

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Recursion in Scalable Protocols via Distributed Data Flows Krzysztof Ostrowski Google, Inc.

 ABSTRACT This paper proposes a new approach to representing scalable hierarchical distributed multi-party protocols, and reasoning about their behavior. The established endpoint-to-endpoint message-passing abstraction provides little support for modeling distributed algorithms in hierarchical systems, in which the hierarchy and membership dynamically evolve. This paper explains how with our new Distributed Data Flow (DDF) abstraction, hierarchical architecture can be modeled via recursion in the language. This facilitates a more concise code, and it enables automated generation of scalable hierarchical implementations for heterogeneous network environments.

1.

INTRODUCTION

Distributed multi-party protocols to coordinate very large groups of machines have been implemented in a hierarchical fashion for decades [1, 2] and there exists much prior research on infrastructure that helps large groups to self-organize [4]. Hierarchy is often used in heterogeneous environments, such as those spanning WANs / LANs because the cost of message passing very often varies between different layers of the network and the availability of mechanisms such as IP multicast varies between local administrative domains. In a hierarchical system, coordination can be gradually achieved, e.g., by a tree of micro-protocols that span small sets of participants. For example, a system of 9 nodes might self-organize into three 3-node subgroups: {Ai }, {Bi }, {Ci }, where 1 ≤ i ≤ 3. The nodes in each group could run local micro-protocols PA , PB , PC , and one selected node from each group (e.g., A1 , B3 , and C2) could participate in a higher-level micro-protocol Q. If the goal is to achieve agreement, each local micro-protocol Pj , j ∈ {A, B, C} would achieve agreement locally, and the global micro-protocol Q would combine these partial results into a single global decision. Semantics as complex as virtual synchrony can be implemented in this fashion [1, 2]. At least in principle, the architecture has good potential to scale, and each micro-protocol could be implemented differently to take full advantage of the local characteristics of its environment. An example of the latter type of flexibility has been recently demonstrated in the context of collaborative applications [3]. In practice, the potential has never been fully realized. In the prior work just mentioned above, hierarchy is just 2 level deep, and in most existing work, communication patterns at each level are fixed. Few implementations exist. Systems of this sort tend to be complex, and notoriously hard to debug. Recent work [5, 9] has done much to automate many tedious tasks involved in implementing distributed protocols, but it has not changed the fundamental abstraction: the point-topoint exchange of messages between individual participants. In prior work [6, 8], we argued that point-to-point message passing is too low-level an abstraction for constructing distributed protocols, and we proposed Distributed Data Flows

(DDF): a new, higher-level language abstraction and formalism for modeling scalable systems. This paper complements that prior work: it focuses specifically on the use of recursion in the language to concisely represent hierarchical behavior.

2.

FROM RECURSION TO DATA FLOWS

Consider how we could express a hierarchical protocol via recursion. At a glance, the answer might seem obvious, since the hierarchy itself has a recursive structure. In our example from Section 1, the full set of 9 nodes decomposes into three 3-node groups. Conceptually, it seems plausible that each of the micro-protocols PA , PB , PC , and Q should do the same, and it should be described using the same fragment of code. Instances of this code would operate at different granularity, but otherwise model the same general flavor of computation, such as merging N proposals into a single decision. However, in trying to make this more concrete, we run into problems. Consider node B3 , which in our example plays a dual role: it participates in a micro-protocol PB , through which all Bi decide on a single local value, and then feeds this value into the global micro-protocol Q which it runs along with A1 and C2 . Thus conceptually, on node B3 the partial results of PB are being communicated up to Q. Now, suppose B3 crashes, and two new, fresh machines B4 and B5 join the group {Bi }. Suppose that after a reconfiguration, B4 assumes the distinguished role that B3 had played, and starts to participate in protocol Q. Now, it is B4 that communicates results of PB up to Q. How should our recursive program deal with that? First, note that in practice, when we talk about recursion, we expect a degree of encapsulation: the details of the nested computation or data should never be exposed to the “outer” context. Thus, the crash of B3 and joining of B4 , B5 , should be transparent to instance Q of our recursive program. They should be handled internally by instance PB of this program. While one could debate whether this style of encapsulation is really necessary on philosophical grounds, there is a strong practical reason to enforce it. In many distributed protocols, the flow of information from PB to Q needs to be in a certain sense1 consistent over time. In our case, if nodes running PB have agreed upon a certain decision, and if that decision has been communicated to Q, any future decision that PB reach upon must be consistent with this past report, for otherwise the entire structure falls apart: it is hard to even specify the semantics of Q if its input can change over time2 . This leads us to the realization that from Q’s perspective, there has to 1

This has been discussed in more precise terms in other work [8]. When formally defining distributed agreement, one generally assumes that the inputs are fixed. One can formulate an analogous property for other types of protocols, particularly those whose decisions are in some sense irreversible. For example, if the goal of a protocol is to agree when to commit updates or garbage collect them, then a decision, once acted upon, can no longer be undone. 2

be logical continuity, and some strong form of consistency in the entire flow of information that is passed “upwards” from PB , whether on B3 or B4 . In our approach, we refer to such a flow as a Distributed Data Flow (DDF) [6, 8]. Conceptually, Q operates on DDFs passed up from PA , PB , and PC instead of dealing with the individual nodes. The failure of B3 and the arrival of B4 , B5 can thus be dealt with by program PB , e.g., by state transfer or similar techniques while Q continues to consume/transform what logically remains the same flow. In our technical report [7], we describe a protocol language that supports the flavor of recursion discussed above, and in which DDFs play role analogous to function arguments and local variables. Programs in this language can be translated into hierarchical architectures described in our past work [8]. Due to limited space, here we just briefly discuss an example recursive algorithm expressible in it (more details are in [7]). Figure 1 shows a program for hierarchical leader election. The input candidate is a distributed flow of proposals whom to elect, each represented as an integer identifier. A different identifier might be submitted into the protocol at each node at a different time, but we treat them all as parts of a single logical “upwards” input flow of proposals. Likewise, there is a single “downwards” output flow leader carrying the results of election. Proposals and results are not one-offs; they flow continuously in and out, for as long as the protocol is active. Internally, directive independently allows the flow of proposals to be partitioned into N subflows, and recursively instantiate our hierarchical election protocol on each of these. Recursion terminates with the where (singleton) clause, on subflows confined to only a single location. The outcome of the recursive invocations is labeled as local leader and fed as a parameter into yet another protocol stable elect, which combines partial results in local leader into the output flow. Protocol stable elect is not recursive; we list it for completeness, but do not discuss it here due to limited space (see [7]). Since stable elect was not prepended with independently, it runs on all nodes, on the entire internal flow local leader. It might seem as though we have not gained much. However, we know that the subflow of local leader within each of the N partitions is consistent (this is the meaning of type qualifier s-up in line 01; for details, see [7]), so only one node in every partition needs to pass the information from local leader into stable elect. This is illustrated on Figure 2. Here, software (1) components Ai shown as large, white boxes run elect on a (2) full set of 4 nodes. Internally, subcomponents Aj (bottom left, yellow) run an embedded instance of elect on 2 of these (3) (1) nodes, and Ak run elect on the other two. Finally, all Bl run stable elect. Arrows represent the flows of information. The gray arrows represent redundant outputs of elect; there is no need for 2 of the 4 nodes to participate in stable elect. A similar analysis could be extended to multiple levels in a hierarchy, to show that each instance of stable elect in this program only needs to run at O(1) nodes. The analysis and deployment could be performed automatically by a compiler.

3.

CONCLUSIONS

We have shown how trying to represent a hierarchical algorithm such as agreement using recursion leads to the concept of a DDF as a first-class language abstraction. We discussed an example algorithm in a DDF language, and we introduced a new flavor of static analysis that can use DDF’s distributed types to generate a more scalable runtime architecture.

01: object elect(up int candidate) : s-up int leader { 02: where (singleton) leader := candidate; 03: elsewhere { 04: up int local leader := independently elect(candidate); 05: leader := stable elect(local leader); 06: }} 07: object stable elect(up int candidate) : s-up int leader { 08: s-up int elected := 0; 09: where (fresh elected ∧ elected ≤ candidate) 10: elected := min candidate; 11: leader := elected; 12: }} Figure 1: Leader election expressed using recursion. output of A(2) 2 is redundant with respect to that of A(2) 1, so we don’t need to use it A(1) 1 (1) 1

B

A(2) 1

A(1) 2 no need to run B(1) 2

A(2) 2

the output of stable_elect is replicated to nodes on which its proxies don’t run A(1) 3 (1) 3

B

A(3) 1

A(1) 4 no need to run B(1) 4

A(3) 2

Figure 2: Protocol stable elect need not run on every node because the output of elect is consistent within each partition in which it is recursively instantiated.

4.

REFERENCES

[1] Y. Amir and J. Stanton. The Spread Wide Area Group Communication System. Technical Report CNDS-98-4, Johns Hopkins University, 1998. [2] K. Guo, W. Vogels, and R. van Renesse. Structured Virtual Synchrony: Exploring the Bounds of Virtual Synchronous Group Communication. 7th ACM SIGOPS European Workshop, 1996. [3] Q. Huang, D. Freedman, Y. Vigfusson, K. Birman, and B. Peng. Kevlar: A Flexible Infrastructure for Wide-Area Collaborative Applications. 11th International Middleware Conference (Middleware 2010), 2010. [4] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe: A Group Membership Service for WANs. ACM Transactions on Computer Systems, 20(3):191–238, February 2002. [5] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Implementing Declarative Overlays. 20th ACM Symposium on Operating Systems Principles (SOSP 2005). [6] K. Ostrowski, K. Birman, and D. Dolev. Distributed Data Flow Language for Multi-Party Protocols. 5th ACM Workshop on Programming Languages and Operating Systems (PLOS 2009). [7] K. Ostrowski, K. Birman, and D. Dolev. Programming Live Distributed Objects with Distributed Data Flows. Cornell University Tech Report, http://hdl.handle.net/1813/12766. [8] K. Ostrowski, K. Birman, D. Dolev, and C. Sakoda. Implementing Reliable Event Streams in Large Ssystems via Distributed Data Flows and Recursive Delegation. 3rd ACM International Conference on Distributed Event-Based Systems (DEBS 2009). [9] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat. Macedon: Methodology for Automatically Creating, Evaluating, and Designing Overlay Networks. 1st USENIX Symposium on Networked Systems Design and Implementation (NSDI 2004).

[image: Recursion in Scalable Protocols via Distributed ... - Research at Google]
Recursion in Scalable Protocols via Distributed ... - Research at Google

[image: Distributed Microarchitectural Protocols in the TRIPS Prototype ...]
Distributed Microarchitectural Protocols in the TRIPS Prototype ...

[image: Distributed Microarchitectural Protocols in the TRIPS Prototype ...]
Distributed Microarchitectural Protocols in the TRIPS Prototype ...

[image: Distributed Microarchitectural Protocols in the TRIPS Prototype ...]
Distributed Microarchitectural Protocols in the TRIPS Prototype ...

[image: recursion in data structure pdf]
recursion in data structure pdf

[image: Notes on Scalable Blockchain Protocols - Semantic Scholar]
Notes on Scalable Blockchain Protocols - Semantic Scholar

[image: Distributed Energy-conserving Routing Protocols]
Distributed Energy-conserving Routing Protocols

[image: Accelerated Distributed Average Consensus Via ...]
Accelerated Distributed Average Consensus Via ...

[image: Efficient Distributed Approximation Algorithms via ...]
Efficient Distributed Approximation Algorithms via ...

[image: Accelerated Distributed Average Consensus via ...]
Accelerated Distributed Average Consensus via ...

[image: Scalable Routing Protocols for Mobile Ad Hoc Networks]
Scalable Routing Protocols for Mobile Ad Hoc Networks

[image: Scalable Outlying-Inlying Aspects Discovery via Feature Ranking]
Scalable Outlying-Inlying Aspects Discovery via Feature Ranking

[image: Scalable Outlying-Inlying Aspects Discovery via Feature Ranking]
Scalable Outlying-Inlying Aspects Discovery via Feature Ranking

[image: Design of a Scalable Reasoning Engine for Distributed ...]
Design of a Scalable Reasoning Engine for Distributed ...

[image: a scalable sparse distributed neural memory model]
a scalable sparse distributed neural memory model

[image: Recursion Output Input]
Recursion Output Input

[image: A Scalable Distributed QoS Multicast Routing Protocol]
A Scalable Distributed QoS Multicast Routing Protocol

[image: Scalable Parallel Debugging via Loop-Aware Progress ...]
Scalable Parallel Debugging via Loop-Aware Progress ...

[image: Scalable Regression Tree Learning in Data Streams]
Scalable Regression Tree Learning in Data Streams

[image: Secure and Scalable Access to Cloud Data in ...]
Secure and Scalable Access to Cloud Data in ...

[image: Recursion]
Recursion

[image: Recursion Schemes - GitHub]
Recursion Schemes - GitHub

Recursion in Scalable Protocols via Distributed Data Flows

per explains how with our new Distributed Data Flow (DDF) ... FROM RECURSION TO DATA FLOWS ... Thus, the crash of B3 and joining of B4, B5, should.

 Download PDF

 273KB Sizes
 0 Downloads
 223 Views

 Report

Recommend Documents

[image: alt]

Recursion in Scalable Protocols via Distributed ... - Research at Google

varies between local administrative domains. In a hierarchi- ... up to Q. How should our recursive program deal with that? First, note that in ... Here, software.

[image: alt]

Distributed Microarchitectural Protocols in the TRIPS Prototype ...

mesh network, with 16-byte data links and four virtual channels. This network is ... major structures: a branch target buffer (20K bits), a call tar- get buffer (6K bits), In International Conference on Architectural Sup- port for Programming

[image: alt]

Distributed Microarchitectural Protocols in the TRIPS Prototype ...

microarchitecture that supports dynamic execution. It de- tails each ... processor, the control and data networks that connect them, and the ... 2 ISA Support for Distributed Execution formed the cycle before the operation will complete execu-.

[image: alt]

Distributed Microarchitectural Protocols in the TRIPS Prototype ...

architecture [3], is up to 4-way multithreaded, and can exe- cute a peak of 16 major structures: a branch target buffer (20K bits), a call tar- get buffer (6K bits), ...

[image: alt]

recursion in data structure pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. recursion in data ...

[image: alt]

Notes on Scalable Blockchain Protocols - Semantic Scholar

availability; it is entirely possible for a block to appear that looks valid, and the basic principle. Definition 2.4 (Block). A block Î² is a package containing a list of trans- actions T, a reference to a parent block (in more exotic protocols

[image: alt]

Distributed Energy-conserving Routing Protocols

Department of Computer Science ... high residual power but the system is not connected be- maintain the connectivity of the network to ensure com-.

[image: alt]

Accelerated Distributed Average Consensus Via ...

Sep 17, 2008 - Telecommunications and Signal Processingâ€“Computer Networks Laboratory. Department of Electrical and Computer Engineering ... A. Related Work ... its powers), retain a history of all state values, and then solve a system of with

[image: alt]

Efficient Distributed Approximation Algorithms via ...

a distributed algorithm for computing LE lists on a weighted graph with time complexity O(S log n), where S is a graph a node is free as long as computation time is polynomial in n. Our focus is on the Given the hierarchical clustering, o

[image: alt]

Accelerated Distributed Average Consensus via ...

Sep 17, 2009 - Networks Laboratory, Department of Electrical and Computer Engineering, connected, e.g., maximum-degree and Metropolis weights [12],. [16]. In the next Foundations Computer Science, Palo Alto, CA, Nov. 1998, pp.

[image: alt]

Scalable Routing Protocols for Mobile Ad Hoc Networks

While the infrastructured cellular system is a traditional model for mobile ... home agent), such a strategy cannot be directly applied. A considerable body of ...

[image: alt]

Scalable Outlying-Inlying Aspects Discovery via Feature Ranking

Our proposed approach is orders of magnitudes faster than previously proposed score-and-search based approaches while being slightly more effective, making it suitable for mining large data sets. Keywords: Outlying aspects mining, feature selection,

[image: alt]

Scalable Outlying-Inlying Aspects Discovery via Feature Ranking

scoring (i.e., computing the density rank for the query) in a single subspace is ... articles [5,2]. The average Jaccard index and precision over all outliers.

[image: alt]

Design of a Scalable Reasoning Engine for Distributed ...

Dec 13, 2011 - Distributed, Real-time and Embedded Systems. KSEM 2011 Paper Discussion Open source under a BSD license. Solution Approach ...

[image: alt]

a scalable sparse distributed neural memory model

6.10 Average recovery capacity of the memory with error bits 83 ... 9.6 Virtual environment diction, machine vision, data mining, and many others.

[image: alt]

Recursion Output Input

Recursion. Output. Input. Page 2. void foo(string str). { printf(â€œ%s\nâ€�, str); foo(str);. } Recursion w/out a Base Case. Page 3. Factorial n! = n * (n - 1) * (n - 2) * â€¦ * 1 ...

[image: alt]

A Scalable Distributed QoS Multicast Routing Protocol

Protocol. Shigang Chen. Department of Computer & Information Science & Engineering ... the system requirements; it relies only on the local state stored at each router. ... routing algorithms that search a selected subset of the network to find feasi

[image: alt]

Scalable Parallel Debugging via Loop-Aware Progress ...

root-cause analysis of subtle errors with minimal manual ef- fort. Tools that embody this paradigm must automatically and scalably detect an error at run-time, ...

[image: alt]

Scalable Regression Tree Learning in Data Streams

In the era of Big data, many classic ... novel regression tree learning algorithms using advanced data ... different profiles that best describe the data distribution.

[image: alt]

Secure and Scalable Access to Cloud Data in ...

IJRIT International Journal of Research in Information Technology, Volume 3, Issue In future, we continue working on storage security and data dynamics with ...

[image: alt]

Recursion

x that divides both a and b should divide a mod b as well. G. Pandurangan. 3 element. for i = 1 to n do if max < S[i] then max = S[i] endfor. Output max.

[image: alt]

Recursion Schemes - GitHub

Mar 27, 2013 - ... the structure? We need to work with a domain of (f a) instead of a We use a free monad structure Ctx f a to represent a node Page 100 ...

×
Report Recursion in Scalable Protocols via Distributed Data Flows

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

