

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Metaprogramming with Macros Eugene Burmako ´ Ecole Polytechnique F´ ed´ erale de Lausanne http://scalamacros.org/

10 September 2012

What are macros? Macros in programming languages: I

C macros

I

Lisp macros

I

...

What is the underlying notion?

2

What are macros? Macros in programming languages: I

C macros

I

Lisp macros

I

...

What is the underlying notion?

The notion of textual abstraction: I

Recognize pieces of text that match a specification

I

Replace them according to a procedure 3

What are macros?

printf("Hello %s!", "World")

macro

def formatter(arg1: Any) = "Hello " + arg1.toString + "!" print(formatter("World"))

4

Why macros?

Work with lexical tokens or syntax trees, therefore are not bound by the semantics of the underlying programming language Use cases: I

Deeply embedded DSLs (database access, testing)

I

Optimization (programmable inlining, fusion)

I

Analysis (integrated proof-checker)

I

Effects (effect containment and propagation)

I

...

5

Challenges in macrology

I

Notation

I

Variable capture

I

Typechecking

I

Syntax extensibility

I

...

6

The focus of this talk

Inadvertent variable capture: I

Macro expansions sometimes cause name clashes

I

Some identifiers end up referring to variables from other scopes

7

Outline

The prelude of macros: introduces the running example

The chapter of bindings: illustrates the problem of variable capture

The trilogy of tongues: surveys macro systems that solve this problem

The vision of the days to come: presents the research proposal

8

A detour: how Lisp works (if (calculate) (print "success") (error "does not compute"))

I

S-expressions: atoms and lists

I

print and error are one-argument functions

I

calculate is a zero-argument function

I

if is a special form

I

All values can be used in conditions

9

Anaphoric if (aif (calculate) (print it) (error "does not compute"))

(let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 10

The aif macro (aif (calculate) (print it) (error "does not compute")) (defmacro aif args

(let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 11

Low-level implementation (aif (calculate) (print it) (error "does not compute")) (defmacro aif args (list ’let* (list (list ’temp (car args)) (list ’it ’temp)) (list ’if ’temp (cadr args) (caddr args)))) (let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 12

Quasiquoting: static template (aif (calculate) (print it) (error "does not compute")) (defmacro aif args ‘(let* ((temp) (it temp)) (if temp) (let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 13

Quasiquoting: dynamic holes (aif (calculate) (print it) (error "does not compute")) (defmacro aif args ‘(let* ((temp ,(car args)) (it temp)) (if temp ,(cadr args) ,(caddr args)) (let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 14

Macro by example (MBE) (aif (calculate) (print it) (error "does not compute")) (defmacro+ aif (aif cond then else) (let* ((temp cond) (it temp)) (if temp then else))) (let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 15

Interlude

(defmacro+ aif (aif cond then else) (let* ((temp cond) (it temp)) (if temp then else)))

I

Macros are functions that transform syntax objects

I

Quasiquotes = static templates + dynamic holes

16

The aif macro is buggy (aif (calculate) (print it) (error "does not compute")) (defmacro+ aif (aif cond then else) (let* ((temp cond) (it temp)) (if temp then else)))

17

The aif macro is buggy (aif (calculate) (print it) (error "does not compute")) (defmacro+ aif (aif cond then else) (let* ((temp cond) (it temp)) (if temp then else))) (let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 18

Bug #1: Violation of hygiene (let ((temp 451°F)) (aif (calculate) (print it) (print temp))) (defmacro+ aif (aif cond then else) (let* ((temp cond) (it temp)) (if temp then else))) (let ((temp 451°F)) (let* ((temp (calculate)) (it temp)) (if temp (print it) (print temp)))) 19

Bug #2: Violation of referential transparency (let ((if hijacked)) (aif (calculate) (print it) (error "does not compute"))) (defmacro+ aif (aif cond then else) (let* ((temp cond) (it temp)) (if temp then else))) ;; core if (let ((if hijacked)) (let* ((temp (calculate)) (it temp)) (if temp ;; hijacked if (print it) (error "does not compute")))) 20

Old school solution

(defmacro+ aif (aif cond then else) (let ((temp (gensym))) (let* ((temp cond) (it temp)) (if temp then else)))) And please don’t rename core forms

21

Three macro-enabled languages Template Meta-programming for Haskell [Template Haskell] by Tim Sheard and Simon Peyton Jones Meta-programming in Nemerle [Nemerle] by Kamil Skalski, Michal Moskal and Pawel Olszta. Keeping it Clean with Syntax Parameters [Racket] by Eli Barzilay, Ryan Culpepper and Matthew Flatt All three languages: I

Solve the problems of hygiene and referential transparency

I

Do that in their own interesting ways 22

Template Haskell: Introduction $(aif [| calculate |] [| putStrLn (show it) |] [| error "does not compute" |]) aif :: Q Exp -> Q Exp -> Q Exp -> Q Exp aif cond then’ else’ = [| let temp = $cond it = temp in if temp /= 0 then $then’ else $else’ |] I

No dedicated concept of macros

I

Macro expansions are triggered explicitly with $

I

There are quasiquotes [| ... |] and unquotes $expr

I

Hygienic and referentially transparent 23

Template Haskell: The perils of hygiene $(aif [| calculate |] [| putStrLn (show it) |] [| error "does not compute" |]) aif :: Q Exp -> Q Exp -> Q Exp -> Q Exp aif cond then’ else’ = [| let temp = $cond it = temp in if temp /= 0 then $then’ else $else’ |] let temp_a1mx = calculate it_a1my = temp_a1mx in if (temp_a1mx /= 0) then putStrLn (show it) else error "does not compute" Not in scope: ‘it’ 24

Template Haskell: The Q monad aif cond then’ else’ = [| let temp = $cond it = temp in if temp /= 0 then $then’ else $else’ |] aif :: Q Exp -> Q Exp -> Q Exp -> Q Exp aif cond’ then’’ else’’ = do { ... ; temp

25

Template Haskell: Breaking hygiene $(aif [| calculate |] [| putStrLn (show $(dyn "it")) |] [| error "does not compute" |]) aif :: Q Exp -> Q Exp -> Q Exp -> Q Exp aif cond then’ else’ = [| let temp = $cond it = temp in if temp /= 0 then $then’ else $else’ |] let temp_a1mx = calculate it_a1my = temp_a1mx in if (temp_a1mx /= 0) then putStrLn (show it_a1my) else error "does not compute" 26

Template Haskell: Summary

I

In Template Haskell quasiquotes are compiled down to the Q monad

I

The Q monad takes care of names

I

Sometimes we need to break hygiene

27

Nemerle: Introduction aif(calculate, WriteLine(it), throw Exception("does not compute")) macro aif(cond, then, else_) { } I

Macros are declared explicitly, expansions are implicit

I

There are quasiquotes and unquotes $expr

I

Hygienic and referentially transparent 28

Nemerle: The perils of hygiene aif(calculate, WriteLine(it), throw Exception("does not compute")) macro aif(cond, then, else_) { } def calculate def temp_1087 def it_1088 = if (temp_1087

= 42; = calculate; temp_1087; != 0) WriteLine(it) else throw Exception("...")

error: unbound name ‘it’

29

Nemerle: Coloring algorithm def calculate = 42; aif(calculate, WriteLine(it), throw Exception("does not compute")) macro aif(cond, then, else_) { } def calculate = 42; def temp = calculate; def it = temp; if (temp != 0) WriteLine(it) else throw Exception("...") 30

Nemerle: Coloring algorithm def calculate = 42; // top-level color aif(calculate, WriteLine(it), throw Exception("does not compute")) macro aif(cond, then, else_) { } def calculate = 42; def temp = calculate; def it = temp; if (temp != 0) WriteLine(it) else throw Exception("...") 31

Nemerle: Coloring algorithm def calculate = 42; // top-level color aif(calculate, WriteLine(it), throw Exception("does not compute")) macro aif(cond, then, else_) { // expansion color } def calculate = 42; def temp = calculate; def it = temp; if (temp != 0) WriteLine(it) else throw Exception("...") 32

Nemerle: Coloring algorithm def calculate = 42; // top-level color aif(calculate, WriteLine(it), throw Exception("does not compute")) macro aif(cond, then, else_) { // expansion color } def calculate = 42; // bind using colors def temp = calculate; def it = temp; if (temp != 0) WriteLine(it) else throw Exception("...") 33

Nemerle: Breaking hygiene def calculate = 42; // top-level color aif(calculate, WriteLine(it), throw Exception("does not compute")) macro aif(cond, then, else_) { // expansion color } def calculate = 42; // bind using colors def temp = calculate; def it = temp; if (temp != 0) WriteLine(it) else throw Exception("...") 34

Nemerle: Summary

I

Nemerle takes care of hygiene with a coloring algorithm

I

No complex translation algorithms are necessary

I

As another bonus programmer can fine-tune colors with MacroColors

I

Referential transparency works as well

35

Racket: Introduction (aif (calculate) (print it) (error "does not compute")) (define-syntax (aif stx) (syntax-case stx () ((aif cond then else) #’(let ((temp cond) (it temp))) (if temp then else))))) I

A Lisp, descendent from Scheme

I

25 years of hygienic macros, a bunch of macro systems

I

Language features written using macros (classes, modules, etc) 36

Racket: The perils of hygiene (aif (calculate) (print it) (error "does not compute")) (define-syntax (aif stx) (syntax-case stx () ((aif cond then else) #’(let ((temp cond) (it temp))) (if temp then else))))) (let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 37

Racket: Breaking hygiene (aif (calculate) (print it) (error "does not compute")) (define-syntax (aif stx) (syntax-case stx () ((aif cond then else) (with-syntax ((it (datum->syntax #’aif ’it))) #’(let ((temp cond) (it temp))) (if temp then else)))))) (let* ((temp (calculate)) (it temp)) (if temp (print it) (error "does not compute"))) 38

Racket: The aunless macro (aunless (not (calculate)) (print it) (error "does not compute")) (define-syntax (aunless stx) (syntax-case stx () ((aunless cond then else) #’(aif (not cond) then else)))) (let* ((temp (not (not (calculate)))) (it temp)) (if temp (print it) (error "does not compute")))

39

Racket: Being unhygienic doesn’t scale (aunless (not (calculate)) (print it) (error "does not compute")) (define-syntax (aunless stx) (syntax-case stx () ((aunless cond then else) #’(aif (not cond) then else)))) (let* ((temp (not (not (calculate)))) (it temp)) (if temp (print it) (error "does not compute")))

40

Racket: Being unhygienic doesn’t scale (aunless (not (calculate)) (print it) (error "does not compute")) (define-syntax (aunless stx) (syntax-case stx () ((aunless cond then else) #’(aif (not cond) then else)))) (let* ((temp (not (not (calculate)))) (it temp)) (if temp (print it) (error "does not compute")))

41

Racket: In a search for a better solution What we are doing: I

We’re trying to introducing a variable that transcends scopes

I

And we’re doing this by manually passing this variable around

42

Racket: In a search for a better solution What we are doing: I

We’re trying to introducing a variable that transcends scopes

I

And we’re doing this by manually passing this variable around

How we can do better: I

The same problem is already solved in Lisp at runtime level

I

The solution is to use dynamic variables

I

We can try to marry this language feature with macros

43

Racket: Syntax parameters (define-syntax-parameter it (syntax-rules ())) (define-syntax (aif stx) (syntax-case stx () ((aif cond then else) #’(let ((temp cond)) (syntax-parameterize ((it (syntax-rules () ((_) temp)))) (if temp then else)))))) I

it becomes a compile-time dynamic variable

I

Therefore its scope overarches all potential expansions

I

High-level language feature (dynamic variables) + macros = win 44

Summary Macros: I

Macros provide impressive power for their simplicity

I

But they also give rise to unusual problems

I

One of these problems involves mixed up bindings

45

Summary Macros: I

Macros provide impressive power for their simplicity

I

But they also give rise to unusual problems

I

One of these problems involves mixed up bindings

Bindings: I

Automatic hygiene and referential transparency are real

I

Sometimes it is necessary to break hygiene

I

There are ways of doing that

I

Sometimes these ways are too low-level

46

Summary Macros: I

Macros provide impressive power for their simplicity

I

But they also give rise to unusual problems

I

One of these problems involves mixed up bindings

Bindings: I

Automatic hygiene and referential transparency are real

I

Sometimes it is necessary to break hygiene

I

There are ways of doing that

I

Sometimes these ways are too low-level

Future work: I

Integration with other language features provides unexpected insights 47

Scala macros

I

Since this spring Scala has macros

I

Even better: macros are an official part of the language in the next production release 2.10.0

I

Now it’s time to put the pens down and think about the future

I

The future is in integration with other language features

48

Implicits

def serialize[T](x: T): Pickle

49

Implicits

trait Serializer[T] { def write(pickle: Pickle, x: T): Unit } def serialize[T](x: T)(s: Serializer[T]): Pickle

50

Implicits

trait Serializer[T] { def write(pickle: Pickle, x: T): Unit } def serialize[T](x: T)(implicit s: Serializer[T]): Pickle implicit object ByteSerializer extends Serializer[Byte] { def write(pickle: Pickle, x: Byte) = pickle.writeByte(x) }

51

Implicits

trait Serializer[T] { def write(pickle: Pickle, x: T): Unit } def serialize[T](x: T)(implicit s: Serializer[T]): Pickle implicit def generator: Serializer[T] = macro impl[T] def impl[T](c: Context): c.Expr[Serializer[T]] = ...

52

Research proposal

Marry macros and high-level language features: I

Macros + functions → programmable inlining, specialization, fusion

I

Macros + annotations → code contracts, statically-typed decorators

I

Macros + implicits → static verification

I

...

53

Backup slides

54

Macros for database access: SLICK @table("COFFEES") case class Coffee(@column("COF_NAME") name: String, @column("SUP_ID") supID: Int, @column("PRICE") price: Double) val coffees = Queryable[Coffee] val l = for { c println(n + ": " + p) } I

Deeply embedded domain-specific language

I

Constructs like field access and method calls are overloaded

I

Underlying macros save ASTs till runtime and translate them to SQL 55

Macros for testing: ScalaMock val w = mock[Warehouse] inSequence { w.expects.hasInventory("Talisker", 50).returning(true) w.expects.remove("Talisker", 50).once } val order = new Order("Talisker", 50) order.fill(w) assert(order.isFilled) I

Deeply-embedded domain-specific language

I

Macro types generate mocks at compile-time

I

Boilerplate generation is completely automatic 56

Macros for inlining: Scala collections def filter(p: T => Boolean): Repr = ... def filter(p: T => Boolean): Repr = macro inline { ... the original body of filter ... } I

The filter function transparently becomes a macro

I

This doesn’t break source compatibility

I

The original body of filter remains the same

I

Yet the underlying macro is now in full control of inlining

57

Macros for fusion: Courtesy of Paul Phillips

def inc(x: Int) = x + 1 def f = List(1, 2, 3) map inc map inc map inc def g = List(1, 2, 3) map inc map inc map inc fuse I

Desktop fusion achieved!

I

How to deal with side effects?

I

Also what about data flow analysis?

58

Macros for verification: Courtesy of Alexander Kuklev trait SemiGroup[T] extends Eq[T] { def ◦(a: T, b: T): T def associativity(a: T, b: T, c: T): 3((a ◦ (b ◦ c)) == ((a ◦ b) ◦ c)) } def reduce[T](op: (T, T) => T): T def reduce[T](op: (T, T) => T)(implicit evidence: 3((a: T, b: T, c: T) => op(op(a, b), c) == op(a, op(b, c)))): T I

Facts are encoded with the 3 macro

I

Proofs are requested with implicit parameters

I

Proofs can either be inferred by implicit macros or provided by hand 59

Scala in the present: Macro defs object Asserts { def assertionsEnabled = ... def raise(msg: Any) = throw new AssertionError(msg) def assert(cond: Boolean, msg: Any) = macro impl def impl(c: Context) (cond: c.Expr[Boolean], msg: c.Expr[Any]) = if (assertionsEnabled) c.reify(if (!cond.eval) raise(msg.eval)) else c.reify(()) } I

Separate macro definitions and implementations

I

reify ensures hygiene and referential transparency

I

reify also implements the notion of quasiquoting 60

Scala in the future: Type macros type MySqlDb(connString: String) = macro ... type MyDb = Base with MySqlDb("Server=127.0.0.1") import MyDb._ val products = new MyDb().products products.filter(p => p.name.startsWith("foo")).toList I

Generalize macros from term refs to symbol refs

I

Type macros can generate arbitrary amounts of publicly visible defs

I

Enables an astounding multitude of techniques

I

The problem of erasure

61

Scala in the future: Macro annotations

class atomic extends MacroAnnotation { def complete(defn: _) = macro("generate a backing field") def typeCheck(defn: _) = macro("return defn itself") } @atomic var fld: Int I

Statically-typed analogue of Python’s decorators

I

Operates on arbitrary definitions

I

Two-step expansion: macro-level + micro-level

62

Typechecking disciplines: Strict -| fun pow n = ~(if n = 0 then else)>; val pow = fn : int -> int> -| val cube = (pow 3); val cube = x %* x %* x %* 1)> : int> -| (run cube) 5; val it = 125 : int I

Each quasiquote is typechecked in isolation

I

All quasiquotes are assigned ”code of something” types

I

E.g. right-hand side of pow is a code of function from int to int

I

Hence no pattern matching and no new bindings 63

Typechecking disciplines: Lenient [| ’a’ + True |] -- rejected printf :: String -> Expr -- allowed $(printf "Error: %s on line %d") "urk" 341 f :: Q Type -> Q [Dec] -- rejected f t = [d| data T = MkT $t; g (MkT x) = x + 1 |] I

Quasiquotes are sanity-checked early, fully typechecked later

I

But require their bindings to be established in advance

I

Not flexible enough, e.g. no splicing into binding positions

64

Typechecking disciplines: Deferred macro using(name, expr, body) { } using(db, Database("localhost"), db.LoadData()) I

Quasiquotes are not typechecked at all

I

Typechecking only happens after macro expansion

I

This gives ultimate flexibility at the cost of delayed error detection

65

[image: scala - GitHub]
scala - GitHub

[image: Tweets about 'scala', but not about 'scala' - GitHub]
Tweets about 'scala', but not about 'scala' - GitHub

[image: DynaProg for Scala - Infoscience - EPFL]
DynaProg for Scala - Infoscience - EPFL

[image: Java to Scala -]
Java to Scala -

[image: Functional Programming in Scala - GitHub]
Functional Programming in Scala - GitHub

[image: Building SBT Plugins - scala-phase.org]
Building SBT Plugins - scala-phase.org

[image: Slick database access with Scala]
Slick database access with Scala

[image: Scala-High-Performance-Programming.pdf]
Scala-High-Performance-Programming.pdf

[image: Scalaz: Functional Programming in Scala - GitHub]
Scalaz: Functional Programming in Scala - GitHub

[image: Macro-based type providers in Scala - GitHub]
Macro-based type providers in Scala - GitHub

Scala Macros

Sep 10, 2012 - (error "does not compute")). (defmacro aif args. (list 'let* (list (list 'temp (car args)) Old school solution. (defmacro+ aif. (aif cond then else).

 Download PDF

 194KB Sizes
 12 Downloads
 240 Views

 Report

Recommend Documents

[image: alt]

scala - GitHub

Document relevancy is an important question that has been approached in various ways. With the advent of so- cial media, especially Twitter, the doc- uments of interest shrank in size. Peo- ple tend to tweet a lot of information. The generated tweets

[image: alt]

Tweets about 'scala', but not about 'scala' - GitHub

(Analytics, 2009) This phenomenon has been researched ... as well as both Token bigrams and Tag bi- grams are used as August-2009. pdf. Banko, M. and ...

[image: alt]

DynaProg for Scala - Infoscience - EPFL

In a deliberate design decision to simplify the hardware, there exist no ... 8http://mc.stanford.edu/cgi-bin/images/5/5f/Darve_cme343_cuda_2.pdf 10. 2.3 Scala. Â«Scala is a general purpose programming language designed to Sequences alignmen

[image: alt]

Java to Scala -

The Scala compiler can compile Scala files that access elements defined in some. Java files. Unfortunately, the Scala compiler does not produce the class file for ... Compile again the Scala sources using the Java generated .class files.1 easy

[image: alt]

Functional Programming in Scala - GitHub

Page 1 ... MADRID Â· NOV 21-22 Â· 2014. The category design pattern · The functor design pattern â€¦ Play! âˆ˜ Why Play? âˆ˜ Introduction. Web Dictionary.

[image: alt]

Building SBT Plugins - scala-phase.org

Page 5. Command Plugin. • For when you don't need customization. Implementing your plugin. Friday, January 27, 12. Page 6. Command Plugin import sbt._.

[image: alt]

Slick database access with Scala

Slick. Scala Language Integrated Connection Kit. â€¢ Database query and access library for Scala. â€¢ Successor of ScalaQuery. â€¢ Developed at Typesafe and EPFL. â€¢ Version 0.11 launched in August. â€¢ 1.0 to be released shortly after Scala 2.10. â

[image: alt]

Scala-High-Performance-Programming.pdf

impression for browse e book from Lifehacker The best Fonts for Book Viewers, As outlined by E-book and Typeface ... Lifehacker-Jul 26, 2016 Selecting the ...

[image: alt]

Scalaz: Functional Programming in Scala - GitHub

one value of type B. This is all a function is allowed to do. No side-effects! case class Success[+E, +A](a: A) extends Validation[E, A] ... phone: String).

[image: alt]

Macro-based type providers in Scala - GitHub

Apr 5, 2014 - dc.title ->- "Frankenstein Draft Notebook B" ... We'll be using the W3C's Banana RDF library throughout: . 9 ...

×
Report Scala Macros

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

