quite diﬀerent language compared with JSP/ASP/PHP. Therefore, this XSLT-XML separation methodology is not suitable for small personal pages. It would waste the time by analyzing and has no big eﬀect. Pagelet separation methodology brings the easy and efﬁcient development for large-scale Web applications. The programming job could be analyzed and divided according to the abilities or proﬁciencies of developing engineers. One engineer does not need to write an entire template ﬁle of a Web page, and the Web page development can be subdivided into functionality-oriented development. For the dynamic pagelet, the provided JavaScript functions are used to access or update client XML data. Compared with the traditional dynamically updating client HTML source, the XML data access/update/transformation process is independent of the layout of Web page, and aviod using the HTML tags and HTML-oriented functions such as innerHTML or innerText, which are lack of the possibility of code reuse. XML syntax is far more restrictive and HTML coding often has been relatively careless. Similarly, the XML-oriented JavaScript functions are constructed and upgraded more easily than HTML parsing functions.

Figure 3: An example of event deﬁnition in XSLT

Table 1: List of main functions Name loadInfo getIntValue getStrValue getNumber getItem getEncode getNext lock unlock getLastErr getErrMsg add clone replace del insert exchange remove clear transform

COMPARISON AND DISCUSSION

Function Description load the XML data from capsulated XML get integer value from node get character string from node get the number of node with name get single node by name and index get encoding value get the next sibling node lock the setting information unlock the setting information get the code of last error message get the error message by index append node to the end of sibling nodes create a deep copy of node replace/update the node value delete the node insert the node at the index exchange the index/position of nodes remove all of the child nodes from node clear node value of node transform the XML into HTML by XSLT

4. After the end-users’ submitting, the updated XML data are used to realize the database update (e.g. insert, update, delete) by server-side logic program. For the Web application developers, they need to design the container ﬁles (like Fig. 4) to decide the layout of pagelets and mapping relation, create the XSLT ﬁles for the 3

Pagelet separation methodology also brings more eﬃcient caching functionality at server side and client-side Web browser. Compared with the page-based caching system, static pagelets would be widely cached and independent of changeable dynamic pagelets. Moreover, the XSLT templates of dynamic pagelets could be reused or cached at client Web browsers. This reuse/caching could reduce the data transfer volume between the server and client. We reconstructed the search result page of Google Search using the proposed approach. The experimental results show that the transfer data size is much reduced from 20,916 bytes to 6,794 bytes. For the Web browsing at mobile devices, the pagelet-based pages can be easily simpliﬁed for better presentation at mobile Web browsers. Moreover, mobile devices could partially share the XML data in server side caching system with the general desktop Web browsing. It is also a big diﬀerence between the pagelets and traditional portlets [9]. The possible new opportunities may be brought to the further usage of Web applications by the pagelet structure. Information extraction on the Web focuses on the acquisition of information/knowledge from Web applications mainly. Many methods are proposed to extract the target information from Web pages excluding the HTML tags by analysis of HTML sources. These methods evolved from machine learning or pattern recognization or XPath designation are maintenance costly over a long period of time. In the case that RDF-like description is given for dynamicfunctionality-semantic in the container ﬁles, the information extraction from Web applications becomes convenient and the XML data of dynamic pagelet is a clean extraction result. Also, the mashup of Web applications becomes much systematic. The reuse of Web application data, computation and UI becomes more eﬃcient and thorough. It is easier to transform the pagelets into mashup components than general Web applications [1] and portlets [2], especially for typical users with no or little programming experience. Moreover, it may accelerate/realize the following technique development: 1) XML-based message exchangeability between the desktop computers and mobile devices, 2) Clientside templates customization by end-users, 3) XML-based data transfer (layer) such as Ajax+JSON architecture, 4) Active Web pages containing Microsoft Object Library or Flex/ﬂash, 5) Eﬃcient retrieval and update of client-side XML data in XML/XML-enabled database (e.g. XPath, XQuery operation) or by object-relational mapping technique, and 6) Multilingual Web UI. Client-side XML transformation also brings new problems to search engines because the dynamic pagelets are not seen as general HTML sources. The container ﬁles do not contain information present on Web pages itself. The crawlers need to parse the pagelets to acquire the information. Moreover, the client transformation costs time and leads to an unavoidable short delay in page presentation at client-side Web browsers. Also, the current architecture in our ongoing implementation is proposed without strong consideration of security, such as the problems that may occurs in client-side XML accessing or XSLT client-side caching. Some JavaScript frameworks/libraries (e.g. jQuery [10] and Prototype.js [12]) are proposed to simplify the event handling, animating, and Ajax interactions in Web application development. Compared with these frameworks/libraries, pagelet concentrates on the light-weight XML-oriented operation and further reuse of Web applications at client side.

4

5.

CONCLUSION

We proposed an pagelet-based template engine/system for Web application development, which supports the demands of users well and could reduce the cost of development. We also discussed the diverse new opportunities about the extensible reuse of Web applications. There is still a lot of work to be done on this pagelet system before it becomes a mature technology. As future work, we will modify the development environment (e.g. a friendly GUI editor) for the generation of Web applications more easily as described in this paper. Moreover, we would like to explore further the problems of security, system’s scalability, and server-side database update. Additionally, besides the currently developing JavaScript class library, we will provide more various functions for eﬃcient client XML access in future.

6.

ACKNOWLEDGEMENT

We gratefully acknowledge the advice from Takehiro Tokuda (Tokyo Tech) and Hirofumi Yokouchi (Gunma Univ.). This work was partially supported by a Grant-in-Aid for Scientiﬁc Research A (No.22240007) from the Japan Society for the Promotion of Science (JSPS).

7.[1] F.REFERENCES Daniel and M. Matera. Turning Web applications into [2]

[3] [4]

[5]

[6]

[7]

[8]

[9] [10] [11]

[12] [13]

[14]

[15]

mashup components: Issues, models, and solutions. In The Proceedings of the 9th International Conference on Web Engineering, pages 45–60, 2009. O. Diaz and J. J. Rodriguez. Portlets as Web components: an introduction. Journal of Universal Computer Science, 10(4):454–472, 2004. Fiz. http://ﬁz.stanford.edu/home/home. J. Fujima, A. Lunzer, K. Hornbaek, and Y. Tanaka. C3W: clipping, connecting and cloning for the Web. In The Proceedings of the 13th International World Wide Web conference, pages 444–445, 2004. F. J. Garcia, R. I. Castanedo, and A. A. J. Fuente. A double-model approach to achieve eﬀective model-view separation in template based Web applications. In The Proceedings of the 7th International Conference on Web Engineering, pages 442–456, 2007. H. Han, J. Guo, and T. Tokuda. Deep mashup: A description-based framework for lightweight integration of Web contents. In The Proceedings of the 19th International Conference on World Wide Web, pages 1109–1110, 2010. H. Han and T. Tokuda. A method for integration of Web applications based on information extraction. In The Proceedings of the 8th International Conference on Web Engineering, pages 189–195, 2008. H. Han and T. Tokuda. WIKE: A Web information/knowledge extraction system for Web service generation. In The Proceedings of the 8th International Conference on Web Engineering, pages 354–357, 2008. Java Portlet. http://www.jcp.org/en/jsr/detail?id=286. jQuery. http://jquery.com/. T. J. Parr. Enforcing strict model-view separation in template engines. In The Proceedings of the 13th International Conference on World Wide Web, pages 224–233, 2004. Prototype. http://www.prototypejs.org/. M. Taguchi, K. Jamroendararasame, K. Asami, and T. Tokuda. Comparison of two approaches for automatic construction of Web applications: Annotation approach and diagram approach. In The Proceedings of the 4th International Conference on Web Engineering, pages 230–243, 2004. M. Tatsubori and T. Suzumura. HTML templates that ﬂy: a template engine approach to automated oﬄoading from server to client. In The Proceedings of the 18th International Conference on World Wide Web, pages 951–960, 2009. F. Yang, N. Gupta, N. Gerner, X. Qi, A. Demers, J. Gehrke, and J. Shanmugasundaram. A uniﬁed platform for data driven Web applications with automatic client-server partitioning. In The Proceedings of the 16th International Conference on World Wide Web, pages 341–350, 2007.

[image: Nonlinear Ordinary Differential Equations - Problems and Solutions ...]
Nonlinear Ordinary Differential Equations - Problems and Solutions ...

[image: Regional Mathematical Olympiad-2000 Problems and Solutions]
Regional Mathematical Olympiad-2000 Problems and Solutions

[image: Missing Opportunities to Solve Problems]
Missing Opportunities to Solve Problems

[image: Tigron Solutions Unnatural Health Problems Solutions Guide.pdf ...]
Tigron Solutions Unnatural Health Problems Solutions Guide.pdf ...

[image: new practices for new opportunities Services]
new practices for new opportunities Services

[image: New Emerging Opportunities -]
New Emerging Opportunities -

[image: PDF Problems and solutions in introductory and ...]
PDF Problems and solutions in introductory and ...

[image: pdf-1419\problems-and-solutions-to-accompany-mcquarrie-and ...]
pdf-1419\problems-and-solutions-to-accompany-mcquarrie-and ...

[image: ReadPDF Interview Math: Over 50 Problems and Solutions for Quant ...]
ReadPDF Interview Math: Over 50 Problems and Solutions for Quant ...

Problems, Solutions and New Opportunities: Using Pagelet-Based ...

ABSTRACT. As a standard programming model for Web application de- velopment, HTML template engines (systems) are used to separate the business logic ...

 Download PDF

 353KB Sizes
 0 Downloads
 144 Views

 Report

Recommend Documents

[image: alt]

Nonlinear Ordinary Differential Equations - Problems and Solutions ...

Page 3 of 594. Nonlinear Ordinary Differential Equations - Problems and Solutions.pdf. Nonlinear Ordinary Differential Equations - Problems and Solutions.pdf.

[image: alt]

Regional Mathematical Olympiad-2000 Problems and Solutions

Regional Mathematical Olympiad-2000. Problems and Solutions. 1. Let AC be a line segment in the plane and B a point between A and C. Construct isosceles.

[image: alt]

Missing Opportunities to Solve Problems

Consider a contentious issue such as Social Security reform. Important out, the irony is that â€œschools experiment on children all the time. They just do so in a ...

[image: alt]

Tigron Solutions Unnatural Health Problems Solutions Guide.pdf ...

2011- 04 - 07. Page 3 of 83. Tigron Solutions Unnatural Health Problems Solutions Guide.pdf. Tigron Solutions Unnatural Health Problems Solutions Guide.pdf.

[image: alt]

new practices for new opportunities Services

Internet users decide in an average of eight seconds1 whether they are going to stay on a site or not, so it is crucial to help customers find the products and services that meet their needs quickly. Google Search Appliance and Google. Commerce Searc

[image: alt]

New Emerging Opportunities -

Source: Bloomberg and BoA Merill Lynch Global Resources. -. Long periods of 'flat' ... capital inflows. 13. Source: India Primer, Bank of America Merrill Lynch ...

[image: alt]

PDF Problems and solutions in introductory and ...

graph theory. Thus, physics and engineering students will also benefit from the book. Exercises for matrix-valued differential forms are also included.

[image: alt]

pdf-1419\problems-and-solutions-to-accompany-mcquarrie-and ...

... the apps below to open or edit this item. pdf-1419\problems-and-solutions-to-accompany-mcquar ... r-approach-by-heather-cox-donald-a-mcquarrie-jo.pdf.

[image: alt]

ReadPDF Interview Math: Over 50 Problems and Solutions for Quant ...

General Management: Capital One, Taser Marketing: General Mills, Google,. Hershey Software. Engineering: Goldman Sachs,. Microsoft Finance: American.

×
Report Problems, Solutions and New Opportunities: Using Pagelet-Based ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

