

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Refuting Security Proofs for Tripartite Key Exchange with Model Checker in Planning Problem Setting Kim-Kwang Raymond Choo∗ Intelligent Systems Laboratory School of Computing and Information Technology University of Western Sydney Penrith South DC, NSW 1797, Australia E-mail: Abstract We encode a simplified version of the Canetti and Krawczyk (2001) formalism using Asynchronous Product Automata (APA). We then use a model checker tool, Simple Homomorphism Verification Tool (SHVT), to perform statespace analysis on our Automata in the setting of planning problem. As a case study, we revisit two tripartite key exchange protocols of Hitchcock, Boyd, and Gonz´alez Nieto (2004), which carry claimed security proofs in the Canetti and Krawczyk (2001) model. We refute their proofs of security by pointing out previously unpublished flaws in the protocols using SHVT. We then point out corresponding flaws in the refuted proofs.

1

Introduction

Despite key establishment protocols being the sine qua non of many secure electronic commerce applications, the design of secure key establishment protocols is still notoriously hard. The difficulties associated in obtaining a high level of assurance in the security of almost any new or even existing protocols are well illustrated with examples of errors found in many such protocols years after they were published. The study of such protocols has led to a dichotomy in cryptographic protocol analysis techniques between the computational complexity approach [7, 8, 14] and the computer security approach [26, 28]. Computational Complexity Paradigm. The emphasis in this (provable security) paradigm for protocols is placed on ∗ Research carried out while author was with the Information Security Institute / Queensland University of Technology. The author is currently funded by an Australian Research Council Discovery Projects Grant DP0559592.

a proven reduction from the problem of breaking the protocol to another problem believed to be hard (e.g., the Decisional Bilinear Diffie-Hellman problem). The difficulty of obtaining correct computational proofs of security is, however, dramatically illustrated by the well-known problem with the OAEP mode for public key encryption [32]. Although OAEP was one of the most widely used and implemented algorithms, it was several years after the publication of the original proof that a problem was found (and subsequently fixed in the case of RSA). Problems with proofs of protocol security have occurred too, evidenced by the breaking of several provably-secure protocols after they were published [16]. Despite these setbacks, proofs are invaluable for arguing about security and certainly are one very important tool in getting protocols right. Moreover, having security proofs allow protocol designer to formally state the desirable properties / goals that a protocol offers (giving assurance to protocol implementors) [11]. Computer Security Paradigm. Since the 1990s, many researchers have shifted their attention to using formal methods (also known as the computer security approach). Emphasis in this approach is placed on automated machine specification and analysis. The main goal of this approach is to relieve humans of the tedious and error prone parts of the mathematical proofs. The Dolev and Yao [19] adversarial model is often the de-facto standard used in formal specifications, where cryptographic operations are used in a “black box” fashion. Such an approach, however, ignores some of the cryptographic properties, resulting in possible loss of partial information. Cervesato et al. [15] also pointed out that the main obstacles in this automated approach are undecidability and intractability. Messages from an adversary are unbounded in structural depth and the number of possible values for

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

some data fields is infinite. The adversary can have a large set of possible actions, which results in a state explosion. It is generally acknowledged that protocols proven secure in such a manner could possibly be flawed [6]. However, this approach has the benefit of providing unambiguous specification of system requirements and mathematically precise proofs of system properties. This approach should also be credited for finding both known and previously unknown flaws in protocols [26, 27]. An Integrated Approach. Recognising the disparity in the two different approaches to protocol analysis, Abadi and Rogaway [2] started the trend of unifying the two paradigms. In this integrated approach, the aim is to providing abstract models of cryptographic primitives suitable for machine analysis in some well defined sense. More recent comprehensive efforts have been under way in several independent yet related projects by Canetti [12, 13], by Backes et al. [4, 5, 6], and by Blanchet [9]. Motivations of Paper. In an earlier work [18], we were motivated by the observation that few researchers have tried to utilize the communication and adversary model from computational proofs in a machine specification and analysis. We then utilized a simplified version of the widely accepted indistinguishability-based model of Bellare, Pointcheval, and Rogaway [7] (hereafter referred to as the BPR2000 model) from computational proofs in a machine specification and analysis. Using the original version of a protocol due to Jakobsson and Pointcheval1 as a case study, the existing flaw and two new flaws were revealed. In this paper, we extend our earlier work so as to gain a better understanding of the uses for such a complementary model in protocol analysis. We now provide a formal specification and machine analysis of a simplified version of the Canetti–Krawczyk model [14] (hereafter referred to as the CK2001 model2) in the setting of a planning problem. The planning problem, an ongoing research area in artificial intelligence, is about composing a workable plan (a sequence of actions) that allows the agent to achieve its given goal(s) from the initial state [25, 33]. This is also known as goal-directed reasoning. In our context (approach), the given goal is defined as a state of insecurity and if a workable plan exists, then we have found an attack on the protocol that we are analysing. 1 The original version of Jakobsson–Pointcheval protocol appeared in the unpublished pre-proceedings of Financial Crypto 2001 [21] with a claimed proof of security in the BR93 model. Nevertheless, a flaw in the protocol was discovered by Wong and Chan [34]. 2 The CK2001 model is, perhaps, the strongest indistinguishabilitybased model since the model allows an adversary to reveal both the session keys and the ephemeral secret keys of honest key-exchange sessions; and the BPR2000 model is the weakest indistinguishability-based model [17].

Our choice of formalism for this work is Asynchronous Product Automata (APA), a universal state-based formal method. APA is supported by the Simple Homomorphism Verification Tool (SHVT) [30] for analysis and verification of cooperating systems and communicating automata. Once the possible state transitions of each automaton have been specified, SHVT (the planner) can be used to automatically search the state space of the model. SHVT provides a reachability graph of the explored states. In our APA specification, the abstract communication model captures the representation of the protocol, the message transmission, and the communication channels. As a case study we analyse tripartite key exchange protocols 8 and 9 of Hitchcock, Boyd, and Gonz´alez Nieto [20]. Both protocols carry claimed security proofs in the CK2001 model. Our planner, SHVT, reveals a workable plan that allows us to achieve our defined goal (state of insecurity) from the given initial state. In other words, previously unpublished flaws on the Hitchcock–Boyd–Gonz´alez Nieto protocols are revealed by the automated state space analyses performed with SHVT.

Contributions of Paper. We regard the main contributions of this paper to be two-fold: 1. confirmation of the feasibility of using formal specifications to identify problems in human-generated computational complexity proofs by revealing previously unpublished flaws in two protocols, and 2. pointing out the corresponding flaws in the refuted security proofs. In so doing, we hope our analysis will enable similar mistakes to be avoided in the future.

Outline of Paper. The remainder of this paper is structured as follows: Section 2 briefly explains the CK2001 model. Section 3 describes tripartite key exchange protocols 8 and 9 of Hitchcock, Boyd, and Gonz´alez Nieto. In Section 4, we present an overview of our formal specification framework. We briefly explain how the protocols are specified in our framework, followed by the results of the protocol analysis using SHVT. Limitations of our tool are also discussed. In Section 5, we point out the corresponding flaws in the refuted security proofs. A possible fix to the attacks revealed by our formal analyses is presented. Note that the proposed fix is not proven secure, and is presented mainly to provide a better insight into the proof failures. Section 6 presents the conclusions.

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

2. The CK2001 Model In the setting of the reductionist proof approach for protocols, the security model comprises protocol participants and a powerful probabilistic, polynomial-time (PPT) adversary, A. The adversary, A, is in control of all communication between all parties in the model. However, in the CK2001 model, there are two adversarial models, namely: the unauthenticated-links adversarial model (UM) and the authenticated-links adversarial model (AM). AM is the (ideal) world where messages are authenticated magically, and UM is the (real) world in which we want our protocols to be proven secure. In our framework, we focus on the adversary that resides in the UM, since an UM adversary has all the capabilities of the AM adversary. The adversary, A, is defined to be a probabilistic, polynomial time (PPT) machine that is in control of all communications between parties. Each party Pi can run multiple sessions concurrently. The action of Uu running a session, i, is modelled as an oracle. The adversary, A controls the communications between parties by interacting with a set of oracle, ΠiUu ,Uv , where ΠiUu ,Uv is defined to be the ith instantiation of a principal Uu in a specific protocol run and Uv is the principal with whom Uu wishes to establish a secret key. A controls the communication channels via the queries to the targeted oracles, as shown below. Send(Uu , Uv , i, m) query. This query to an oracle, ΠiUu ,Uv , computes a response according to the protocol specification and decision on whether to accept or reject yet, and returns them to the adversary, A. If the oracle has either accepted with some session key or terminated, this will be made known to A. Session-Key Reveal(Uu , Uv , i) query. Any oracle upon receiving such a query and if it has accepted and holds some session key, will send this session key back to A. Session-State Reveal(Uu , Uv , i) query. The oracle upon receiving such a query and if it has neither accepted nor held some session key, will return all its internal state associated with this session (including any ephemeral parameters but not long-term secret parameters) to A. Once an oracle has been asked this query, it will terminate the session. Corrupt(Uu , KE) query. This query allows A to corrupt the principal Uu at will, and thereby learn the complete internal state (e.g., long-term keys, session states, session keys) of the corrupted principal. Test(Uu , Uv , i) query. This query is the only oracle query that does not correspond to any of A’s abilities. If oracle ΠiUu ,Uv has accepted with some session key and

is being asked a Test(Uu , Uv , i) query, then depending on a randomly chosen bit b, A is given either the actual session key or a session key drawn randomly from the session key distribution. Definition of security for the protocol is dependent on the notions of partnership of oracles and indistinguishability of the session key. The definition of partnership is used in the definition of security to restrict the adversary’s Reveal and Corrupt queries to oracles that are not partners of the oracle whose key the adversary is trying to guess.

2.1. Deﬁnition of Partnership Partnership in the CK2001 model is defined using the notions of matching sessions and session identifiers, SIDs. In the CK2001 model, SIDs are assumed to be known by protocol participants before the protocol begins. However, such an assumption might not be practical in all cases. As the original CK2001 model is introduced for a two-party setting, Hitchcock, Boyd, and Gonz´alez Nieto [20] extend the existing definitions of matching sessions and session identifiers to cater for at least three parties for use with tripartite key exchange. They define session identifier to be a hash of the concatenation (denoted by ||) of the protocol participants’ identities and the unique nonces contributed by individual protocol participant. For example, if protocol participants A, B, and C contributed unique nonces, NA , NB , and NC , respectively, then the session identifier would be H(A||B||C||NA ||NB ||NC) where H is a secure cryptographic hash function. Including the identities of the participating parties is to provide a binding to the session identifier. This avoids scenarios where two or more sessions have identical keys but different session identities as protocol participants have different perceived partners. Such an approach is adopted by several other researchers [22, 23, 24] and is also recommended by NIST [29]. The revised notion of matching sessions (in a tripartite setting) by Hitchcock, Boyd, and Gonz´alez Nieto [20] is described in Definition 1. Definition 1 (Matching Sessions [20]) Any u sessions (where each session is run by a different party) are said to be matching if each session has the same session identifiers.

2.2. Deﬁnition of Freshness Definition 2 describes the notion of freshness, which depends on the notion of partnership in Definition 1. Definition 2 Oracle ΠiA is fresh (or it holds a fresh session key) at the end of execution, if, and only if,

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

• oracle ΠiA has accepted with or without some partner oracle(s), • both oracle ΠiA and its partner oracle(s) (if such a partner oracle exists) are unopened (i.e., have not been sent a Session-Key Reveal or Session-State Reveal query), and • neither A nor any of the partnering players (if such a partner oracle exists) are corrupted (i.e., none of them have been sent ant Corrupt query).

2.3. Deﬁnition of Security Security is defined using the game G, played between a malicious adversary, A, and a collection of oracles. A runs G and is able to send any oracle queries at will. At some point during G, A will choose a fresh session on which to be tested and send a Test query to the fresh oracle associated with the test session. Depending on the randomly chosen bit, b, A is given either the actual session key or a session key drawn randomly from the session key distribution. A continues making any oracle queries of its choice. Eventually, A terminates the game and outputs a bit b , which is its guess of the value of b. Success of A is quantified in terms of A’s advantage in distinguishing whether A receives the real key or a random value. A wins if, after asking a Test query, A’s guess bit, b , equals the bit b selected during the Test query. If the advantage of A is denoted by AdvA , then

the existence of a map eˆ from G1 × G1 to G2 . Typically, G1 is a subgroup of the group of points on an elliptic curve over a finite field, G2 is a subgroup of the multiplicative group of a related finite field and the map eˆ is derived from either the Weil or Tate pairing on the elliptic curve. The mapping eˆ must be efficiently computable and has the following properties. Bilinearity. For Q, W, Z ∈ G1 , both eˆ(Q, W + Z) = eˆ(Q, W) · eˆ(Q, Z) and eˆ(Q + W, Z) = eˆ(Q, Z) · eˆ(W, Z). Non-Degeneracy. For some elements P, Q ∈ G1 , we have eˆ(P, Q) = 1G2 . Computability. For some elements P, Q ∈ G1 , we have an efficient algorithm to compute eˆ(P, Q). A bilinear map, eˆ, is said admissible if eˆ satisfies all three properties. Since eˆ is bilinear, the map eˆ is also symmetric.

3.2.

Decisional Problem

Bilinear

Diﬃe-Hellman

The security of the Hitchcock–Boyd–Gonz´alez Nieto protocols assumes the intractability of the Decisional Bilinear Diffie-Hellman (DBDH) problem presented in Definition 4. Definition 4 (Decisional Bilinear Diffie-Hellman Problem)

AdvA = 2 × Pr[b = b] − 1. Definition 3 describes security for the CK2001 model in the tripartite setting [20].

Instance

:

(P, aP, bP, cP, eˆ(P, P)d)

Decide

:

d = abc mod q.

?

Definition 3 (Revised CK2001 Security Definition [20]) A protocol is secure in the CK2001 model if for all probabilistic, polynomial time adversaries A,

where P, aP, bP, cP ∈ G1 , eˆ(P, P)d ∈ G2 , and a, b, c, d ∈ Z∗q .

1. if t uncorrupted oracles complete a set of t matching sessions, then they must hold the same session key, and

The DBDH assumption states that no probabilistic, polynomial time algorithm has a non-negligible advantage in the security parameter, k, to solve the DBDH problem for the given parameters.

2. AdvA (k) is negligible.

3. Hitchcock–Boyd–Gonz´alez Nieto Tripartite Key Exchange Protocols In this section, the mathematical preliminaries required and the protocols specifications are presented.

3.3. Case Study Protocols Both Protocols 1 and 2 carry claimed proofs of security in the CK2001 model [20]. The notation used is as follows:

3.1. Bilinear Maps from Elliptic Curve Pairings We let G1 be an additive group of prime order q and G2 be a multiplicative group of the same order q. We assume

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

• A, B, and C denote the protocol participants exchanging a secret (session) key, • XEY denotes the encryption by X intended for Y , • M ACNXY (·) denotes the generated MAC digest of some message using the one-time MAC key, NXY ,

• NXY denotes the randomly generated nonce by X intended for Y , • a, b, and c denote the randomly generated ephermeral private keys of A, B, and C respectively.

1. 2. 3.

4. 5.

A −→ B : B −→ C :

sid, [a]P, AEB (NAB), AEC (NAC) sid, [a]P, [b]P, BEC (NBC), BEA (NBA), M ACNAB (sid, [b]P, A), AEC (NAC) C −→ A : sid, [b]P, [c]P, CEA (NCA), CEB (NCB), M ACNAC (sid, [c]P, A), M ACNBC (sid, [c]P, B), BEA (NBA), M ACNAB (sid, [b]P, A) A −→ B : sid, [c]P, M ACNBA (sid, [a]P, B), M ACNCA (sid, [a]P, C), CEB (NCB), M ACNBC (sid, [c]P, B) B −→ C : sid, M ACNCB (sid, [b]P, C), M ACNCA (sid, [a]P, C) Session key SK = e(P, P)abc

Protocol 1: Hitchcock–Boyd–Gonz´alez Nieto tripartite key exchange protocol 8

1. 2. 3. 4. 5.

A −→ B : B −→ C :

sid, [a]P, AEB (NAB), AEC (NAC) sid, [a]P, [b]P, BEA (NBA), M ACNAB (sid, [b]P, A), AEC (NAC) C −→ A : sid, [b]P, [c]P, CEA (NCA), M ACNAC (sid, [c]P, A), BEA (NBA), M ACNAB (sid, [b]P, A) A −→ B : sid, [c]P, M ACNBA (sid, C, [a]P, [c]P, B), M ACNCA (sid, [a]P, [b]P, C) A/B −→ C : sid, M ACNCA (sid, [a]P, [c]P, C) Session key SK = e(P, P)abc

Protocol 2: Hitchcock–Boyd–Gonz´alez Nieto tripartite key exchange protocol 9

The reader might notice that the session identifier, sid, in the specifications of Protocols 1 and 2 appear to be constructed differently from that discussed in Section 2.1. If we had follow the revised construction for session identifiers presented in the earlier discussion, session identifiers should be sidA = = H(A||B||C||NAB ||NAC ||NBA ||NBC ||NCA ||NCB) sidB = sidC , where sidU denotes the session identifier of some protocol participant, U . However, such a construct does not appear to be feasible for Protocols 1 and 2 since not all protocol participants have full view of the messages exchanged. For example, B does not know NAC and C does not know NAB .

4. Our Formal Specification Framework In this section, we present an overview of our APA formal specification framework. We follow the general adversarial formalism of the CK2001 model presented in Section 2, except that the probabilistic characteristics of the CK2001 adversary are not explicitly modelled in our formal specification due to the deterministic nature of SHVT. We then specify Protocols 1 and 2 using APA and demonstrate that SHVT (or any model checker tool) can be used to find previously unknown flaws in the protocols. For the remainder of this section, E denotes the adversary.

4.1. Protocols Speciﬁcation As mentioned earlier, the setting of our approach is based on the planning problem. Therefore, similarly to the formulation of the planning problem [33], we have three inputs in the formulation of our framework, as follows. Description of Initial State. We describe the internal states and knowledge of (e.g., keys that are known to) the agents. Agents in our formal framework comprise the protocol participants and a malicious adversary (adopted from the CK2001 model). Description of Goal State. Before an agent can achieve its goal(s), we need to provide a formal description of the goal state that the agent has to achieve. In our framework, we define a desired goal as a state of insecurity. Hence, if an agent manages to achieve the defined goal, then the protocol is insecure. Description of Possible Actions. This input provides a formal description for the set of possible actions that can be performed by the agents. For the rest of the paper, we use the terms agent and automata interchangeably. In our formal framework using APA specification, protocol principals are modelled as a family of elementary automata. The various state spaces of the principals are modelled as a family of state sets. The channel through which the elementary automaton communicates is modelled by the addition and removal of messages from the shared state component Network, which is initially empty. Each of the elementary automata only has access to the particular state components to which it is connected. In addition to the regular protocol principals, we specify an adversary, A, which has access to the shared state component Network, but no access to the internal states of the principals. This adversary, A, is adopted from the CK2001 model whereby A is able to intercept messages in the Network, swap data components in the intercepted messages to form

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

new messages, remove messages from the Network, or fabricate new messages. A is then able to send these messages to the oracles via the Network (corresponding to Send queries in the CK2001 model). Also, once an oracle, ΠiU , has accepted and holds a session key, the session identifier associated with that oracle becomes visible to the adversary, A, via the shared state component Transcript. If A so chooses, A is able to obtain the session key of ΠiU (stored in the state component Keys) via a Session-Key Reveal query. The shared state component Transcript also contains a log of all sent messages. For simplicity, the graphical illustration of a two-party (instead of three-party) protocol in APA specification is presented in Figure 1.

A State

A

Transcript

A

Network

B

A Keys

A State

B State

B Keys

Figure 1. Graphical illustration of a two-party protocol in APA specification

Description of Initial State. The first phase of our formal specification is to specify the basic data types and the functions necessary to specify our case study protocols. Examples of the data types and the functions we defined are shown in Figure 2. Note that we only present sufficient background on the syntax of SHVT to specify and analyse the case study protocols and refer interested reader to the SHVT manual [1] for a more comprehensive read.

To illustrate how the function verifyeFunc(e1 , e2) described in Figure 2 works, we let e1 e2

= eFunc(pFunc(m1), pFunc(m2)) and = eFunc(pFunc(m3), pFunc(m4)),

for some m1 , m2 , m3 , and m4 . For example, the function verifyeFunc(e1 , e2) returns true if, and only if, ((m1 = m3) ∧ (m2 = m4)) ∨ ((m1 = m4) ∧ (m2 = m3)).

Initial State of Protocols 1 and 2 The initial state of both Protocols 1 and 2 is shown in Figure 3. For simplicity, we restrict the analyses to only three players, A, B, and C, and a malicious adversary. The left-hand column shows the SHVT specification of the various initial states, and an explanation is given in the right-hand column.

Description of an Goal State. In using automated tools, we can define the goal state to be either one of the following: State of Security. However, the reachability of a state of security in our formal framework might not necessarily imply that the protocol is secure (in the sense of Definition 3) due to the limitations of our tool as discussed below. State of Insecurity. Reachability of this state implies that the protocol being analysed is insecure. Note that due to the probabilistic nature of the Canetti– Krawczyk adversary, we are unable to exlicitly model the advantage of the adversary in our specification. We simplify the indistinguishability-based game, G, defined in Section 2.3 by assuming that AdvA = 1 if A can obtain a fresh session key, otherwise AdvA = 0. Therefore, we find it more natural to define insecurity in our formal framework as given in Definition 5 (instead of the security definition given in Definition 3). Definition 5 depends on the notions of partnership in Definition 1 and freshness in Definition 2. Definition 5 A protocol is insecure in our formal framework if any of the following goal state(s) is/are reached. Goal State 1. Two fresh non-partner oracles accept the same key. Goal State 2. Some fresh oracle accepts some key, which has been leaked to the adversary, A. For example, A learns part of the keying materials either through a Session-State Reveal query to some non-partner oracle or by some other means, and thus, is able to construct the fresh session key. If a workable plan is composed by our planner (a agent achieves either goal state 1 or goal state 2), then the key establishment goal described in Definition 3 is violated. Violation of goal state 1 also implies that the protocol is vulnerable to a key replicating attack first described by Krawczyk [23]. Definition 6 presents a description of the key replicating attack.

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

Examples of some basic types set of all the principals denoted as A, B, C and A (denoted as E) set of all the data items in the messages (e.g., ephemeral secrets, session keys) A’s internal state set of A’s public and private keys B’s internal state set of B’s public and private keys C’s internal state set of C’s public and private keys set of all oracles who had accepted and this information is visible to the adversary Examples of some functions pFunc(m) ::= denotes a point, mP , in G1 eFunc(pFunc(m1), pFunc(m2)) ::= denotes a pairing, eˆ(m1 P, m2 P), in G2 Agents Keywords A State A Keys B State B Keys C State C Keys Accepted

::= ::= ::= ::= ::= ::= ::= ::= ::=

verifyeFunc(e1 , e2)

::=

?

denotes the verification function used to verify if two pairings are equal (e1 = e2).

Figure 2. Examples of basic types and functions A State:=

B State:=

{(B,agent), (start,B), (B,publicK,‘pubKB’), (C,agent), (start,C), (C,publicC,‘pubKC’)}; {(A,agent), (respond,A), (A,publicA,‘pubKA’), (C,agent), (C,publicC,‘pubKC’)};

C State:=

{(A,agent), (A,publicA,‘pubKA’), (B,publicB,‘pubKB’)};

A Keys:= B Keys:= C Keys:= E State:=

(‘pubKA’,‘priKA’); (‘pubKB’,‘priKB’); (‘pubKC’,‘priKC’); {(A,agent), (B,agent), (C,agent)};

Network:= Transcript:=

{}; {};

(respond,A), (B,agent),

A starts a protocol session run with B and C (indicated by the keyword start). In addition, A also knows the public keys of B and C, pubKB and pubKC, respectively. B knows that both A and C are agents and can respond to a protocol run initiated by A (indicated by the keyword respond). In addition, B also knows the public keys of A and C, pubKA and pubKC, respectively. C knows that both A and B are agents and can respond to a protocol run initiated by A (indicated by the keyword respond). In addition, C also knows the public keys of A and B, pubKA and pubKB, respectively. A has a set of public / private key pair. B has a set of public / private key pair. C has a set of public / private key pair. The adversary, A, (denoted by E) knows A, B, and C are agents in this protocol run. Network is initially empty, hence, denoted by an empty set. Transcript is initially empty, hence, denoted by an empty set.

Figure 3. Initial state of Protocols 1 and 2 Definition 6 (Key Replicating Attack [23]) A key replicating attack is defined to be an attack whereby the adversary, A, succeeds in forcing the establishment of a session, S1 , (other than the Test session or its matching session) that has the same key as the Test session. In this case, A can distinguish whether the Test-session key is real or random by asking a Session-Key Reveal query to the oracle associated with S1 . Since our formal framework is closely based on the CK2001 model, protocols that were proven secure in the CK2001 model but found to be violating any of the goal states described in Definition 5 will be insecure in the CK2001

model. Consequently, the existing proof of the (insecure) protocol will also be invalid.

Description of Possible Actions. Possible actions refer to the message exchanges among the agents (i.e., protocol participants and the adversary). As Russell and Norvig [31] suggested, actions are represented by logical descriptions of pre-conditions and effects (which we term post-conditions). To model actions, we would now need to specify the properties of all states of components associated with the particular elementary automaton, and the changes of the states caused by the state transition.

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

APA Specifications in a Nutshell. Demonstrating that this approach is useful for analysing protocols that are proven secure in the CK2001 model is the main conceptual contribution of our work. However, presenting the full APA specifications turns out to be “challenging” due to space constraints. Moreover, reader not familiar with APA or SHVT might not find the specifications interesting. Therefore, we postpone the presentation of the full APA specifications and instead present the description for a generic transition pattern [1]. Step 1. The name of the transition pattern has to be first defined, e.g., Protocol Step 1. Step 2. The variables to be used in this transition pattern, (x1 , . . . , xn), is then defined. Note that the variables defined here are local to this transition pattern. Step 3. The required (pre-)conditions prior to performing a state transition is now defined. If any of the defined conditions is not satisfied, this transition pattern will proceed no further. Step 4. The changes of the states caused by this state transition is now specified, i.e., the post-conditions / effects. State Transition. A state transition can only occur when all the above steps are executed.

4.2. Protocols Analyses Figure 4 presents an example reachability graph describing how searches are performed in the SHVT analysis, namely: forward from the initial state to the finish state when an agent has achieved its goal (i.e., achieving any of the two goal states described in Definition 5).

of Definition 5), we can then trace the path that it takes and hence, find the attack sequence. This is also known as a solution – a plan that an agent can execute, which guarantees the achievement of the goal [31] – in the planning problem. Note that the nodes in the reachability graph described in Figure 4 represent the various states of the protocol execution and the arcs (arrows) represent the state transitions between two states. The search approach in our SHVT analysis is also known as a progression planner in the planning problem. Consequently, the inherent limitations associated with a progression planner, i.e., the high branching factor and thus the huge size of the search space [31], are also present in our approach. For example, in several of our earlier experiments, we observe that certain interleavings of the protocol message exchanges and actions of the adversary that are “obviously” immaterial in achieving the goal are explored by SHVT. In other words, what is obvious to us, human, are not necessarily obvious to the progression planner or SHVT. Hence, for run-time efficiency, and to avoid enormous branching factors in the search space, we restrict the actions of the adversary so that certain actions are possible for only some message types. We also set the break condition to terminate the SHVT analysis once the first solution has been found. The attack sequences and the internal states can be examined by viewing the reachability graphs produced by SHVT. The analyses were run on a Pentium IV 2.4 GHz computer with 1024 Mb of RAM and the analysis statistics are shown in Figure 5. Analysis of Protocol 1. State space analysis in SHVT reveals that goal state 2 of Definition 5 is violated. The attack sequence is described in Attack 1. At the end of Attack 1, abc . • Oracle Πsid A has accepted with SKA = e(P, P)

........

State transition

Initial State transition

.

Goal 1

Goal 2

A A • Both oracles, Πsid and Πsid , think that a session B C (associated with session identifier, sidA) has been iniA and tiated by the adversary, A. However, both Πsid B sidA ΠC are asked Session-State Reveal queries prior to accepting any session keys.

Figure 4. A reachability graph: protocol analysis in SHVT

sidA A and Πsid) have different ses• Since Πsid A and (ΠB C sion identifiers, they are not partners (according to Definition 1). Therefore, the adversary, A, is allowed to reveal both B and C without rendering session key of Πsid A unfresh (according to Definition 2).

If a workable plan exists (i.e., the agent manages to reach either of the finish states, achieving goal state 1 or goal state 2

A A • Internal states of Πsid and Πsid are revealed to the B C adversary, A, with the Session-State Reveal queries, which includes (NAB , b) and (NAC , c) respectively. With knowledge of these internal states, A is able

........

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

Protocol Analysis Protocol 1 Protocol 2

Players 3

Runs 2

Run-Time Approximately 3 mins – ditto –

New Flaws? Yes

Figure 5. Analysis statistics to “make” Πsid accept the session key, SKA = A e(P, P)abc .

1. A −→ B : sid, [a]P, AEB (NAB), AEC (NAC) The adversary, A, intercepts and deletes message from network. A then sends intercepted message as her own to B, however, with a different session identifier, sidA . Note that A is able to claim ownership of the intercepted message because the identity of the sender is not included in the encryption. 1. A −→ B : sidA , [a]P, AEB (NAB), AEC (NAC) B upon receiving this message will think that A wants to establish a session (associated with session identifier, sidA) and proceeds as per protocol specification.

• With knowledge of b and c from earlier Session-State Reveal queries, A is able to compute the session key accepted by A, e(aP, P)bc = SKA . Hence, AdvA (k) is non-negligible, in violation of Definition 3. Analysis of Protocol 2. State space analysis in SHVT reveals that goal state 2 of Definition 5 is violated. The attack sequence is described in Attack 2. Similar to Attack 1, at the end of Attack 2, abc . • Oracle Πsid A has accepted with SKA = e(P, P)

sidA , [a]P, [b]P, BEC (NBC), BEA (NBA), AEC (NAC), M ACNAB (sidA , [b]P, A) 3. C −→ A : sidA , [b]P, [c]P, CEA (NCA), CEB (NCB), M ACNAC (sid, [c]P, A), M ACNBC (sid, [c]P, B), BEA (NBA), M ACNAB (sid, [b]P, A) Note that both B and C think that the session (associated with sidA) is being established with the adversary, A, because SIDB = SIDC = sidA = SIDA = sid. Therefore, A, B, and C are not partners (see Definition 1) and A is allowed to reveal both B and C without rendering session key of A unfresh (see Definition 2).

2.

B −→ C :

A A and Πsid , think that a session • Both oracles, Πsid B C (associated with session identifier, sidA) has been iniA and tiated by the adversary, A. However, both Πsid B sidA ΠC are asked Session-State Reveal queries prior to accepting any session keys.

sidA A and Πsid) have different ses• Since Πsid A and (ΠB C sion identifiers, they are not partners (according to Definition 1). Therefore, the adversary, A, is allowed to reveal both B and C without rendering session key of Πsid A unfresh (according to Definition 2). A A • Internal states of Πsid and Πsid are revealed to the B C adversary, A, with the Session-State Reveal queries, which includes (NAB , b) and (NAC , c) respectively. With knowledge of these internal states, A is able accept the session key, SKA = to “make” Πsid A e(P, P)abc .

A −→ C : Session-State Reveal(C, sidA) A −→ B : Session-State Reveal(B, sidA) A A The internal states of Πsid and Πsid are revealed to B C the adversary, A, after asking the Session-State Reveal queries, which includes (NAB , b) and (NAC , c) respectively. With knowledge of (NAB , b, NAC , c), A is able to construct respective ciphertexts and MAC digests, and send fabricated messages to A impersonating C. sid, [b]P, [c]P, CEA (NCA), CEB (NCB), M ACNAC (sid, [c]P, A), M ACNBC (sidA , [c]P, B), BEA (NBA), M ACNAB (sid, [b]P, A) 4. A −→ B : Some message. The adversary, A, intercepts and deletes message from the network. Note that the session key accepted by A is SKA = e(P, P)abc . 3.

• With knowledge of b and c from earlier Session-State Reveal queries, A is able to compute the session key accepted by A, e(aP, P)bc = SKA . Hence, AdvA (k) is non-negligible, in violation of Definition 3.

AC −→ A :

Attack 1: Attack Sequence on Protocol 1

Further Remarks on Attacks 1 and 2. 1. At first read, both Attacks 1 and 2 might appear to be unknown key share attacks3 . However, we cannot claim that these are unknown key share attacks since 3 Sometimes the adversary may be unable to obtain any useful information about a session key, but can deceive the protocol principals about the identity of the peer entity. This can result in principals giving away information to the wrong party or accepting data as coming from the wrong party [11].

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

both B and C have terminated their sessions after being asked a Session-State Reveal query (and have not accepted any session key). Moreover, the analysis of a protocol that is vulnerable to an unknown key share attack should also result in the violation of goal state 1 of Definition 5, since non-partners, A and (B, C), would have accepted session keys of the same value.

1. A −→ B : sid, [a]P, AEB (NAB), AEC (NAC) The adversary, A, intercepts and deletes message from network. A then sends intercepted message as her own to B, however, with a different session identifier, sidA . Note that A is able to claim ownership of the intercepted message because the identity of the sender is not included in the encryption.

2. We remark that even if we had adopt the revised construction for session identifiers suggested in Section 2.1, both Attacks 1 and 2 still hold, as follows. • For example in both Attacks 1 and 2, the session identifier of A prior to and immediately after sending out the first message is sidA = H(A||B||C||NAB ||NAC). • The adversary, A, is able to intercept the first sent message by A and replace sidA with a fabricated value, sidA = sidA . B is unable to check if the received session identifier has been tampered with because B does not have the corresponding private key of C to decrypt AEC (NAC) to obtain NAC . Without knowledge of NAC , B is un? able to check H(A||B||C||NAB ||???) = sidA . Therefore, B will still think that A wants to establish a session (associated with session identifier, sidA) and proceed as per protocol specification. • Similarly, C has no way of checking whether the received session identifier has been tampered. • After C responds as per protocol specifications, the adversary, A, will issue a Session-State Reveal query to both B and C. • The rest of the attack details follows easily.

1. A −→ B : sidA , [a]P, AEB (NAB), AEC (NAC) B upon receiving this message will think that A wants to establish a session (associated with session identifier, sidA) and proceeds as per protocol specification. sidA , [a]P, [b]P, BEA (NBA), M ACNAB (sidA , [b]P, A), AEC (NAC) 3. C −→ A : sidA , [b]P, [c]P, CEA (NCA), M ACNAC (sidA , [c]P, A), BEA (NBA), M ACNAB (sidA , [b]P, A) Note that both B and C thinks that the session (associated with session identifier, sidA) is being established with the adversary, A, because SIDB = SIDC = sidA = SIDA = sid. Therefore, A, B, and C are not partners (see Definition 1) and A is allowed to reveal both B and C without rendering session key of A unfresh (see Definition 2).

2.

B −→ C :

A −→ C : Session-State Reveal(C, sidA) A −→ B : Session-State Reveal(B, sidA) A A The internal states of Πsid and Πsid are revealed to B C the adversary, A, after asking the Session-State Reveal queries, which includes (NAB , b) and (NAC , c) respectively. With knowledge of (NAB , b, NAC , c), A is able to construct respective ciphertexts and MAC digests, and send fabricated messages to A impersonating C.

4.3. Limitations of our Approach

sid, [b]P, [c]P, CEA (NCA), M ACNAC (sid, [c]P, A), BEA (NBA), M ACNAB (sid, [b]P, A) 4/5. A −→ B/C : Some message. The adversary, A, intercepts and deletes messages sent by A for both B and C from the network. Note that the session key accepted by A is SKA = e(P, P)abc . 3.

AC −→ A :

Attack 2: Attack Sequence on Protocol 2

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

1. Due to the nature of our tool, our approach is not fully automatic as there does not exist an automatic way to pass from (the hard to read) SHVT reachability graph outputs to the attack sequences presented in Attacks 1 and 2. Hence, for readability, the reachability graph output by SHVT have to be translated manually. Moreover, the reasoning behind the failures of the claimed security proofs (presented in Section 5) cannot be provided in our approach. 2. As mentioned earlier, protocols that are found to be insecure in our framework will also be insecure in the CK2001 model. However, due to the non-probabilistic nature of our tool, some attacks might be left out in our analysis. Hence, protocols that are not found to be insecure in our approach, do not automatically imply security in the CK2001 model.

5. Flaws in Refuted Proofs and A Possible Fix 5.1. Flaws Revealed The general notion of the existing proofs is to assume that there exists an adversary, A, who can gain a nonnegligible advantage in distinguishing the test key, and use A to break the underlying DBDH problem. Such an adversary, ADBDH , against the DBDH problem is built using A. The objective of ADBDH is to distinguish between e(P, P)d ∈ G2 and e(P, P)abc ∈ G2 when given a bilinear map e, a generator of P of G1 , an element e(P, P)d ∈ G2 , and a triple of elements aP, bP, cP ∈ G1 with a, b, c, d ∈ Z∗q , where q is the prime order of the distinct groups G1 and G2 . Note that the triple of elements a, b, c is not known to ADBDH . In Attacks 1 and 2, the adversary, A, is allowed to ask for the ephemeral secret keys (i.e., b and c) with a SessionState Reveal query (recall that sessions with non-matching session identifiers and non-agreeing partner identifiers are non-partners). Clearly, such a query is unable to be answered by ADBDH since ADBDH does not know b and c as ADBDH is using A to break the underlying DBDH problem. If ADBDH randomly selects two elements, b ∈ Z∗q and c ∈ Z∗q , and returns this to A, A is able to check that b P = bP and c P = cP . Hence, the proof simulation is aborted and ADBDH fails. Consequently, ADBDH does not have a non-negligible probability in breaking the underlying DBDH problem although A has a non-negligible advantage against the security of the underlying protocols. This is in violation of the underlying assumption in the proofs.

as the adversary, A, is still able to hijack the first message. Then the adversary is able to send the hijacked message with a fabricated sidA . Consequently, A is still able to ask Session-State Reveal query to instances of B and C without rendering the session key of A unfresh (recall that sessions with non-matching session identifiers are non-partners). Hence, as a possible fix, we propose to include the identity of the sender and the partnering mechanism, sid, in every encryption. Informally, Attacks 1 and 2 will no longer be valid since the adversary, A, is unable to claim ownership of the intercepted messages or cause confusion among the protocol participants’ sessions.

6. Conclusion and Future Work We have refuted security proofs of tripartite key exchange protocols 8 and 9 due to Hitchcock, Boyd, and Gonz´alez Nieto [20] by revealing previously unpublished flaws in protocols with our complementary approach in a planning problem setting. Such an approach is useful in checking the hand-generated Canetti–Krawczyk proofs. We also pointed out corresponding flaws in the refuted security proofs: identities and partnering mechanisms are usually badly treated. We hope our analysis will enable similar mistakes to be avoided in the future. Possible dimensions of future work includes: 1. To present security proofs for the fix proposed in Section 5.2 in order to provide a strong assurance that the security properties of the protocols are satisfied. 2. To explore alternative tools that might be able to capture the complexity-based definitions for security and cryptographic primitives more closely (to a certain extent), so that we are able to address the limitations of our tool presented in Section 4.3.

5.2. A Possible Fix In both Protocols 1 and 2, the identity of the sender is not included within the encrypted messages. This effectively allows a malicious adversary, A, to intercept the encrypted message and claims as its own. We observe that Hitchcock, Boyd, and Gonz´alez Nieto [20] suggest that specifying the sender in the encryption only clarify the purpose of each encryption in protocol descriptions, although in practice the sender does not necessarily need to be specified. However, these observations contradict earlier findings of An, Dodis, and Rabi [3]. An et al. suggest that in a multi-user setting, the sender’s identity must be included in every encryption and the recipient’s identity must be included in every signature. Similar conclusion is also suggested by Choo, Boyd, and Hitchcock [16] in their recent findings on the conference key agreement protocol of Boyd and Gonz´alez Nieto [10]. However, including the identity of the sender in every encryption alone will not help in preventing Attacks 1 and 2

Acknowledgements. The author would like to thank Carsten Rudolph of Fraunhofer Institute for Secure Telecooperation for his technical assistance with the use of SHVT, Torsten Schaub of The University of Potsdam for his discussion on the planning problem, and the anonymous referees for their valuable and insightful feedbacks.

References

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

[1] SHVT Manual. Technical Report, Fraunhofer Institute for Secure Telecooperation, Darmstadt, Germany, 2004. [2] M. Abadi and P. Rogaway. Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption). Journal of Cryptology, 15(2):103–127, 2002. [3] J. H. An, Y. Dodis, and T. Rabin. On the Security of Joint Signature and Encryption. In EUROCRYPT 2002, volume 2332/2002 of LNCS, pages 83–107. Springer-Verlag, 2002.

[4] M. Backes. A Cryptographically Sound Dolev-Yao Style Security Proof of the Needham–Schroeder–Lowe Public–Key Protocol. IEEE Journal on Selected Areas in Communications, 22(10):2075–2086, 2004. [5] M. Backes. A Cryptographically Sound Dolev-Yao Style Security Proof of the Otway-Rees Protocol. In ESORICS 2004, volume 3193/2004 of LNCS, pages 89–108. SpringerVerlag, 2004. [6] M. Backes and C. Jacobi. Cryptographically Sound and Machine-Assisted Verification of Security Protocols. In STACS 2003, volume 2607/2003 of LNCS, pages 310–329. Springer-Verlag, 2003. [7] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In EUROCRYPT 2000, volume 1807/2000 of LNCS, pages 139 – 155. Springer-Verlag, 2000. [8] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In CRYPTO 1993, volume 773/1993 of LNCS, pages 110–125. Springer-Verlag, 1993. [9] B. Blanchet. A Computationally Sound Mechanized Prover for Security Protocols (Extended version available from http://eprint.iacr.org/2005/401). In IEEE S&P. IEEE Computer Society Press, 2006. (To Appear). [10] C. Boyd and J. M. Gonz´alez Nieto. Round-optimal Contributory Conference Key Agreement. In PKC 2003, volume 2567/2003 of LNCS, pages 161–174. Springer-Verlag, 2003. [11] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment. Springer-Verlag, June 2003. [12] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067/. [13] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO 2001, volume 2139/2001 of LNCS, pages 19–40. Springer-Verlag, 2001. [14] R. Canetti and H. Krawczyk. Analysis of KeyExchange Protocols and Their Use for Building Secure Channels (Extended version available from http://eprint.iacr.org/2001/040/). In EUROCRYPT 2001, volume 2045/2001 of LNCS, pages 453–474. Springer-Verlag, 2001. [15] I. Cervesato, N. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A Meta-Notation for Protocol Analysis. In CSFW 1999, pages 55–71. IEEE Computer Society Press, 1999. [16] K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Errors in Computational Complexity Proofs for Protocols. In ASIACRYPT 2005, volume 3788/2005 of LNCS, pages 624–643. Springer-Verlag, 2005. [17] K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Examining Indistinguishability-Based Proof Models for Key Establishment Protocols. In ASIACRYPT 2005, volume 3788/2005 of LNCS, pages 585–604. Springer-Verlag, 2005. [18] K.-K. R. Choo, C. Boyd, Y. Hitchcock, and G. Maitland. Complementing Computational Protocol Analysis with Formal Specifications. In IFIP FAST 2004, volume 173/2005 of IFIP International Federation for Information Processing Series, pages 129–144. Springer-Verlag, 2004.

[19] D. Dolev and A. C. Yao. On the Security of Public Key Protocols. IEEE Transaction of Information Technology, 29(2):198–208, 1983. [20] Y. Hitchcock, C. Boyd, and J. M. Gonz´alez Nieto. Tripartite Key Exchange in the Canetti-Krawczyk Proof Model (Extended version available from http://sky.fit.qut.edu.au/˜boydc/). In INDOCRYPT 2004, volume 3348/2004 of LNCS, pages 17–32. Springer-Verlag, 2004. [21] M. Jakobsson and D. Pointcheval. Mutual Authentication and Key Exchange Protocol for Low Power Devices. In Financial Cryptography 2001, volume 2339/2002 of LNCS, pages 169–186. Springer-Verlag, 2001. [22] I. R. Jeong, J. Katz, and D. H. Lee. One-Round Protocols for Two-Party Authenticated Key Exchange. In ACNS 2004, volume 3089/2004 of LNCS, pages 220–232. Springer-Verlag, 2004. [23] H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol (Extended version available from http://eprint.iacr.org/2005/176/). In CRYPTO 2005, volume 3621/2005 of LNCS, pages 546– 566. Springer-Verlag, 2005. [24] C. Kudla and K. G. Paterson. Modular Security Proofs for Key Agreement Protocols. In ASIACRYPT 2005, volume 3788/2005 of LNCS, pages 549–569. Springer-Verlag, 2005. [25] V. Lifschitz. Answer Set Planning. In LPNMR 1999 (Full version available from http://www.cs.utexas.edu/˜vl/), volume 1730/1999 of LNCS, pages 373 – 374. Springer-Verlag, 1999. [26] G. Lowe. Breaking and Fixing the Needham-Schroeder Public Key Protocol using FDR. In TACAS 1996, volume 1055/1996 of LNCS, pages 147–166. Springer-Verlag, 1996. [27] C. Meadows. Analysis of the Internet Key Exchange using the NRL Analyzer. In IEEE S&P, pages 216–231. IEEE Computer Society Press, 1999. [28] C. Meadows. Formal Methods for Cryptographic Protocol Analysis: Emerging Issues and Trends. IEEE Journal on Selected Area in Communications, 21(1):44–54, 2003. [29] National Institute of Standards and Technology, Computer Security Division. NIST, Special Publication (SP 800-56A) – Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, March 2006. [30] P. Ochsenschl¨ager, J. Repp, R. Rieke, and U. Nitsche. The SH-Verification Tool - Abstraction-Based Verification of Co-operating Systems. Journal of Formal Aspects of Computing, pages 381–404, 1998. [31] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995. [32] V. Shoup. OAEP Reconsidered. In CRYPTO 2001, volume 2139/2001 of LNCS, pages 239–259. Springer-Verlag, 2001. [33] D. S. Weld. Recent Advances in AI Planning. AI Magazine, 20(2):93–123, 1999. [34] D. S. Wong and A. H. Chan. Efficient and Mutually Authenticated Key Exchange for Low Power Computing Devices. In ASIACRYPT 2001, volume 2248/2001 of LNCS, pages 172–289. Springer-Verlag, 2001.

Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06) 0-7695-2615-2/06 $20.00 © 2006

IEEE

[image: Refuting Security Proofs for Tripartite Key Exchange with Model ...]
Refuting Security Proofs for Tripartite Key Exchange with Model ...

[image: Refuting Security Proofs for Tripartite Key Exchange ...]
Refuting Security Proofs for Tripartite Key Exchange ...

[image: The importance of proofs of security for key ... - Semantic Scholar]
The importance of proofs of security for key ... - Semantic Scholar

[image: Reducing TCB Complexity for Security-Sensitive ... - CiteSeerX]
Reducing TCB Complexity for Security-Sensitive ... - CiteSeerX

[image: Reducing TCB Complexity for Security-Sensitive ... - CiteSeerX]
Reducing TCB Complexity for Security-Sensitive ... - CiteSeerX

[image: Improving Host Security with System Call Policies - CiteSeerX]
Improving Host Security with System Call Policies - CiteSeerX

[image: Uncorrected Proofs for Review Only]
Uncorrected Proofs for Review Only

[image: Two Simplified Proofs for Roberts' Theorem]
Two Simplified Proofs for Roberts' Theorem

[image: Comparing Symmetric-key and Public-key based Security Schemes in ...]
Comparing Symmetric-key and Public-key based Security Schemes in ...

[image: Security of a Leakage-Resilient Protocol for Key ...]
Security of a Leakage-Resilient Protocol for Key ...

[image: Security Requirements for Key Establishment Proof ...]
Security Requirements for Key Establishment Proof ...

[image: Security Requirements for Key Establishment Proof ...]
Security Requirements for Key Establishment Proof ...

[image: Convergence Proofs for Simulated Annealing ...]
Convergence Proofs for Simulated Annealing ...

[image: Why Security Testing Is Hard - CiteSeerX]
Why Security Testing Is Hard - CiteSeerX

[image: uncorrected proofs]
uncorrected proofs

[image: Constrained Information-Theoretic Tripartite Graph Clustering to ...]
Constrained Information-Theoretic Tripartite Graph Clustering to ...

[image: uncorrected proofs]
uncorrected proofs

[image: Cryptographic Key Generation from Biometric Data Using ... - CiteSeerX]
Cryptographic Key Generation from Biometric Data Using ... - CiteSeerX

[image: 2nd proofs]
2nd proofs

[image: 3rd proofs]
3rd proofs

[image: Uncorrected proofs notfordistribution]
Uncorrected proofs notfordistribution

Refuting Security Proofs for Tripartite Key Exchange with ... - CiteSeerX

School of Computing and Information Technology. University of Western ... Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW'06).

 Download PDF

 362KB Sizes
 1 Downloads
 213 Views

 Report

Recommend Documents

[image: alt]

Refuting Security Proofs for Tripartite Key Exchange with Model ...

... proof approach for pro- tocols, the security model comprises protocol participants a related finite field and the map Ãªis derived from either the. Weil or Tate ...

[image: alt]

Refuting Security Proofs for Tripartite Key Exchange ...

non of many secure electronic commerce applications, the design of oracle has either accepted with some session key or cluded in every signature.

[image: alt]

The importance of proofs of security for key ... - Semantic Scholar

Dec 7, 2005 - Information Security Institute, Queensland University of Technology, GPO Box 2434, ... examples of errors found in many such protocols years.

[image: alt]

Reducing TCB Complexity for Security-Sensitive ... - CiteSeerX

Apr 18, 2006 - action client, VPN gateway and digital signatures in an e- mail client), we achieved a considerable reduction in code size and complexity.

[image: alt]

Reducing TCB Complexity for Security-Sensitive ... - CiteSeerX

Apr 18, 2006 - mail client), we achieved a considerable reduction in code size and functionality and security of the service. The security re- ... window manager uses a few pixels at the top of the screen, Crypto-. Gram Newsletter.

[image: alt]

Improving Host Security with System Call Policies - CiteSeerX

services or user applications on a system call level and are enforced ... cess, for example to a web server only [12]. However, ... web server and gains its privileges may possibly use them in security guarantees or may make it difficult to keep

[image: alt]

Uncorrected Proofs for Review Only

Jan 24, 2011 - 16.1 Introduction. VARIATION IN PREDATOR abundance is one of ... hypothesis posits that prey optimize the trade-off between predation risk ...

[image: alt]

Two Simplified Proofs for Roberts' Theorem

Abstract. Roberts (1979) showed that every social choice function that is ex-post implementable in private value settings must be weighted VCG, i.e. it maximizes the weighted social welfare. This paper provides two simplified proofs for this. The fir

[image: alt]

Comparing Symmetric-key and Public-key based Security Schemes in ...

Comparing Symmetric-key and Public-key based Security Schemes in Sensor Networks: A Case Study of User Access Control. Haodong Wang, Bo Sheng, Chiu ...

[image: alt]

Security of a Leakage-Resilient Protocol for Key ...

T agc, T ags,T agsk Pre-determined distinct values, e.g., T agc = (IDC ||IDS||00), Resilient Security Architecture for Mobile IPv6 in Wireless Overlay Networks.

[image: alt]

Security Requirements for Key Establishment Proof ...

authenticated key exchange protocol T S2 due to Jeong, Katz, & Lee [11]. The Applying Proof Methodologies to Signature Schemes. In Moti Yung, editor, Ad-.

[image: alt]

Security Requirements for Key Establishment Proof ...

tional complexity proof models of Bellare & Rogaway (1993) and Canetti ... The treatment of computational complexity analysis for key establishment pro-.

[image: alt]

Convergence Proofs for Simulated Annealing ...

ties of hybrid automata can be posed as a minimization problem by utilizing ... Abbas is with the Department of Electrical, Computer and Energy. Engineering ...

[image: alt]

Why Security Testing Is Hard - CiteSeerX

some other action (which we'll call. C)? If C were lowing three key questions:1. â€¢ What fault would have Security testing has a long way to go. It's clear that ...

[image: alt]

uncorrected proofs

certification service, several threshold signature algorithms have been its digital certificate within the QoS requirements or spec- ified authentication delay ...

[image: alt]

Constrained Information-Theoretic Tripartite Graph Clustering to ...

1https://www.freebase.com/. 2We use relation expression to represent the surface pattern of Figure 1: Illustration of the CTGC model. R: relation set; E1: left.

[image: alt]

uncorrected proofs

Pest Management Science. Pest Manag Sci 59:000â€“000 (online: 2003). DOI: 10.1002/ps.801. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.

[image: alt]

Cryptographic Key Generation from Biometric Data Using ... - CiteSeerX

Department of Computing, Electronics, and Mechatronics. Universidad de las ... is reported in [2]. One more research that uses on-line handwritten signatures to RVP is encrypted using the advanced encryption standard. (AES) encryption ...

[image: alt]

2nd proofs

which a digital computer simulates a network of neurons. We show ... Under a liberal enough definition, any physical system, including a human being, can structure: insofar as phenomenal content reflects concepts, the underlying activity.

[image: alt]

3rd proofs

ic thought in the bodily act of online communication. The following suggests a few Bloomington, IN: Indiana University Press. Cassell, J., T. Bickmore, ...

[image: alt]

Uncorrected proofs notfordistribution

In our experiments, we address what Zwaan (2009) refers to as the context located up (e.g., cloud, airplane) or down (e.g., pit, subma- rine). In Experiment 1A ...

×
Report Refuting Security Proofs for Tripartite Key Exchange with ... - CiteSeerX

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

