Name _____________________________ Regents Biology

Period _________ Date ______________________

LAB _____: HOW ARE PROTEINS MADE IN CELLS “DNA gets all the glory, but proteins do all the work!” DNA is the molecule that stores the genetic information in your cells. That information is coded in the four bases of DNA: C (cytosine), G (guanine), A (adenine), and T (thymine). The DNA directs the functions of the cell on a daily basis and will also be used to pass on the genetic information to the next generation. Because of its critical role in all the functions of the cell, DNA is kept protected in the nucleus of your cells. DNA is organized in sections called genes. Genes code for proteins, and it is proteins that do all the work in the cell. They function as structural proteins — serving as the building blocks of cells and bodies. And they function as enzymes — directing all the chemical reactions in living organisms. Proteins are made in the cytoplasm by ribosomes. So the information from DNA must be transmitted from the nucleus to the cytoplasm. Each gene on the DNA is read and codes directly for a messenger RNA (mRNA) molecules. The mRNA is made by matching its complementary bases — C, G, A, and U (uracil) — to the DNA bases. The mRNA molecule then leaves the nucleus and carries the code for making the protein from the DNA gene to the ribosome in the cytoplasm. The ribosome reads the sequence of bases on the mRNA in sets of three — the triplet codons. Another type of RNA — transfer RNA (tRNA) — brings the protein building blocks — amino acids — to the ribosome as they are needed. The ribosome bonds the amino acids together to build the protein coded for by the gene back in the nucleus.

PROCEDURE 1. Your group should obtain one sheet of paper with your four sections of DNA. Cut the strips out along straight lines and tape them together to make a long one-sided DNA molecule. Each section is numbered. Lay them out on the desk from left (#1) to right (#4). See the diagram below. DNA

2. We are going to use this section of our DNA as a gene to make a protein the cell needs. Remember it used to be part of a double-stranded DNA molecule. But it has already been unzipped and now will be used as the template to build your mRNA, one base at a time. So first design an RNA polymerase enzyme to do this mRNA synthesis job. 3. TRANSCRIPTION: You have been supplied with mRNA nucleotide bases. Build a mRNA molecule from this gene by matching the mRNA bases to your DNA template, one base at a time. Tape this mRNA molecule along its length to simulate the strong bonds that the RNA polymerase makes between the mRNA bases. This way, it will be a stable molecule and can

1 of 6 Developed by Kim B. Foglia • www.ExploreBiology.com • ©2008

Name _____________________________ be moved off of the DNA to the ribosome for translation in the cytoplasm. Do not tape the mRNA to the DNA! Remember it has to leave the DNA in the nucleus and travel to the ribosome in the cytoplasm. Follow the diagram below. DNA

mRNA

4. To be ready for the mRNA in the cytoplasm, design your own ribosome to use in your simulation. 5. TRANSLATION: To help the ribosome do its job, use a pencil to draw lines which divide your mRNA into 3-base codons. Now obtain tRNA molecules and fill in the complementary anticodons to match so that they bring the correct amino acid to the ribosome. Use your mRNA-codon chart to help you. Fill in the name of the amino acid that is attached to the tRNA. Start reading the mRNA at the START codon and end at the STOP codon. Follow the diagram below.

growing protein

mRNA

6. As the tRNA matches the mRNA codons, cut off the amino acid from the tRNA and bond the amino acids together in a protein chain to simulate the action of the ribosome. Show your completed protein to your teacher for credit.

Teacher’s Initials ____________________ 7. Use your DNA, your mRNA, and your protein to answer the Summary Questions.

2 of 6 Developed by Kim B. Foglia • www.ExploreBiology.com • ©2008

Name _____________________________

Regents Biology

SUMMARY QUESTIONS 1. Neatly record the sequence of the DNA strand that coded for the mRNA in this lab. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

22

23

24

25

26

27

28

29

30

2. Neatly record the sequence of the mRNA strand that you built from the DNA in this lab. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

3. Divide the mRNA sequence into its triplet codons and rewrite them in order below as 3-base groups.

4. Record the amino acid sequence that this mRNA coded for. You can use the 3 letter amino acid abbreviation.

5. Record the tRNA anti-codons that carried the amino acids to the ribosome.

3 of 6 Developed by Kim B. Foglia • www.ExploreBiology.com • ©2008

Name _____________________________

Regents Biology

MUTATIONS Sometimes when DNA is copied errors occur. We call these mutations. Sometimes mutations cause only minor changes to a gene and therefore make only minor changes in the protein produced from that gene. These types of mutations may cause only minor effects to the way an organism looks or functions — the phenotype of the organism. But sometimes mutations can cause great changes to the gene and therefore greatly alter the protein that is made from that gene. This will likely have great effects on the organism, since the protein will not be able to perform its normal function. This may lead to the inheritance of a genetic disease. 6. One mutation is called a point mutation where only one base in the gene is copied incorrectly during DNA replication. This would be an error of the DNA-building enzyme, DNA polymerase. Here is your original DNA sequence from this lab: 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

T A C A G C C A C T G A G C T C C C G A G C T C C G A A C T Below, rewrite the original DNA sequence (from above), but let’s simulate a point mutation at the 9th base. It was accidentally changed during DNA replication from a C to a T.

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G Now transcribe this new DNA strand into mRNA, and then also translate it into its amino acid sequence.

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G

Did this change in the DNA sequence cause any significant change to the protein produced? Explain. ______________________________________________________________________________________________________ ______________________________________________________________________________________________________

4 of 6 Developed by Kim B. Foglia • www.ExploreBiology.com • ©2008

Name _____________________________

Regents Biology

7. Now, again rewrite the original DNA sequence (from above), but let’s simulate a point mutation to the 13th base. It was accidentally changed during DNA replication from a G to an A. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G Now transcribe this new DNA strand into mRNA, and then translate it into its amino acid sequence

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G

Did this change in the DNA sequence cause any significant change to the protein produced? Explain. ______________________________________________________________________________________________________ ______________________________________________________________________________________________________ 8. Another group of mutations is called frameshift mutations where at least one base is either added to or deleted from the DNA as it is copied during DNA replication. This would be an error of the DNA-building enzyme, DNA polymerase. Let’s investigate the effects of these. Here is your original DNA sequence from this lab: 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

T A C A G C C A C T G A G C T C C C G A G C T C C G A A C T Below, rewrite the original DNA sequence (from above), but let’s simulate a frameshift mutation by adding an additional base between the 5th & 6th bases. The base A was accidentally added to the sequence of the gene. 1

2

3

4

5

T A C A G

add new

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

C C A C T G A G C T C C C G A G C T C C G A A C T 5 of 6 Developed by Kim B. Foglia • www.ExploreBiology.com • ©2008

Name _____________________________

Regents Biology

Now transcribe this new DNA strand into mRNA, and then also translate it into its amino acid sequence. 1

2

3

4

5

add new

G G G G G

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

G G G G G G G G G G G G G G G G G G G G G G G G G

Did this change in the DNA sequence cause any significant change to the protein produced? Explain. ______________________________________________________________________________________________________ ______________________________________________________________________________________________________ 9. Now, rewrite the original DNA sequence, but let’s simulate a frameshift mutation by deleting a base at the 3rd base position. 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G Now transcribe this new DNA strand into mRNA, and then translate it into its amino acid sequence. 1

2

3

4

5

30

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G Did this change in the DNA sequence cause any significant change to the protein produced? Explain. ______________________________________________________________________________________________________ ______________________________________________________________________________________________________

6 of 6 Developed by Kim B. Foglia • www.ExploreBiology.com • ©2008

Protein Synthesis Lab - Foglia.pdf

Whoops! There was a problem loading more pages. Retrying... Protein Synthesis Lab - Foglia.pdf. Protein Synthesis Lab - Foglia.pdf. Open. Extract. Open with.

728KB Sizes 2 Downloads 158 Views

Recommend Documents

Protein Synthesis - Mechanisms.pdf
Protein Synthesis - Mechanisms.pdf. Protein Synthesis - Mechanisms.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Protein Synthesis ...

Extracting Protein-Protein Interactions from ... - Semantic Scholar
statistical methods for mining knowledge from texts and biomedical data mining. ..... the Internet with the keyword “protein-protein interaction”. Corpuses I and II ...

Extracting Protein-Protein Interactions from ... - Semantic Scholar
Existing statistical approaches to this problem include sliding-window methods (Bakiri and Dietterich, 2002), hidden Markov models (Rabiner, 1989), maximum ..... MAP estimation methods investigated in speech recognition experiments (Iyer et al.,. 199

Validating Text Mining Results on Protein-Protein ...
a few big known protein complexes that have clearly defined interactions ... comparison to random pairs, while in the other three species only slightly ... ing results from gene expression data has been proposed. Since .... Term Database.

Extracting Protein-Protein interactions using simple ...
datasets and the limited information available about their methods. 2 Data. A gene-interaction .... from text–is text mining ready to deliver? PLoS Biol, 3(2).

Extracting Protein-Protein interactions using simple ...
using 10-fold cross-validation. Performance will be measured using Recall, Precision and F1. 3 Experiments. Each possible combination of proteins and iWords.

Extracting Protein-Protein interactions using simple ...
References. C. Blaschke and A. Valencia. 2002. The frame-based module of the suiseki information extraction system. IEEE Intelli- gent Systems, (17):14–20.

Effective Reranking for Extracting Protein-Protein ... - Semantic Scholar
School of Computer Engineering, Nanyang Technological University, ... of extracting important fields from the headers of computer science research papers. .... reranking, the top ranked parse is processed to extract protein-protein interactions.

Effective Reranking for Extracting Protein-Protein ... - Semantic Scholar
School of Computer Engineering, Nanyang Technological University, ... different models, log-linear regression (LLR), neural networks (NNs) and support vector .... reranking, the top ranked parse is processed to extract protein-protein ...

Learning Protein Protein Interaction Extraction using ...
Performance is usually assessed using 10 fold CV. • Robustness typically not ... 12. Distant supervision. • Manual annotation is labor intensive and tedious.

AP Synthesis of Copper Sulfate Lab Rubric 14-15.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. AP Synthesis of ...

protein folding pdf
There was a problem loading more pages. protein folding pdf. protein folding pdf. Open. Extract. Open with. Sign In. Main menu. Displaying protein folding pdf.

Stomata Lab
We want to look at the bottom side of the leaf. 3) Observe the slide under low power and medium power. Using medium power, make a detailed drawing showing the different kinds of cells you see. Include at least one stoma. Notice the shape and arrangem

Lab 5A
Convert the information ..... 32) Use the picture of the blood drop just as it impacts the surface to find an equation .... http://www.jfklancer.com/BloodEvidence.html.