1

Regioselective Synthesis of the Bridged Tricyclic Core of Garcinia Natural Products via Intramolecular Aryl Acrylate Cycloadditions Eric Tisdale, Chinmay Chowdhury, Binh G. Vong, Hongmei Li and Emmanuel A. Theodorakis*

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358 Supporting Information General techniques. Organic solutions were concentrated by rotary evaporation below 45 °C at about 20 mmHg. All nonaqueous reactions were carried out using flame-dried glassware, under an argon atmosphere in dry, freshly distilled solvents under anhydrous conditions, unless otherwise noted. THF and Et2O were distilled from sodium/benzophenone; CH2Cl2 and toluene from calcium hydride; and benzene from potassium. Pyridine, triethylamine and boron trifluoride etherate were distilled from calcium hydride prior to use. Yields refer to chromatographically and spectroscopically (1H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm E. Merck silica gel plates (60F254) using UV light as visualizing agent and p-anisaldehyde solution and heat as developing agents.

E. Merck silica gel (60, particle size 0.040-0.063 mm) was used for flash

chromatography. Preparative thin-layer chromatography separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-254). NMR spectra were recorded on a Varian 400 MHz instrument and calibrated using residual undeuterated solvent as an internal reference. IR spectra were recorded on a Nicolet Avatar 320 FT-IR spectrometer and values are reported in cm-1. High resolution mass spectra (HRMS) were recorded on a VG 7070 HS mass spectrometer under chemical ionization (CI) conditions or on a VG ZAB-ZSE mass spectrometer under fast atom bombardment (FAB) conditions. X-ray data were recorded on a Bruker SMART APEX 3kW Sealed Tube X-ray diffraction system.

2 Lactone 24. To a flask containing with Pb(OAc)4 (266.0 mg, 0.6 mmol) in anhydrous CH2 Cl2 (~10 mL) was added via a syringe freshly distilled O acrylic acid (2.2 mL, 32.0 mmol) and the solution was stirred for O approximately 10 minutes under argon at 25 °C. To the resulting colorless solution was added under argon at 25 °C via a cannula a solution of phenol O 24 23 (112.2 mg, 0.5 mmol) in CH 2 Cl2 (~10 mL) and the mixture was stirred for 10 min. to produce a bright yellow solution. The disappearance of the starting material was followed by TLC and was complete in about 10 min. At that moment, the reaction mixture was quenched with a few drops of ethylene glycol, concentrated and then dissolved in ether. The ethereal solution was washed with water (1 x 10 ml), NaHCO3 (aq) (3 x 10 ml) and brine (1 x 10 ml). The ethereal layer was then dried over MgSO 4 , filtered and concentrated under reduced pressure. The crude material was then dissolved in benzene, the reaction vessel placed on a pre-heated oil-bath (~100 °C) and the reaction mixture refluxed. The bright yellow color of the reaction mixture became less intense as the reaction progressed. When the reaction was judged to be complete by TLC (75% ether/hexane), it was concentrated and triturated with hexane to remove the yellow colored impurities. The white crystals that resulted were then recrystallized from hot cyclohexane to form short, white crystals of pure compound 24 (118.3 mg, 82%). 24: white solid; Rf = 0.19 (silica, 30 % ether/hexanes); IR (film) νmax 1791, 1747, 1631, 1451, 1228; 1 H NMR (400 MHz, CDCl3 ) δ 5.14 (m, 1H), 4.87 (d, 1H, J=7.2 Hz), 3.67 (s, 3H), 3.64 (s, 1H), 3.61 (s, 3H), 2.86 (dd, 1H, J=10.4 Hz, J=5.2 Hz), 2.58-2.43 (m, 2H), 2.06 (d, 1H, J=14.0 Hz), 1.95 (dd, 1H, J=14.4 Hz, J=10.4 Hz), 1.70(s, 3H), 1.62 (s, 3H); 13 C NMR (100 MHz, CDCl3 ) δ 196.8, 174.7, 160.2, 135.0, 118.5, 100.9, 89.6, 55.9, 55.4, 53.3, 41.3, 41.2, 34.1, 26.1, 24.9, 18.0; HRMS, calcd for C 16 H20 O5 (M +Na+) 315.1203, found 315.1205. MeO

OMe

Lactone 14. A round-bottomed flask was equipped with a reflux condenser and charged with the compound 17 (52.2 mg, 0.2 mmol) and m-xylene (2 mL). The reaction vessel was evacuated to remove oxygen, filled with argon, and then placed on a pre-heated oil bath (160 °C). O MeO OMe After refluxing for 45 minutes, TLC (75% ether/hexane) revealed the O reaction to be complete. The reaction mixture was concentrated and the product was purified by column chromatography using 40% ether/hexane O 14 as the solvent system. After evaporation of the eluant, short white needles corresponding to lactone 14 were observed and collected (48.1 mg, 92%). 14: white solid; Rf = 0.35 (silica, 75 % ether/hexanes); IR (film) νmax 1795, 1750, 1451, 1196, 993; 1 H NMR (400 MHz, CDCl3 ) δ 6.23 (d, 1H, J=9.2 Hz), 6.19 (d, 1H, J=9.6 Hz), 4.66 (m, 1H), 3.52 (s, 3H), 3.44 (s, 3H), 3.07 (d, 1H, J=10.8 Hz), 2.86 (dd, 1H, J=13.6 Hz, J=7.2 Hz), 2.64 (dd, 1H, J=13.6 Hz, J=8.8 Hz), 2.34 (d, 1H, J=13.2 Hz), 2.05 (dd, 1H, J=13.2 Hz, J=11.2 Hz), 1.61 (s, 6H); 13 C NMR (100 MHz, CDCl3 ) δ 195.8, 175.3, 136.0, 129.9, 128.8, 116.0, 85.8, 83.7, 82.5, 53.4, 52.2, 41.3, 33.1, 26.1, 26.0, 17.9; HRMS, calcd for C16 H20 O5 (M+Na +) 315.1203, found 315.1208.

3 X-Ray data of compound 24

Table 1. Crystal data and structure refinement for 24. Identification code ericm Empirical formula C16 H20 O5 Formula weight 292.32 Temperature 296(2) K Wavelength 0.71073 ≈ Crystal system Monoclinic Space group C2/c Unit cell dimensions a = 10.548(3) ≈ α= 90∞. b = 12.296(3) ≈ β= 99.532(4)∞. c = 23.831(6) ≈ γ = 90∞. Volume 3048.1(13) ≈3 Z 8 Density (calculated) 1.274 Mg/m3 Absorption coefficient 0.094 mm-1 F(000) 1248 Crystal size 0.40 x 0.20 x 0.20 mm3 Theta range for data collection 1.73 to 27.52∞. Index ranges -13<=h<=13, -15<=k<=15, -30<=l<=30 Reflections collected 12447 Independent reflections 3429 [R(int) = 0.0362] Completeness to theta = 27.52∞ 97.5 % Absorption correction None Max. and min. transmission 0.9814 and 0.9633 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3429 / 0 / 190 Goodness-of-fit on F2 1.715 Final R indices [I>2sigma(I)] R1 = 0.1379, wR2 = 0.4533 R indices (all data) R1 = 0.1945, wR2 = 0.4941 Largest diff. peak and hole 1.002 and -0.832 e.≈-3

4 Table 2. Atomic coordinates ( x 104 ) and equivalent isotropic displacement parameters (≈2 x 10 3 ) for 24. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x

y

z

U(eq)

________________________________________________________________________________ O(1)

-790(3)

-5966(3)

-3760(2)

75(1)

O(2)

-1171(5)

-7644(3)

-4111(2)

114(2)

O(3)

-3271(4)

-5793(3)

-3423(2)

96(2)

O(4)

-237(8)

-3732(5)

-4216(3)

141(3)

O(5)

-1579(15)

-3882(5)

-5230(3)

286(8)

C(1)

-1520(5)

-6733(5)

-4078(3)

80(2)

C(2)

-2731(7)

-6206(5)

-4364(3)

103(2)

C(3)

-2490(11)

-5641(6)

-4915(3)

151(4)

C(4)

-2161(12)

-4418(6)

-4788(3)

145(4)

C(5)

-3265(15)

-3901(7)

-4623(5)

187(7)

C(6)

-3710(8)

-4362(6)

-4179(4)

130(4)

C(7)

-2920(5)

-5321(5)

-3918(3)

82(2)

C(8)

-1521(5)

-4970(4)

-3760(2)

66(1)

C(9)

-1188(9)

-4302(5)

-4260(3)

108(3)

C(10)

-1130(4)

-4435(4)

-3188(2)

63(1)

C(11)

-1852(5)

-3405(4)

-3116(2)

64(1)

C(12)

-2585(5)

-3212(4)

-2739(2)

72(2)

C(13)

-3328(8)

-2139(6)

-2757(3)

122(3)

C(14)

-2874(7)

-3989(6)

-2306(3)

102(2)

C(15)

-1810(12)

-3966(10)

-5695(5)

170(5)

C(16)

-4521(8)

-6257(8)

-3472(6)

192(6)

________________________________________________________________________________

5 Table 3. Bond lengths [≈] and angles [∞] for 24 _____________________________________________________ O(1)-C(1)

1.365(7)

O(1)-C(8)

1.447(5)

O(2)-C(1)

1.186(7)

O(3)-C(7)

1.419(8)

O(3)-C(16)

1.423(9)

O(4)-C(9)

1.213(10)

O(5)-C(15)

1.098(12)

O(5)-C(4)

1.460(13)

C(1)-C(2)

1.492(8)

C(2)-C(3)

1.544(11)

C(2)-C(7)

1.557(8)

C(3)-C(4)

1.561(11)

C(4)-C(5)

1.438(16)

C(4)-C(9)

1.494(11)

C(5)-C(6)

1.351(17)

C(6)-C(7)

1.516(10)

C(7)-C(8)

1.524(8)

C(8)-C(10)

1.509(7)

C(8)-C(9)

1.536(9)

C(10)-C(11)

1.502(7)

C(11)-C(12)

1.300(7)

C(12)-C(14)

1.475(9)

C(12)-C(13)

1.532(8)

C(1)-O(1)-C(8)

109.4(4)

C(7)-O(3)-C(16)

117.5(7)

C(15)-O(5)-C(4)

129.4(12)

O(2)-C(1)-O(1)

122.4(5)

O(2)-C(1)-C(2)

129.1(6)

O(1)-C(1)-C(2)

108.4(4)

C(1)-C(2)-C(3)

109.6(7)

C(1)-C(2)-C(7)

100.8(5)

C(3)-C(2)-C(7)

108.9(6)

C(2)-C(3)-C(4)

109.4(5)

C(5)-C(4)-C(9)

101.6(6)

6 C(5)-C(4)-O(5)

117.0(9)

C(9)-C(4)-O(5)

104.6(9)

C(5)-C(4)-C(3)

108.3(10)

C(9)-C(4)-C(3)

110.8(6)

O(5)-C(4)-C(3)

113.7(6)

C(6)-C(5)-C(4)

115.6(7)

C(5)-C(6)-C(7)

114.1(9)

O(3)-C(7)-C(6)

117.2(6)

O(3)-C(7)-C(8)

106.6(4)

C(6)-C(7)-C(8)

109.0(6)

O(3)-C(7)-C(2)

111.2(5)

C(6)-C(7)-C(2)

112.8(6)

C(8)-C(7)-C(2)

98.0(5)

O(1)-C(8)-C(10)

107.7(4)

O(1)-C(8)-C(7)

104.7(4)

C(10)-C(8)-C(7)

117.1(4)

O(1)-C(8)-C(9)

105.2(4)

C(10)-C(8)-C(9)

113.9(5)

C(7)-C(8)-C(9)

107.2(6)

O(4)-C(9)-C(4)

124.8(7)

O(4)-C(9)-C(8)

122.3(7)

C(4)-C(9)-C(8)

112.9(7)

C(11)-C(10)-C(8)

113.7(4)

C(12)-C(11)-C(10)

127.1(5)

C(11)-C(12)-C(14)

125.6(5)

C(11)-C(12)-C(13)

119.8(6)

C(14)-C(12)-C(13)

114.4(5)

_____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

7 Table 4. Anisotropic displacement parameters (≈2 x 10 3 ) for 24. The anisotropic displacement factor exponent takes the form: -2π 2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11

U22

U33

U23

U13

U12

______________________________________________________________________________ O(1)

75(2)

61(2)

89(3)

-16(2)

12(2)

16(2)

O(2)

126(4)

60(3)

149(4)

-28(3)

1(3)

29(2)

O(3)

64(3)

81(3)

145(4)

-32(3)

20(3)

-10(2)

O(4)

245(7)

84(3)

114(4)

-27(3)

90(4)

-41(4)

O(5)

690(30)

98(5)

60(4)

-3(3)

30(7)

-15(7)

C(1)

82(4)

60(3)

92(4)

-17(3)

3(3)

19(3)

C(2)

127(6)

62(4)

104(5)

-39(3)

-24(4)

23(3)

C(3)

279(12)

77(5)

75(5)

-29(4)

-36(6)

27(6)

C(4)

300(12)

61(4)

59(4)

-14(3)

-15(5)

31(6)

C(5)

322(17)

77(6)

113(7)

-33(5)

-106(9)

74(8)

C(6)

119(5)

75(5)

162(8)

-66(5)

-74(6)

40(4)

C(7)

68(3)

63(3)

104(4)

-31(3)

-23(3)

10(3)

C(8)

82(3)

49(3)

64(3)

-11(2)

6(2)

10(2)

C(9)

204(8)

53(3)

68(4)

-17(3)

30(5)

15(4)

C(10)

51(3)

75(3)

61(3)

-10(2)

1(2)

-2(2)

C(11)

72(3)

50(3)

67(3)

-14(2)

3(2)

-9(2)

C(12)

72(3)

64(3)

79(3)

-21(3)

10(3)

7(3)

C(13)

165(7)

84(5)

125(6)

-24(4)

43(5)

34(5)

C(14)

101(5)

106(5)

107(5)

-10(4)

34(4)

1(4)

C(15)

181(10)

205(12)

147(9)

-66(7)

90(8)

-25(7)

C(16)

78(5)

151(8)

349(18)

-110(10)

36(8)

-47(5)

______________________________________________________________________________

8 Table 5. Hydrogen coordinates ( x 104 ) and isotropic displacement parameters (≈2 x 10 3 ) for 24. ________________________________________________________________________________ x

y

z

U(eq)

________________________________________________________________________________

H(2A)

-3452

-6718

-4433

123

H(3A)

-3251

-5698

-5205

181

H(3B)

-1784

-5994

-5057

181

H(5A)

-3647

-3291

-4809

224

H(6A)

-4437

-4113

-4045

156

H(10A)

-1266

-4944

-2893

76

H(10B)

-218

-4272

-3136

76

H(11A)

-1767

-2844

-3369

77

H(13A)

-3091

-1680

-3049

183

H(13B)

-3125

-1780

-2395

183

H(13C)

-4234

-2284

-2838

183

H(14A)

-2381

-4641

-2324

154

H(14B)

-3774

-4163

-2377

154

H(14C)

-2656

-3669

-1935

154

H(15A)

-1199

-3561

-5868

256

H(15B)

-2659

-3691

-5826

256

H(15C)

-1772

-4720

-5796

256

H(16A)

-4639

-6549

-3110

289

H(16B)

-4610

-6828

-3750

289

H(16C)

-5155

-5706

-3588

289

________________________________________________________________________________

9 X-Ray data of compound 14

Table 1. Crystal data and structure refinement for 14 Identification code a Empirical formula C16 H20 O5 Formula weight 292.32 Temperature 100(2) K Wavelength 0.71073 Å Crystal system Orthorhombic Space group Pna2(1) Unit cell dimensions a = 6.7300(7) Å α= 90°. b = 27.296(3) Å β= 90°. c = 7.9110(9) Å γ = 90°. Volume 1453.3(3) Å3 Z 4 Density (calculated) 1.336 Mg/m3 Absorption coefficient 0.099 mm-1 F(000) 624 Crystal size 0.60 x 0.15 x 0.05 mm3 Theta range for data collection 1.49 to 27.53°. Index ranges -8<=h<=8, -35<=k<=35, -9<=l<=10 Reflections collected 11479 Independent reflections 3247 [R(int) = 0.0398] Completeness to theta = 27.53° 98.9 % Absorption correction None Max. and min. transmission 0.9951 and 0.9431 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3247 / 1 / 190 Goodness-of-fit on F2 1.035 Final R indices [I>2sigma(I)] R1 = 0.0431, wR2 = 0.1117 R indices (all data) R1 = 0.0504, wR2 = 0.1159 Absolute structure parameter 0.3(10) Largest diff. peak and hole 0.325 and -0.178 e.Å-3

10 Table 2. Atomic coordinates ( x 104 ) and equivalent isotropic displacement parameters (Å2 x 10 3 ) for 14. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. ________________________________________________________________________________ x

y

z

U(eq)

________________________________________________________________________________ O(1)

8118(2)

2648(1)

6082(2)

20(1)

O(2)

9189(2)

2307(1)

8482(2)

24(1)

O(3)

8283(2)

3071(1)

3542(2)

24(1)

O(4)

4966(2)

3403(1)

5166(2)

23(1)

O(5)

8138(2)

4595(1)

6439(2)

25(1)

C(1)

9083(3)

2659(1)

7600(3)

20(1)

C(2)

9853(3)

3172(1)

7895(2)

21(1)

C(3)

8179(3)

3485(1)

8680(3)

20(1)

C(4)

7076(3)

3782(1)

7283(2)

18(1)

C(5)

8610(3)

4114(1)

6469(3)

21(1)

C(6)

10229(3)

3892(1)

5870(3)

22(1)

C(7)

10239(3)

3346(1)

6063(3)

22(1)

C(8)

8359(3)

3129(1)

5252(3)

20(1)

C(9)

6568(3)

3437(1)

5825(2)

18(1)

C(10)

5200(3)

4036(1)

7935(3)

20(1)

C(11)

5484(3)

4303(1)

9563(3)

22(1)

C(12)

4746(3)

4182(1)

11068(3)

24(1)

C(13)

3486(4)

3738(1)

11384(3)

35(1)

C(14)

5156(4)

4486(1)

12606(3)

32(1)

C(15)

9496(3)

4902(1)

5547(3)

32(1)

C(16)

9823(3)

2771(1)

2807(3)

28(1)

________________________________________________________________________________

11 Table 3. Bond lengths [Å] and angles [°] for 14. _____________________________________________________ O(1)-C(1)

1.366(2)

O(1)-C(8)

1.476(2)

O(2)-C(1)

1.189(2)

O(3)-C(8)

1.363(3)

O(3)-C(16)

1.444(2)

O(4)-C(9)

1.201(2)

O(5)-C(5)

1.352(2)

O(5)-C(15)

1.425(2)

C(1)-C(2)

1.512(3)

C(2)-C(3)

1.545(3)

C(2)-C(7)

1.547(3)

C(3)-C(4)

1.558(3)

C(4)-C(5)

1.518(3)

C(4)-C(9)

1.528(3)

C(4)-C(10)

1.530(3)

C(5)-C(6)

1.334(3)

C(6)-C(7)

1.497(3)

C(7)-C(8)

1.538(3)

C(8)-C(9)

1.537(3)

C(10)-C(11)

1.493(3)

C(11)-C(12)

1.332(3)

C(12)-C(14)

1.498(3)

C(12)-C(13)

1.499(3)

C(1)-O(1)-C(8)

108.69(15)

C(8)-O(3)-C(16)

116.03(16)

C(5)-O(5)-C(15)

115.31(16)

O(2)-C(1)-O(1)

121.90(18)

O(2)-C(1)-C(2)

129.53(18)

O(1)-C(1)-C(2)

108.55(16)

C(1)-C(2)-C(3)

108.98(15)

C(1)-C(2)-C(7)

101.42(16)

C(3)-C(2)-C(7)

109.16(16)

C(2)-C(3)-C(4)

110.53(16)

C(5)-C(4)-C(9)

101.56(15)

12 C(5)-C(4)-C(10)

115.69(16)

C(9)-C(4)-C(10)

110.44(15)

C(5)-C(4)-C(3)

106.68(15)

C(9)-C(4)-C(3)

108.74(15)

C(10)-C(4)-C(3)

112.97(16)

C(6)-C(5)-O(5)

128.90(18)

C(6)-C(5)-C(4)

115.75(17)

O(5)-C(5)-C(4)

115.35(17)

C(5)-C(6)-C(7)

114.84(17)

C(6)-C(7)-C(8)

109.70(16)

C(6)-C(7)-C(2)

113.65(18)

C(8)-C(7)-C(2)

97.70(15)

O(3)-C(8)-O(1)

109.51(16)

O(3)-C(8)-C(9)

109.07(16)

O(1)-C(8)-C(9)

105.57(14)

O(3)-C(8)-C(7)

119.32(17)

O(1)-C(8)-C(7)

104.35(15)

C(9)-C(8)-C(7)

108.14(16)

O(4)-C(9)-C(8)

122.26(18)

O(4)-C(9)-C(4)

125.15(18)

C(8)-C(9)-C(4)

112.60(15)

C(11)-C(10)-C(4)

113.97(16)

C(12)-C(11)-C(10)

127.07(18)

C(11)-C(12)-C(14)

121.33(19)

C(11)-C(12)-C(13)

124.1(2)

C(14)-C(12)-C(13)

114.58(19)

_____________________________________________________________ Symmetry transformations used to generate equivalent atoms:

13 Table 4. Anisotropic displacement parameters (Å2 x 10 3 ) for 14. The anisotropic displacement factor exponent takes the form: -2π 2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ] ______________________________________________________________________________ U11

U22

U33

U23

U13

U12

______________________________________________________________________________ O(1)

20(1)

22(1)

19(1)

1(1)

-1(1)

-1(1)

O(2)

23(1)

26(1)

24(1)

4(1)

0(1)

1(1)

O(3)

24(1)

30(1)

18(1)

0(1)

3(1)

3(1)

O(4)

17(1)

29(1)

21(1)

1(1)

-2(1)

0(1)

O(5)

24(1)

22(1)

28(1)

3(1)

3(1)

-2(1)

C(1)

13(1)

25(1)

21(1)

0(1)

1(1)

2(1)

C(2)

18(1)

25(1)

19(1)

2(1)

-4(1)

1(1)

C(3)

17(1)

24(1)

18(1)

1(1)

-3(1)

-2(1)

C(4)

15(1)

23(1)

17(1)

-1(1)

-1(1)

0(1)

C(5)

19(1)

26(1)

18(1)

2(1)

-4(1)

-3(1)

C(6)

17(1)

26(1)

25(1)

3(1)

-1(1)

-5(1)

C(7)

15(1)

27(1)

23(1)

1(1)

2(1)

-1(1)

C(8)

20(1)

21(1)

21(1)

0(1)

0(1)

-1(1)

C(9)

19(1)

20(1)

16(1)

4(1)

-1(1)

-3(1)

C(10)

17(1)

25(1)

19(1)

2(1)

0(1)

0(1)

C(11)

20(1)

23(1)

24(1)

-1(1)

0(1)

-1(1)

C(12)

26(1)

26(1)

20(1)

0(1)

0(1)

4(1)

C(13)

49(1)

37(1)

19(1)

-1(1)

1(1)

-14(1)

C(14)

42(1)

30(1)

23(1)

-2(1)

-2(1)

-4(1)

C(15)

32(1)

25(1)

39(1)

5(1)

9(1)

-4(1)

C(16)

29(1)

31(1)

25(1)

-2(1)

7(1)

2(1)

______________________________________________________________________________

14 Table 5. Hydrogen coordinates ( x 104 ) and isotropic displacement parameters (Å2 x 10 3 ) for 14. ________________________________________________________________________________ x

y

z

U(eq)

________________________________________________________________________________

H(2A)

11088

3175

8598

25

H(3A)

8753

3714

9520

24

H(3B)

7223

3270

9272

24

H(6A)

11292

4066

5359

27

H(7A)

11475

3198

5585

26

H(10A)

4735

4271

7068

24

H(10B)

4146

3787

8088

24

H(11A)

6278

4590

9522

27

H(13A)

3286

3561

10321

53

H(13B)

2195

3840

11838

53

H(13C)

4152

3524

12201

53

H(14A)

5979

4767

12292

48

H(14B)

5858

4287

13446

48

H(14C)

3898

4601

13085

48

H(15A)

9035

5242

5596

48

H(15B)

9572

4796

4365

48

H(15C)

10814

4877

6067

48

H(16A)

9631

2752

1581

42

H(16B)

9757

2440

3291

42

H(16C) 11124 2915 3051 42 ________________________________________________________________________________

9

O

22

OMe

OMe

8

7.260 6.800 6.778 6.675 6.668

7

6.514

6.206

6

5.30 5.29 4.99 4.87

6.507 6.492 6.485 6.178 6.162 6.134 5.186 5.183

5

10.51

5.142 5.139 5.123 5.120 5.095 5.094

4 34.32

3.779 3.717

3 2 34.72

1.470

1 ppm

15

200

O

22

OMe

OMe

180 160 153.075 146.993 145.689

140

144.005

120 113.191 112.819 110.218

100

106.525

80.754

80

77.311 77.000 76.681

60

56.569 55.590

40 26.634

20 0 ppm

16

OMe

OMe

9

16

OH

8 7.260

7 1.11

6.652 6.630

1.09

6.347 6.325

6 0.90

5.719

1.02

5.243 5.240

5

5.237

3.00 3.13

4 3.831 3.770

2.14

3.377 3.360

3 2 2.98 2.762.94

1.780 1.671 1.565

1 ppm

17

16

OH

200

OMe

OMe

180 160 152.361 144.056

140

141.084

131.459

120

122.396 116.845

107.790

100

101.108

80

77.325 77.014 76.832 76.695

60

56.461 56.044

40 25.920

20

22.742 17.904

0 ppm

18

O

O

MeO

9

24

OMe O

8 7.260

7 6 5.160 5.123

5

0.05 0.05

5.141 4.878 4.860 3.670 3.636 3.614

4

2.880

0.33

2.867 2.854 2.841 2.578

0.05

3

2.560 2.540 2.522

0.10

2.481 2.463

2

0.10

2.444 2.425 2.076 0.31

2.041 1.979

0.01

1.953 1.943

1

1.918 1.695 1.616 1.247

ppm

19

24

OMe

200

O

O

MeO

196.797

O

180 174.713

160

160.159

140 135.018

120

118.454

100

100.943

89.552

80

77.319 77.000 76.689

60

55.863 55.416 53.308

40

41.302 41.226 34.052 26.134 24.943

20

18.049

0 ppm

20

9

O

O

26

OMe

OMe

OH

8 7.260

7 6.454 11.05

6.432 6.421 6.398

6 5.70

5.198

5 35.87 5.27

4

3.826 3.822

3 2 3.41 38.71

1.455 1.422 1.361

1 ppm

21

200

O

O

26

OMe

OMe

OH

180 160 143.300

140

143.072

132.045 129.959

120 103.089

100

102.224 93.624

80

77.319 77.000 76.689 74.520

60

56.402 56.197

40 30.396 22.797

20

22.061

0 ppm

22

MeO

OMe

9

27

OH

O

8 7 6.567 0.05 0.05 0.05

6.544 6.345 6.322 6.254

6

6.227 6.210

0.05

6.183 5.602

5

0.05 0.05

5.268 5.224 5.089 5.062

4 0.34

3.822 3.748 3.736

3 2 0.35

1.466 1.422 1.248

1 ppm

23

27

OH

O

200

MeO

OMe

180 160 149.033 143.702

140

141.988 141.388 132.492

120 112.933 106.487

100

101.762

90.067 82.498

80

77.319 77.000 76.681

60

56.493 55.969 55.765

40 30.396 29.759 26.559

20 0 ppm

24

MeO

8

9

O

O

17

O

OMe

7.260 6.725 6.704 6.651 6.628

7

6.622 6.619

0.15

6.579 6.576

6

0.04 0.05 0.05

6.390 6.363 6.346 6.320 6.149 6.122 6.106

5

0.05 0.05

6.078 6.009 6.006 5.982 5.980 5.134 5.091

4 0.31

4.973 4.971 4.946 4.944 3.763

3

3.759

2 0.32

1.428 1.413

1 ppm

25

O

O

17

O

200

MeO

OMe

180 160

163.041

149.147 146.219

140

143.421 138.787 135.617 132.204 127.593

120 112.281 109.134 106.434

100 82.847

80

77.319 77.000 76.681

60

56.356 56.326

40 26.718

20 0 ppm

26

MeO

9 14

O

O O OMe

8 7.260

7 6.247 6.244 9.25

6.224 6.221

6

6.199 6.175

4.685 4.683

5

4.668

4.69

4.664 4.650 4.647 4.643 3.519

4

3.444 3.085

28.80

3.058 2.887

3 2

5.34 5.61 5.02 5.45 5.56

2.869 2.853 2.836 2.664 2.642 2.630 2.609 2.360

30.29

2.327 2.078 2.050 2.045 2.017

1

1.610

ppm

27

200

MeO O

O

14

195.781

180

O OMe

175.304

160 140 136.049 129.853 128.837

120 116.035

100 85.760 83.674

80

82.529 77.319 77.000 76.689

60 53.444 52.185

40

41.302

33.104 26.134 26.013

20

17.883

0 ppm

28

Regioselective Synthesis of the Bridged Tricyclic Core ...

resolution mass spectra (HRMS) were recorded on a VG 7070 HS mass spectrometer under chemical ... APEX 3kW. Sealed Tube X-ray diffraction system.

2MB Sizes 1 Downloads 102 Views

Recommend Documents

Regioselective Synthesis of the Bridged Tricyclic ... - Semantic Scholar
17 in boiling m-xylene allowed the tandem Claisen/Diels-. Alder to take place, thereby producing tricyclic structure 14 in a remarkably efficient process (92% overall yield). Compound 14 was crystalline, and X-ray diffraction studies revealed that it

Regioselective Synthesis of the Tricyclic Core of ...
analytical data available for compounds 10, 11, 17, 18, 20,. 23, and 25 and X-ray data for compound 25. This material is available free of charge via the Internet ...

Regioselective Synthesis of the Tricyclic Core of ...
LETTERS. 2003. Vol. 5, No. 9. 1491-1494. 10.1021/ol034276y CCC: $25.00. © 2003 American .... is available free of charge via the Internet at http://pubs.acs.org. ... Rogers, B. D.; Hobbs, S. J.; Peck, D. R.; Curran, D. P. J. Am. Chem. Soc. 1987 ...

Highly efficient regioselective synthesis of organotellurium ... - Arkivoc
Aug 31, 2017 - of tellane 4 (0.735 g, 2 mmol) in dichloromethane (25 mL). The mixture was stirred overnight at room temperature. The solvents were removed on a rotary evaporator, and the residue was dried under reduced pressure. Yield: 0.726 g (quant

An efficient stereoselective synthesis of a sulfur-bridged ... - Arkivoc
Jun 25, 2017 - Photochemistry Department, National Research Center, Dokki, Giza 12622, Egypt b. Faculty of Health Sciences, NORD University, 7800 Namsos, Norway .... C NMR data. The purity of the thiophene analogue 6b was determined by HPLC to be 99%

Controlled synthesis of dendritic Au@Pt core--shell ...
Mar 30, 2009 - (UV–vis) spectroscopy results and a comparison of the average diameter .... was kept at room temperature overnight to decompose the.

Stereoselective synthesis of fully functionalized acyclic core ... - Arkivoc
Nov 19, 2017 - Retrosynthetically, we dissected 3 into building blocks 4 and 5 (Scheme 1). Heck coupling of substrate 3 was envisaged as a key step to close the macrocycle, while connection of the cyclization precursor 3 was planned to arise from Mas

Automatic Synthesis of Regular Expressions from Examples - Core
Jul 5, 2013 - 12 different extraction tasks: email addresses, IP addresses, MAC (Ethernet card-level) addresses, web URLs, HTML headings, Italian Social ...

fused tricyclic dihydroquinolines by palladium- catalyzed ... - Arkivoc
automatic analyser (Thermo Fisher Scientific). HRMS were ... Experimental procedures for compounds 2–8 as well as details for X-ray data are in Supporting.

Regioselective nitration of 2- and 4-nitrotoluenes over ... - Arkivoc
H. Alotaibi thanks the Saudi Arabian Cultural Bureau, London for financial support. References and Notes. ‡ Current address: Petrochemical Research Institute, ...

for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic - GitHub
2Department of Genetics, Stanford University, Stanford, California, USA ... 4Department of Clinical, Social and Administrative Sciences, College of Pharmacy, ...

fused tricyclic dihydroquinolines by palladium - Arkivoc
best results were obtained using cheap tribasic potassium phosphate as the base ..... Measurement of 13C NMR was done in an ordinary way using broadband ...... Krause, R. W. M.; Parsons, A. S.; Pelly, S. C.; Stanbury, T. V. Pure Appl. Chem.

Book bridged callahan mclane pdf free download
Book bridged callahan mclane pdf free download

A practical approach for regioselective mono-nitration of ... - Arkivoc
College of Chemistry and Chemical Engineering, Shanghai University of ... After choosing the best nitrating reagent and solvent, nitration of a variety of phenolic.

Synthesis of substituted ... - Arkivoc
Aug 23, 2016 - (m, 4H, CH2OP), 1.39 (t, J 7.0 Hz, 6H, CH3CH2O); 13C NMR (176 MHz, CDCl3) δ 166.5 (s, C-Ar), ... www.ccdc.cam.ac.uk/data_request/cif.

Synthesis of - Arkivoc
Taiwan. E-mail: [email protected] ...... www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge. CB2 1EZ, UK; fax: ...

Synthesis of substituted ... - Arkivoc
Aug 23, 2016 - S. R. 1. 2. Figure 1. Structures of 4H-pyrimido[2,1-b][1,3]benzothiazol-4-ones 1 and 2H-pyrimido[2,1- b][1,3]benzothiazol-2-ones 2.

Synthesis of Anthropomorphic Molecules The NanoPutians.pdf ...
68, No. 23, 2003. Page 3 of 17. Synthesis of Anthropomorphic Molecules The NanoPutians.pdf. Synthesis of Anthropomorphic Molecules The NanoPutians.pdf.

The synthesis of thioglucosides substituted 1,4 ... - Arkivoc
Aug 31, 2017 - data of new and known starting chloronaphthoquinones 7a,b,c–10a,b ..... H-13), 4.23 (ddd, 1H, J 2.2, 5.5, 9.6 Hz, H-2), 5.07 (dd, 1H, J 9.6 Hz, ...

Chemical Synthesis of Graphene - Arkivoc
progress that has been reported towards producing GNRs with predefined dimensions, by using ..... appended around the core (Scheme 9), exhibit a low-energy band centered at 917 .... reported an alternative method for the preparation of a.

Synthesis of 2-aroyl - Arkivoc
Now the Debus-Radziszewski condensation is still used for creating C- ...... Yusubov, M. S.; Filimonov, V. D.; Vasilyeva, V. P.; Chi, K. W. Synthesis 1995, 1234.

utilization of hydrogen sulphide for the synthesis of ...
Preparation of aqueous ammonium sulphide. About 10% ammonia solution was prepared by adding suitable quantity of liquor ammonia in distilled water. H2S gas was bubbled through the ammonia solution kept in a 2.5x10-. 4 m3 standard gas-bubbler. Since,

Synthesis and properties of heteroaromatic carbenes of the ... - Arkivoc
26 Jul 2017 - Austin, Texas 78712-0165, USA c. The Atlantic Centre for Green Chemistry, Department of Chemistry, Saint Mary's University,. Halifax, Nova Scotia B3H 3C3, Сanada d The L.M. Litvinenko Institute of Physical Organic and Coal Chemistry, U

Role of Different Phospholipids in the Synthesis of ...
well as its corresponding energy-dispersive X-ray microanalysis. (EDAX) (Figure 4b). ..... (b) Schurch, S.; Green, F. H. Y.; Bachofen,. SCHEME 2 : Schematic ...