P

r

e

f

The pur-pose of this handbook is to supply a collection of mathematical formulas and tables which will prove to be valuable to students and research workers in the fields of mathematics, physics, engineering and other sciences. TO accomplish this, tare has been taken to include those formulas and tables which are most likely to be needed in practice rather than highly specialized results which are rarely used. Every effort has been made to present results concisely as well as precisely SOthat they may be referred to with a maximum of ease as well as confidence. Topics covered range from elementary to advanced. Elementary topics include those from algebra, geometry, trigonometry, analytic geometry and calculus. Advanced topics include those from differential equations, vector analysis, Fourier series, gamma and beta functions, Bessel and Legendre functions, Fourier and Laplace transforms, elliptic functions and various other special functions of importance. This wide coverage of topics has been adopted SOas to provide within a single volume most of the important mathematical results needed by the student or research worker regardless of his particular field of interest or level of attainment. The book is divided into two main parts. Part 1 presents mathematical formulas together with other material, such as definitions, theorems, graphs, diagrams, etc., essential for proper understanding and application of the formulas. Included in this first part are extensive tables of integrals and Laplace transforms which should be extremely useful to the student and research worker. Part II presents numerical tables such as the values of elementary functions (trigonometric, logarithmic, exponential, hyperbolic, etc.) as well as advanced functions (Bessel, Legendre, elliptic, etc.). In order to eliminate confusion, especially to the beginner in mathematics, the numerical tables for each function are separated, Thus, for example, the sine and cosine functions for angles in degrees and minutes are given in separate tables rather than in one table SOthat there is no need to be concerned about the possibility of errer due to looking in the wrong column or row. 1 wish to thank the various authors and publishers who gave me permission to adapt data from their books for use in several tables of this handbook. Appropriate references to such sources are given next to the corresponding tables. In particular 1 am indebted to the Literary Executor of the late Sir Ronald A. Fisher, F.R.S., to Dr. Frank Yates, F.R.S., and to Oliver and Boyd Ltd., Edinburgh, for permission to use data from Table III of their book S T tf B a Aao i b a gtMy o R l n ir e l e e d si d 1 also wish to express my gratitude to Nicola Menti, Henry Hayden and Jack Margolin for their excellent editorial cooperation. M. R. SPIEGEL Rensselaer Polytechnic Institute September, 1968

o

s s

tc i

CONTENTS

Page 1.

Special

Constants..

.............................................................

1

2. Special Products and Factors ....................................................

2

3. The Binomial Formula and Binomial Coefficients .................................

3

4. Geometric Formulas ............................................................

5

5. Trigonometric Functions ........................................................

11

6. Complex Numbers ...............................................................

21

7. Exponential and Logarithmic Functions .........................................

23

8. Hyperbolic Functions ...........................................................

26

9. Solutions of Algebraic Equations ................................................

32

10. Formulas from Plane Analytic Geometry ........................................ ...................................................

34 40

11.

Special Plane Curves........~

12.

Formulas from Solid Analytic Geometry ........................................

46

13.

Derivatives .....................................................................

53

14.

Indefinite Integrals ..............................................................

57

15.

Definite Integrals ................................................................

94

16.

The Gamma

Function .........................................................

..10 1

17.

The Beta Function ............................................................

18.

Basic Differential Equations and Solutions .....................................

19.

Series of Constants..............................................................lO

20.

Taylor Series...................................................................ll

21.

Bernoulliand

22.

Formulas from Vector Analysis..

23.

Fourier Series ................................................................

..~3 1

24.

Bessel Functions..

..13 6

2s.

Legendre Functions.............................................................l4

26.

Associated Legendre Functions .................................................

.149

27. 28.

Hermite Polynomials............................................................l5 Laguerre Polynomials ..........................................................

1 .153

29.

Associated Laguerre Polynomials ................................................

30.

Chebyshev Polynomials..........................................................l5

Euler Numbers ................................................. .............................................

............................................................

..lO 3 .104

7 0 ..114 ..116

6

KG

7

Part

I

FORMULAS

THE

GREEK

Greek

name

G&W

ALPHABET

Greek name

Greek Lower case

tter Capital

Alpha

A

Nu

N

Beta

B

Xi

sz

Gamma

l?

Omicron

0

Delta

A

Pi

IT

Epsilon

E

Rho

P

Zeta

Z

Sigma

2

Eta

H

Tau

T

Theta

(3

Upsilon

k

Iota

1

Phi

@

Kappa

K

Chi

X

Lambda

A

Psi

*

MU

M

Omega

n

1.1 1.2

= natural

base of logarithms

1.3

fi

=

1.41421

35623 73095 04889..

1.4

fi

=

1.73205

08075 68877 2935.

1.5

fi

=

2.23606

79774

1.6

h

=

1.25992

1050..

.

1.7

&

=

1.44224

9570..

.

1.8

fi

=

1.14869

8355..

.

1.9

b

=

1.24573

0940..

.

1.10

eT = 23.14069

26327 79269 006..

.

1.11

re = 22.45915

77183 61045 47342

715..

1.12

ee =

22414

.

1.13

logI,, 2

=

0.30102

99956 63981 19521

37389.

..

1.14

logI,, 3

=

0.47712

12547

19662 43729

50279..

.

1.15

logIO e =

0.43429

44819

03251 82765..

1.16

logul ?r =

0.49714

98726

94133 85435 12683.

1.17

loge 10

In 10

1.18

loge 2 =

ln 2

=

0.69314

71805

59945 30941

1.19

loge 3 =

ln 3 =

1.09861

22886

68109

1.20

y =

1.21

ey =

1.22

fi

=

1.23

6

=

15.15426

=

0.57721

56649

1.78107

r(&)

=

79264

2.30258

190..

12707

6512.

9852..

00128 1468..

1.77245

2.67893

85347 07748..

.

1.25

r(i)

3.62560

99082 21908..

.

1-26

1 radian

1.27

1”

=

~/180

radians

.

= =

.. .

57.29577 0.01745

..

7232.

.

69139 5245..

.. = Eukr's co%stu~t

[see 1.201

.

38509 05516

II’(&) =

180°/7r

.

02729

~ZLYLC~~OTZ [sec pages

1.24

=

.

50929 94045 68401 7991..

01532 86060

F is the gummu

=

.

99789 6964..

24179 90197

1.64872

where

=

..

8167..

.O

95130 8232.. 32925

.

101-102).

19943 29576 92.

1

..

radians

THE

4

BINOMIAL

FORMULA

PROPERTIES

OF

AND

BINOMIAL

BINOMIAL

COElFI?ICIFJNTS

COEFFiClEblTS

3.6 This

leads

to Paseal’s

[sec page 2361.

triangk

3.7

(1)

+

(y)

+

(;)

+

...

3.8

(1)

-

(y)

+

(;)

-

..+-w(;)

3.10

(;)

+

(;)

+

(7)

+

.*.

=

2n-1

3.11

(y)

+

(;)

+

(i)

+

..*

=

2n-1

+

(1)

=

27l

=

0

3.9

3.12

3.13

-d

3.14

MUlTlNOMlAk

3.16

(zI+%~+...+zp)~ where

q+n2+

the

mm,

...

denoted

+np =

72..

by

2,

=

FORfvlUlA

~~~!~~~~~..~~!~~1~~2...~~~

is taken over

a11 nonnegative

integers

% %,

. . , np fox- whkh

1

4

GEUMElRlC

FORMULAS &

RECTANGLE

4.1

Area

4.2

Perimeter

OF LENGTH

b AND

WIDTH

a

= ab = 2a + 2b b

Fig. 4-1

PARAllELOGRAM

4.3

Area

=

4.4

Perimeter

bh =

OF ALTITUDE

h AND

BASE b

ab sin e

= 2a + 2b 1 Fig. 4-2

‘fRlAMf3i.E

Area

4.5

=

+bh

OF ALTITUDE

h AND

BASE b

= +ab sine

*

ZZZI/S(S - a)(s - b)(s - c) where s = &(a + b + c) = semiperimeter

b Perimeter

4.6

n_

L,“Z

.,

.,,

= u+ b+ c

Fig. 4-3

:

‘fRAPB%XD

4.7

Area

4.8

Perimeter

C?F At.TlTUDE

fz AND

PARAl.lEL

SlDES u AND

b

= 3h(a + b) = =

/c-

a + b + h

Y&+2 sin 4 C a + b + h(csc e + csc $)

1 Fig. 4-4

5 / -

GEOMETRIC

6

REGUkAR

4.9

Area

= $nb?- cet c

4.10

Perimeter

=

POLYGON

inbz-

FORMULAS

OF n SIDES EACH CJf 1ENGTH

b

COS(AL)

sin (~4%)

= nb

7,’ 0.’ 0 Fig. 4-5

CIRÇLE OF RADIUS

4.11

Area

4.12

Perimeter

r

= & =

277r

Fig. 4-6

SEClOR

4.13 4.14

Area

=

&r%

OF CIRCLE OF RAD+US Y

[e in radians]

T

Arc length s = ~6 A

8

0 T Fig. 4-7

RADIUS

4.15

OF C1RCJ.E INSCRWED

r=

where

&$.s-

tN A TRtANGlE *

OF SIDES a,b,c

U)(S Y b)(s -.q) s

s = +(u + b + c) = semiperimeter

Fig. 4-6

RADIUS- OF CtRClE

4.16

R=

where

CIRCUMSCRIBING

A TRIANGLE

OF SIDES a,b,c

abc 4ds(s - a)@ -

b)(s - c)

e = -&(a.+ b + c) = semiperimeter

Fig. 4-9

G

4

A

=.

4

P

.

&

sr s =

2e

s

1=

n +

1

=

FE

3 ise n

7

r n

OO

6

ni a

2 nr s i y 8

2r

RM

0

n

n ri i n

M7E

UT

°

2

r mn z

e

t

e

!

?

Fig. 4-10

4

A

=.

4

P

.

= 1 n r t a eL T n

t rZ n

n =

2e

2

t

9 r 2 a n a! 0

2 nr t a

=

2

n

n ri a n

T

!

I : e?

r m nk

T

t

e

0 F

SRdMMHW W

4

o .s

A

f=2 h +

pr

( -ae s

C%Ct&

e) 1 a r

e

OF RADWS

ra i

d2

4

i

-

g

1

T

tn

e T

e

d r

tz!? Fig. 4-12

4

A

=.

4

P

.

r

r

2

a

e

2

2 4 1 - kz rs

e c3

b

a

7r/2

=

e 5 4a

ii

m +

l

e

@

t

e

0 =

w

k = ~/=/a.h

4

A

4

A

l

[

27r@sTq See

p

e254 f

=.

$ab

r

2

.

ABC

r = e -&2dw

a

n a

e

r

to

4

c +n E5

p

u g

e

ar

p

m e

b F

r

4e

l

i

-r

o e g

a 4

gl 1

a )

tn

+

h

AOC

@

T

b Fig. 4-14

- f

1i

GEOMETRIC

8

RECTANGULAR

4.26

Volume

=

4.27

Surface

area

PARALLELEPIPED

FORMULAS

OF

LENGTH

u, HEIGHT

r?, WIDTH

c

ubc Z(ab + CLC + bc)

=

a Fig. 4-15

PARALLELEPIPED

4.28

Volume

=

Ah

=

OF CROSS-SECTIONAL

AREA

A AND

HEIGHT

h

abcsine

Fig. 4-16

SPHERE

4.29

Volume

=

OF RADIUS

,r

+

1 ---x

,-------

4.30

Surface

area

=

4wz

@ Fig. 4-17

RIGHT

4.31

Volume

4.32

Lateral

=

CIRCULAR

CYLINDER

OF RADIUS

T AND

HEIGHT

h

77&2

surface

area

=

h

25dz

Fig. 4-18

CIRCULAR

4.33

Volume

4.34

Lateral

=

m2h

surface

area

CYLINDER

=

OF RADIUS

r AND

SLANT

HEIGHT

2

~41 sine =

2777-1 =

2wh

z

=

2wh csc e Fig. 4-19

.

GEOMETRIC

CYLINDER

=

OF CROSS-SECTIONAL

4.35

Volume

4.36

Lateral surface area

Ah

FORMULAS

9

A AND

AREA

SLANT

HEIGHT

I

Alsine

=

=

pZ =

GPh

--

ph csc t

Note that formulas 4.31 to 4.34 are special cases. Fig. 4-20 RIGHT

=

CIRCULAR

4.37

Volume

4.38

Lateral surface area

CONE

OF RADIUS

,r AND

HEIGHT

h

jîw2/z =

77rd77-D

=

~-7-1

Fig. 4-21 PYRAMID

4.39

Volume

=

OF

BASE

AREA

A AND

HEIGHT

h

+Ah

Fig. 4-22 SPHERICAL

4.40

Volume (shaded in figure)

4.41

Surface area

=

CAP

=

OF RADIUS

,r AND

HEIGHT

h

&rIt2(3v - h)

2wh

Fig. 4-23 FRUSTRUM

=

OF RIGHT

4.42

Volume

4.43

Lateral surface area

+h(d

CIRCULAR

CONE

OF RADII

u,h

AND

HEIGHT

h

+ ab + b2) =

T(U + b) dF

=

n(a+b)l

+ (b - CL)~ Fig. 4-24

10

SPHEMCAt hiiWW

4.44

Area of triangle ABC

=

GEOMETRIC

FORMULAS

OF ANG%ES

A,&C

Ubl SPHERE OF RADIUS

(A + B + C - z-)+

Fig. 4-25

TOW$

&F

lNN8R

4.45

Volume

4.46

w Surface area = 7r2(b2- u2)

4.47

Volume

=

RADlU5 a

AND

OUTER RADIUS

b

&z-~(u+ b)(b - u)~

= $abc

Fig. 4-27

T.

4.4a

Volume

=

PARAWlO~D

aF REVOllJTlON

&bza

Fig. 4-28

Y

5

TRtGOhiOAMTRiC

D

OE T

FF R

WNCTIONS

F

l I FU

A R N G T ON

Triangle ABC bas a right angle (9Oo) at C and sides of length u, b, c. angle A are defined as follows. sintz . of A

5 5 5 5

5

sin A

1=

:

=

opposite hypotenuse

i

=

adjacent hypotenuse

cosine . of

A

=

~OSA

2=

. of

A

=

tanA

3= f = -~

. of

A

=

of A

tangent

c

5.5

=

secant

cosecant

. of

A

4=

k

=

adjacent t opposite

=

sec A

=

t

=

-~

=

csc A

6=

z

=

hypotenuse opposite

E

l O R RC

functions

G T

N I T

of

B

opposite adjacent

A

o cet

The trigonometric

I

TX A

c

z

A

n

g

hypotenuse adjacent

W OT

Fig. 5-1

N M

3 HG E

G A

TE I R N9L Y

H C E S0 E

A H A I ’

Consider an rg coordinate system [see Fig. 5-2 and 5-3 belowl. A point P in the ry plane has coordinates (%,y) where x is eonsidered as positive along OX and negative along OX’ while y is positive along OY and negative along OY’. The distance from origin 0 to point P is positive and denoted by r = dm. If it is described dockhse from The angle A described cozmtwcZockwLse from OX is considered pos&ve. OX it is considered negathe. We cal1 X’OX and Y’OY the x and y axis respectively. The various quadrants are denoted by 1, II, III and IV called the first, second, third and fourth quadrants respectively. In Fig. 5-2, for example, angle A is in the second quadrant while in Fig. 5-3 angle A is in the third quadrant.

Y

Y

II

1

II

1

III

IV

III

IV

Y’

Y’ Fig. 5-3

Fig. 5-2

11 f

TRIGONOMETRIC

12

FUNCTIONS

For an angle A in any quadrant the trigonometric

functions of A are defined as follows.

5.7

sin A

=

ylr

5.8

COSA

=

xl?.

5.9

tan A

=

ylx

5.10

cet A

=

xly

5.11

sec A

=

v-lx

5.12

csc A

=

riy

RELAT!ONSHiP BETWEEN DEGREES AN0

RAnIANS N

A radian is that angle e subtended at tenter 0 of a eircle by an arc MN equal to the radius r. Since 2~ radians = 360° we have 5.13

1 radian

= 180°/~

5.14

10 = ~/180 radians

=

1

r

e 0

57.29577 95130 8232. . . o

r

B

= 0.01745 32925 19943 29576 92.. .radians

Fig. 5-4

REkATlONSHlPS 5.15

tanA

= 5

5.16

&A

~II ~ 1

5.17

sec A

=

~

5.18

cscA

=

-

tan A

AMONG

COSA sin A

zz -

1

COS A

TRtGONOMETRK

5.19

sine A +

~OS~A

5.20

sec2A

-

tane

5.21

csceA

- cots A

II

III IV

1

A = 1 =

1

1 sin A

SIaNS AND VARIATIONS

1

=

FUNCTItB4S

+ 0 to 1

+ 1 to 0

+ 1 to 0

0 to -1

0 to -1 -1 to 0

OF TRl@ONOMETRK

+ 0 to m -mtoo + 0 to d

-1 to 0 + 0 to 1

+ CCto 0 oto-m + Ccto 0 -

--

too

oto-m

FUNCTIONS

+ 1 to uz

+ m to 1

-cc to -1

+ 1 to ca

-1to-m + uz to 1

--COto-1 -1 to --

M

TRIGONOMETRIC

E

Angle A in degrees

00

X

F

Angle A in radians

A T

A

O

RL

FC

R

1

IU

O UT

O S

sec A

csc A

0

1

0

w

1

cc

ii/6

1

+ti

450

zl4

J-fi

$fi

60°

VI3

Jti

750

5~112

900

z.12

105O

7~112

*(fi+&)

-&(&-Y%

-(2+fi)

-(2-&)

120°

2~13

*fi

-*

-fi

-$fi

1350

3714

+fi

-*fi

150°

5~16

4

-+ti

#-fi)

2-fi

&(&+fi)

fi

1

0

fi)

-&(G+

0

-*fi

-fi

-(2-fi)

-(2+fi)

180°

?r

-1

1950

13~112

210°

7716

225O

5z-14

-Jfi

240°

4%J3

-#

255O

17~112

270°

3712

-1

285O

19?rll2

-&(&+fi)

3000

5ïrl3

-*fi

2

315O

7?rl4

-4fi

*fi

-1

330°

117rl6

*fi

-+ti

345O

237112

360°

2r

-$(fi-fi)

-*(&+fi)

2-fi

-

1

4

-*fi

-i(fi-

2+fi 0

-(2+6)

&(&+

-ti

fi) 1

0

see pages

206-211

-(2

- fi) 0

++

-fi

\h

-+fi

2

-(fi-fi)

f

-(&-fi)

-2 -(&+?cz)

-@-fi)

&+fi

-(2+6) T-J

i

-36 -(fi-fi) -1 -(fi-fi)

2

-1

f

-fi

Tm

-*fi

-ti

-2

g

-fi

0

*ca -(&+fi)

i -

&fi 2-6

Vz+V-c? -1

3

1

km

*(&-fi)

6)

angles

ti

-&(&-fi)

1

l

1

-4

-&&+&Q

6

fi-fi

-2

2 + ti

&

1

-(&+fi)

Tm

0

fi-fi

km

-1

-1

TG

;G

&+fi 0

N

fi

2

2-&

*CU

fi)

fi

.+fi

2+&

R

2

$fi

1

C N

3

&+fi

fi-fi

fi

1

@-fi)

$(fi-

2+*

*fi

r1

i(fi+m

other

A

cet A

300

involving

FN A

tan A

rIIl2

tables

GE

COSA

0

llrll2

V

sin A

15O

165O

For

V

FUNCTIONS

fi $fi fi-fi

-$fi -fi -2 -(&+fi)

1

?m

and 212-215.

f

I

TRIGONOMETRIC

5.89

y = cet-1%

5.90

y

=

FUNCTIONS

19

sec-l%

5.91

_--/

y

=

csc-lx

Y

I T

---

,

/A--

/’

/ -77 -//

,

Fig. 5-14

Fig. 5-15

RElAilONSHfPS

BETWEEN

The following results hold for sides a, b, c and angles A, B, C.

5.92

ANGtGS

any plane triangle

ABC

OY A PkAtM

with

TRlAF4GlG



A

Law of Sines a -=Y=sin A

5.93

SIDES AND

Fig. 5-16

1

b

c

sin B

sin C C

Law of Cosines

/A

cs = a2 +

bz -

Zab

COS

f

C

with similar relations involving the other sides and angles. 5.94

Law of Tangents

tan $(A + B) a+b -a-b = tan i(A -B) with similar relations involving the other sides and angles.

5.95

sinA where

s = &a + b + c)

=

:ds(s

is the semiperimeter

- a)(s - b)(s - c) of the triangle.

B and C cari be obtained. See also formulas 4.5, page 5; 4.15 and 4.16, page 6.

Spherieal triangle ABC is on the surface of in Fig. 5-18. Sides a, b, c [which are arcs of measured by their angles subtended at tenter 0 of are the angles opposite sides a, b, c respectively. results hold. 5.96

Law of Sines sin a -z-x_ sin A

5.97

sin b sin B

a sphere as shown great circles] are the sphere. A, B, C Then the following

sin c sin C

Law of Cosines sinbsinccosA

cosa

=

cosbcosc

COSA

=

- COSB COSC +

+

Fig. 5-1’7

sinB sinccosa

with similar results involving other sides and angles.

Similar relations involving angles

2

T

0 L

5

o.

w

T

a

s

5

f 9

ri

s = &

S = +

f

e

E g

i

c

S(

8 n & + B

a

t(

t

&

a=

t(

4l

op

f r x F s ii

1e

o mn s

e

I

g

U

$ ) + n b )

sh a t ai v i

r)

G

e

aA

(

N

)

n

a A

n

O

n

C

T

t

u

n

u n h nl o d

N

s

i

l d e a g l e

t

r

O

(

rl v s

s

e i

u i hr

f e. o

.s

r)

A i rh

ra

0

FGR

RtGHT

o C it c na i b -va b i

m + ose

o sa t a i l i

r u n h n l dd

ld e g a e

t

r

lr s

0

( Se

RlJlES

a wn

- B

0

h+ B + C

NAPIER’S

a

t

1

w a

et

F

9

1+

h

.

S

w

9

w

5

a

i i

.

R

4o

f e. o

m g

.

meos

4

eu

ANGLED

rf , gh p e gor s i c gB e le, , u , . .

o sa t a i l i ,

l

SPHERICAL

ha e p t lef 9n A l

pv

Atr

r un h n l dd

ld e

ga

e

t

r

lr

a

TRIANGLES

t rwe , d

he i

Z aet

ih

ei f t r3s o a i

n r

h rC r nc

a

C

F S [

c

A a

t i

o p

5

uq ot

i h hn

o t n p n da t a t

-

g

a pu a

fi hce ri a m s ia ea d a e c to a om c r

of th y ac e rj n h w r p

T

s.

o

a

h m i1

fp

5.102

T

s

o

a

h m i

fp n ee i n

S

T

x

C

c

= 9i

o

ch

a-

n ee i n0 t

O C

s

a

s

( ba

=

t

n0= m 9A t =

o f

.

oe

F

9

ri p aar c s a en io nr Fi a n l p A a npi B

e m oc ayd

5

E

1

5

5e s n w s t a ir ndoc g . c

p rt ti tsl a ps r p ea Te

an cs laN

u d f oeh t oa a a l

a p y q d eo ht r rc

u d fo eht t ooo

O w c° h 0p,

B A

-

e e a °l n s

,

(

a

na

C o

C i

C a C

(

nO

Oo O C ~

uts

rl i rt 5 rhe o es p

a er fb

g

e 2p t

hd

ead

wl xi hr

pv le r l aao s

f p eh

B

dsp

et Cg.l h

eoc tn eu t

a -ei e p sr

.

0r t ri O ee e ni n s rl

da sl i n

ae ug j s

l e

ae

ve

r

uip s

r

frg di ie ce a n co

e:

i

AS =-r SC OaOs

2

ee

et

f eph dn d l e

a l

n = rOt

b it

-

w - a ehi ngc t dta l m p t

a p y q d eo1 ht r rt

--

i

O

-a B A

oa 1. s e n os a

n O -

mi 99 e

Bn

S i

) ug

a

)b

SB n

n .7

l e

e

A complex number is generally written as a + bi where a and b are real numbers and i, called the imaginaru unit, has the property that is = -1. The real numbers a and b are called the real and ima&am parts of a + bi respectively. The complex numbers a + bi and a - bi are called complex

6.1

a+bi

=

c+di

if and only if

conjugates

a=c

and b=cZ

6.2

(a + bi) + (c + o!i) =

(a + c) + (b + d)i

6.3

(a + bi) - (c + di) =

(a - c) + (b - d)i

6.4

(a+ bi)(c+

di) =

(ac- bd) + (ad+

of each other.

bc)i

Note that the above operations are obtained by using the ordinary rules of algebra and replacing 9 by -1 wherever it occurs.

21

22

COMPLEX

GRAPH

NUMBERS

OF A COMPLEX

NtJtWtER

A complex number a + bi cari be plotted as a point (a, b) on an xy plane called an Argand diagram or Gaussian plane. For example in Fig. 6-1 P represents the complex number -3 + 4i. A

eomplex

number

cari

also

be

interpreted

as

a

wector

p,----.

y

from

0 to P. -

0

X

* Fig. 6-1

POLAR

FORM

OF A COMPt.EX

NUMRER

In Fig. 6-2 point P with coordinates (x, y) represents the complex number x + iy. Point P cari also be represented by polar coordinates (r, e). Since x = r COS6, y = r sine we have

6.6

x + iy = ~(COS 0+

called

the poZar form

the mocklus

of the complex

and t the amplitude

i sin 0)

number.

L

We often

-

X

cal1 r = dm

of x + iy. Fig. 6-2

tWJLltFltCATt43N

[rl(cos

6.7

AND

DtVlStON

OF CWAPMX

el + i sin ei)] [re(cos ez + i sin es)] V-~(COSe1 + i sin el)

6.8

ZZZ 2

rs(cos ee + i sin ez)

If p is any real

number,

De Moivre’s [r(cos

rrrs[cos

1bJ POLAR

ilj 0”

FtMM

tel + e2) + i sin tel + e2)]

[COS(el - e._J + i sin (el - .9&]

DE f#OtVRtt’S

6.9

=

NUMBRRS

THEORRM

theorem

states

e + i sin e)]p

=

that rp(cos pe + i sin pe)

.

RCWTS

If

p = l/n

where

k=O,l,2

integer,

[r(cos e + i sin e)]l’n

6.10 where

n is any positive

OF CfMMWtX

k is any ,...,

integer. n-l.

From

this

the

=

n nth

NUtMB#RS

6.9 cari be written rl’n roots

L

e + 2k,, ~OSn of

a complex

+

e + 2kH

i sin ~

number

n cari

1 be

obtained

by

putting



In the following p, q are real numbers, CL,t are positive numbers and WL,~are positive integers.

7.1

cp*aq z aP+q

7.2

aP/aqE @-Q

7.3

(&y E rp4

7.4

u”=l,

7.5

a-p = l/ap

7.6

(ab)p = &‘bp

7.7

&

7.8

G

7.9

Gb

a#0

z aIIn

= pin

=%Iî/%

In ap, p is called the exponent, a is the base and ao is called the pth power of a. The function is called an exponentd function.

If a~ = N where a # 0 or 1, then p = loga N is called the loga&hm N = ap is called t,he antdogatithm of p to the base a, written arkilogap. Example:

Since

The fumAion

3s = 9 we have

y = ax

of N to the base a. The number

log3 9 = 2, antilog3 2 = 9.

v = loga x is called a logarithmic

jwzction.

7.10

logaMN

=

loga M + loga N

7.11

log,z ;

=

logG M -

7.12

loga Mp

=

p lO& M

loga N

Common logarithms and antilogarithms [also called Z?rigg.sian] are those in which the base a = 10. The common logarit,hm of N is denoted by logl,, N or briefly log N. For tables of common logarithms and antilogarithms, see pages 202-205. For illuskations using these tables see pages 194-196. 23

EXPONENTIAL

24

AND LOGARITHMIC

NATURAL LOGARITHMS

FUNCTIONS

AND ANTILOGARITHMS

Natural logarithms and antilogarithms [also called Napierian] are those in which the base a = e = 2.71828 18. . . [sec page 11. The natural logarithm of N is denoted by loge N or In N. For tables of natural logarithms see pages 224-225. For tables of natural antilogarithms [i.e. tables giving ex for values of z] see pages 226-227. For illustrations using these tables see pages 196 and 200.

CHANGE OF BASE OF lO@ARlTHMS

The relationship between logarithms of a number N to different bases a and b is given by

7.13

loga N

=

hb

iv

hb

a

-

In particular, = ln N

7.14

loge N

7.15

logIO N = logN

RElATlONSHlP

= 2.30258 50929 94.. . logio N =

0.43429

44819 03.. . h& N

BETWEEN EXPONBNTIAL ANO TRl@ONOMETRlC eie =

7.16 These are called Euler’s

COS 0 + i sin 8,

dent&es.

e-iO

=

COS 13 -

sin 6

Here i is the imaginary unit [see page 211.

7.17

sine

7.18

case =

=

eie- e-ie 2i

eie+ e-ie 2

7.19

7.20 2

7.21

sec 0

=

&O + e-ie

7.22

csc 6

=

eie

7.23

i

2i

eiCO+2k~l

From this it is seen that @ has period 2G.

-

e-if3

=

eie

k =

integer

FUNCT#ONS

;;

E

POiAR

T

p

XA

FORfvl OF COMPLEX

f

7

o h a co

o n

.

2

6

t

o

6

NUMBERS

.o hp r 2

(reiO)l/n E

LOGARITHM

7.29

COMPLEX

a.

l

OD

ym i a tm e

(

ffUMBERS

e7n ra m 2 t 1r t

(q-eio)Pzz q-P&mJ [

7.2B

OF

GU

EXPRESSE$3 AS AN

oxl + i r c u b w m a

WITH

7.27

PN

or rpe

N

AN 25

E

RC

N

EXPONENTNAL

n re b

[if lx 6

pi r e 2 st a ep .

a mr 2 et s x o6

g

4 6 + i sin 0) = 9-ei0 x + iy = ~(COS

OPERATIONS

F

fe

L

[~&O+Zk~~]l/n

q f og

M

t =

n

u

D

FORM

o 0eh uo ue

o

h

l

e

e

i

il

g

a

e

vl

v

h

s

o

NUMBER

k e=e i k

@n z

) t -

ao

r

rl/neiCO+Zkr)/n

OF A COMPLEX

= l r n + iT + 2

IN POLAR

e i

DEIWWOPI

OF HYPRRWLK

8.1

Hyperbolic

sine of x

=

sinh x

=

8.2

Hyperbolic

cosine

=

coshx

=

8.3

Hyperbolic

tangent

= tanhx

=

8.4

Hyperbolic

cotangent

8.5

Hyperbolic

secant

8.6

Hyperbolic

cosecant

RELATWNSHIPS

of x

of x

coth x

of x =

of x

AMONG

ez + e-=

2 ~~~~~~

2

ez + eëz

HYPERROLIC FUWTIONS

=

sinh x a

coth z

=

1 tanh x

sech x

=

1 cash x

8.10

cschx

=

1 sinh x

8.11

coshsx - sinhzx

=

1

8.12

sechzx + tanhzx

=

1

8.13

cothzx - cschzx

=

1

FUNCTIONS

2

= csch x = &

tanhx

8.7

# - e-z

ex + eCz = es _ e_~

= sech x =

of x

.:‘.C,

FUNCTIONS

cash x sinh x

=

OF NRGA’fWE

ARGUMENTS

8.14

sinh (-x)

=

- sinh x

8.15

cash (-x)

= cash x

8.16

tanh (-x)

= - tanhx

8.17

csch (-x)

=

-cschx

8.18

sech(-x)

=

8.19

coth (-x)

=

26

sechx

-~OUIS

HYPERBOLIC

AWMWM

FUNCTIONS

27

FORMWAS

0.2Q

sinh (x * y)

=

sinh x coshg

8.21

cash (x 2 g)

=

cash z cash y * sinh x sinh y

8.22

tanh(x*v)

=

tanhx f tanhg 12 tanhx tanhg

8.23

coth (x * y)

=

coth z coth y 2 1 coth y * coth x

8.24

sinh 2x

=

2 ainh x cash x

8.25

cash 2x

=

coshz x + sinht x

8.26

tanh2x

=

2 tanh x 1 + tanh2 x

=

* cash x sinh y

2 cosh2 x -

1

=

1 + 2 sinh2 z

HAkF ABJGLR FORMULAS

8.27

sinht

=

8.28

CoshE 2

=

8.29

tanh;

=

k

Z

sinh x cash x + 1

.4

[+ if x > 0, - if x < O] cash x + 1 -~ 2 cash x - 1 cash x + 1

’ MUlTWlE

[+ if x > 0, - if x < 0]

ZZ cash x - 1 sinh x

A!Wlfi WRMULAS

8.30

sinh 3x

=

3 sinh x + 4 sinh3 x

8.31

cosh3x

=

4 cosh3 x -

8.32

tanh3x

=

3 tanh x + tanh3 x 1 + 3 tanhzx

8.33

sinh 4x

=

8 sinh3 x cash x + 4 sinh x cash x

8.34

cash 4x

=

8 coshd x -

8.35

tanh4x

=

4 tanh x + 4 tanh3 x 1 + 6 tanh2 x + tanh4 x

3 cash x

8 cosh2 x -t- 1

2

H

8

YF

P

O

PU

HO

E N

FY& W

P

J

R C

E

E

B T

f

R

R

8

.

3

s

6=

&i c

2

-

4 na

8

.

3

c

7=

4 oc

2

+

$ sa

8

.

3

s

x

8=

&i s

3

-

8

.

3

c

x

9=

&o c

+

8

.

4

s

0=

8i -

4 c

2

n+

4 ca

4x

h

as

% 4

sh

x

h

8

.

4

c

1=

#o +

+ c

2

s+

& ca

4x

h

as

x 4

sh

x

h

S

D

8

U

.

AI

F

A

hs

zh

x

x

hs

zh

x

2 sn i

xx

ihn

nsh

2 cs o

x

ahs

ssh

K

NFO

x

W R

&

DFF F O P

Sl

h h3

E

x

UR D

R

s

4+

s

i

=

2 si2

& n

+ y

cn i

$ hx - y)

anh

(x

)

s hy

x

h

x

h

kR U

8

.

4s

-

s

3i

=

2 ci

n&

+ y

s an

$ hx - Y)

i sh

(x

)

n hy

8

.

4c

+

c

4o

=

2 co

is

+ y

c as

#(h

- Y)

a sh

xxx

)

s hy

8

.

4c

-

c

5o

=

2 so

$s

+ y

s is

$ (h - Y)

i nh

( xx

)

n hy

8

.

4s

x s

y 6i=

* i

n

{- n c

h

c ho

o

s

s

h

h

(

8

.

4c

x c

y 7 a=

+ a

s

{+ s c

h

c ho

o

s

s

h

h

(

s

x 4c

y

i=

+ a

n+ y

{- s s

x @ h- ) Y sl h i

) -i

n

} n

h

h

8

.

E

I

t

t

OX H

f

n

hw

.o

8 s

FP FY

x e>e 0 ls I

oa 1

x = u

i c

8(

= u

!R UPT

x < 0 u. l s t f

a

9

.

n o t

t s

x

i

n

h

c

x

a

s

h

t

x

a

n

h

c

x

o

t

h

s

x

e

c

h

c

x

s

c

h

= uh s a c

s ou h

s p

O

N ‘ E NEE

a e i wme

x = 1h n o s

i p b s fn i e

x =1 xu h t e c

h x

h

F OSC RR

g r 8y

o dn

x = xwh c s

T SB

n o .

rig

h c

HYPERBOLIC

GRAPHS

8.49

y = sinh x

OF HYPERBOkfC

8.50

29

FUNCltONS

8.51

y = coshx

Fig. S-l 8.52

FUNCTIONS

Fig. 8-2

y = coth x

8.53

/i

y

y = tanh x

Fig. 8-3

8.54

y = sech x

y = csch x Y \

X

1

7

10

X

0

-1

iNVERSE

HYPERROLIC

L

X

Fig. 8-6

Fig. 8-5

Fig. 8-4

0

FUNCTIONS

If x = sinh g, then y = sinh-1 x is called the inverse hyperbolic sine of x. Similarly we define the The inverse hyperbolic functions are multiple-valued and. as in the other inverse hyperbolic functions. case of inverse trigonometric functions [sec page 171 we restrict ourselves to principal values for which they ean be considered as single-valued. The following list shows the principal values [unless otherwise indicated] of the inverse hyperbolic functions expressed in terms of logarithmic functions which are taken as real valued.

8.55

sinh-1 x

=

ln (x + m

8.56

cash-lx

=

ln(x+&Z-ï)

8.57

tanh-ix

=

8.58

coth-ix

=

8.59

sech-1 x

8.60

csch-1 x

)

-m
+ln

X+l ( x-l

)

x>l

O
=

[cash-r x > 0 is principal value]

ln(i+$$G.)

x+O

or xc-1

[sech-1 x > 0 is principal value]

HYPERBOLIC

30

FUNCTIONS

8.61

eseh-]

x

=

sinh-1

(l/x)

8.62

seeh-

x

=

coshkl

(l/x)

8.63

coth-lx

=

tanh-l(l/x)

8.64

sinhk1

(-x)

=

- sinh-l

x

8.65

tanhk1

(-x)

=

- tanh-1

x

8.66

coth-1

(-x)

=

- coth-1

x

8.67

eseh-

(-x)

=

- eseh-

x

GffAPHS

8.68

y =

OF fNVt!iffSft HYPfkfftfUfX

8.69

sinh-lx

FfJNCTfGNS

X

7 -ll

8.72

coth-lx Y

0

\

\

\

\

‘-. Fig. 8-9

L 11

x

y =

8.73

sech-lx

y =

Y

Il

0

I I’ Fig. 8-11

csch-lx Y

I

Fig. 8-10

\

Fig. 8-8

Fig. 8-7

l l l

x

-1 \

y =

tanhkl

l

Y

Y

8.71

y =

8.70

y = cash-lx

,

,

/

X

3

L 0

Fig. 8-12

-x

HYPERBOLIC

tan (ix) == i tanhx

sec (ix) = sechz

8.79

cet (ix)

8.81

cash (ix) = COSz

8.82

tanh (iz)

= i tan x

8.84

sech (ix) = sec%

8.85

coth (ix)

=

sin (ix) = i sinh x

8.75

COS(iz)

8.77

csc(ix)

8.78

8.80

sinh (ix) = i sin x

8.83

csch(ti)

-i

=

cschx

-icscx

In the following

31

8.76

8.74

=

FUNCTIONS

= cash x

== -
k is any integer.

8.86

sinh (x + 2kd)

=

sinh x

8.87

cash (x + 2kd)

=

cash x

8.88

tanh(x+

8.89

csch (x +2ks-i)

=

cschx

8.90

sech (x + 2kri)

=

sech x

8.91

coth (S + kri)

= i sinh-1 x

8.93

sinh-1 (ix)

2 i cash-1 x

8.95

cash-lx

tan-1 (ix) = i tanh-1 x

8.97

tanh-1 (ix) = i tan-1 x

8.98

cet-1 (ix)

8.99

coth-1 (ix)

8.100

sec-l x

8.101

sech-* x

8.102

C~C-1 (iz)

8.103

eseh-

8.92

sin-1 (ix)

8.94

Cos-ix

8.96

=

=

-icotz

= *i =

- i coth-1 x sech-lx - i csch-1 z

= =

(ix)

i sin-1 x

k i COS-~x

= - i cet-1 x =

*i =

sec-l x - i C~C-1 x

kri)

= tanhx =

coth z

9

S

QUAURATIC

9.1

S

o

I a b, c a

fa , i

(

r

a

u i

(

r

a

e i

(

c

I

9.2

r

a

t

L

9.3

Dr = eb2 - n 4

ei

I

u

t

2a

f i te

discriminant, a d a s ht

l t

i

cr

aeh

e

l

q

u

d

u)

l

a

l

n i

p

j )

o i

fr r

D
mf

t r

h x + ox , = -bla h e

Q

t

3a2 -

a; =

9

Xl

=

S + T -

x

=

-

=

-

7

,

w

x

x

x ah t

rt

s

-

-

( -

S

--

+3

-

+ &

a

T/ S

1

)Z +

( T

S )

-

discriminant, a d s ht

wo

l

o i a D >do 0 ot

eh

e i af y

mf l

dt e

n

) l

s mfp r

e

= 2

C

(

a

O @

x2 =

2

C

(

+ 1m

O +w

2C

=

2

C

(

+ 2G

O +

4

+ Ca + x r ,h ,

fa

i )

u s im o t

2 ar r e h

a

-

.

)f T

D 1n =C o 0. n

x

ar

,s

1

1a o u

xI + x2 + xs = -

a

a

Ti +

a i r

9.5

sx

x

a

r

3

g

+ S

a

x

e

l

+

(

if D < 0:

t

$

1a n o et e e )i awD = rd0t q a f l o

Solutions

en

&

1a o a l r i et

b

o

o er e

32

e p

n

j

l

e s u s

a t

s q

u

pu i

u

e l a

l tg

i ao

S )

= Qr r r

s

1

a i r

so

e

n

a

d

-

4

r

r i ei

nl

a

x

nce

-

re

u

tr s

- 2a

5

+

2

cs )e

- 2

-

n

a

i

to

=e c

o

f

an

oex x

9

R=



ra 2 i s Dr = eQ3 +, nR2, f i te i ri

are

l

o

o

d

(

c

h

af

Xl

9.4

2 ~/@-=%c-

(

D < 0,

r

-b

=

f a

iL rf

uz2 + bx -t c = 0

Q G U

Dn > 0n )

Solutions:

a a

EQUATION:

L

i e D =n 0 q i

e

I a a

Ef

lx

c i

x

o O A

o

Th 0 O e =S -RI&@

x s x e

S e

0

= - ,s ,

r z s

e

t



e

S

)

r

’ ax e

x r s

) ss

2 .

SOLUTIONS

QUARTK

Let y1 be a real root

9.7

Solutions:

ALGEBRAIC

EQUATION:

of the cubic

The 4 roots

OF

x* -f- ucx3 + ctg9 +

of ~2 +

xl, x2, x3, x4 are the four

u

3

+

a

3 =

0

4

3

$

equation

+{a1

2

a; -4uz+4yl}z

If a11 roots of 9.6 are real, computation is simplified a11 real coefficients in the quadratic equation 9.7.

where

EQUATIONS

by using

+ that

$&

* d-1

particular

= real

root

0

which

produces

roots.

-

FURMULAS Pt.ANE ANALYTIC

10

fram

GEOMETRY

DISTANCE d BETWEEN TWO POINTS F’&Q,~~) AND &(Q,~~) 10.1

d=

-

Fig. 10-1

10.2

mzz-z

EQUATION

10.3

OF tlNE JOlNlN@

Y -

Y1

x -

ccl

m

Y2 -

Y1

F2 -

Xl

TWO POINTS ~+%,y~)

Y2 - Y1 xz -

10.4

cjr

Xl

y = where

b = y1 - mxl =

XZYl xz -

EQUATION

XlYZ 51

tan 6

Y -

Y1 =

mb

ANiI

l%(cc2,1#2)

- Sl)

mx+b

is the intercept

on the y axis, i.e. the y intercept.

OF LINE IN ‘TEMAS OF x INTERCEPT a # 0 AN0 3 INTERCEPT b + 0 Y

b a Fig. 10-2

34

2

FORMULAS

FROM

ffQRMAL

10.6

ANALYTIC

FORA4 FOR EQUATION

+ Y sin a

x cosa

PLANE

=

where

p

=

perpendicular

and

a

1

angle of inclination positive z axis.

GEOMETRY

OF 1lNE

y

p

distance

35

from

origin

0 to line

of perpendicular

P/ ,

with

,

L LX

0 I Fig. 10-3

GENERAL

10.7

Ax+BY+C

KIlSTANCE

where

FROM

the sign is chosen

ANGLE

10.9

s/i BETWEEN

tan $ Lines are parallel Lines

POINT

SO that

=

(%~JI)

the distance

TWO

OF LINE

EQUATION

0

TO LINE

AZ -l- 23~ -l- c = Q

is nonnegative.

l.lNES

HAVlNG

SlOPES

wsx AN0

%a2

m2 - ml 1 + mima

=

or coincident

are perpendicular

if and only if mi = ms.

if and only

if ma = -Ilmr.

Fig. 10-4

AREA

10.10

Area

=

z=

where

*T

OF TRIANGLE

1

*;

the sign

If the area

Xl

Y1

1

~2

ya

1

x3

Y3

1

(Xl!~/2

+

?4lX3

is chosen

WiTH

VERTIGES

AT @I,z&

@%,y~), (%%)

(.% Yd +

Y3X2

SO that

is zero the points

-

!!2X3

-

the area

YlX2

-

%!43)

is nonnegative.

a11 lie on a line. Fig. 10-5

FORMULAS

36

TRANSFORMATION

1

10.11

FROM

PLANE

ANALYTIC

OF COORDINATES

x

=

x’ + xo

Y

=

Y’ + Y0

1 x’

or

y’

x

x

GEOMETRY

INVGisVlNG

x -

xo

Y -

Y0

PURE

TRANSlAliON

Y

l Y’ l

l

where (x, y) are old coordinates [i.e. coordinates relative to xy system], (~‘,y’) are new coordinates [relative to x’y’ system] and (xo, yo) are the coordinates of the new origin 0’ relative to the old xy coordinate system. Fig. 10-6

TRANSFORMATION

10.12

1

=

x’ cas L -

OF COORDIHATES

y’ sin L

or

-i y = x’ sin L + y’ cas L

x’ z

INVOLVING

PURE

x COSL + y sin a

ROTATION

\Y! \ \ \ \

yf z.z y COSa - x sin a

where the origins of the old [~y] and new [~‘y’] coordinate systems are the same but the z’ axis makes an angle a with the positive x axis. ,

,

,

,

Y

,

\o/ , ’ \

,

/

/

/

,x’

L

CL!

\ Fig. 10-7

TRANSFORMATION

OF COORDINATES

1 1

02 =

10.13

lNVGl.VlNG

TRANSLATION

x’ cas a - y’ sin L + x.

y = 3~’sin a + y’ COSL + y0

or

ANR

x’

ZZZ

(X - XO) cas L + (y - yo) sin L

y!

rz

(y - yo) cas a - (x - xo) sin a

1 \

ROTATION

/

,‘%02 \

where the new origin 0’ of x’y’ coordinate system has coordinates (xo,yo) relative to the old xy eoordinate system and the x’ axis makes an angle CYwith the positive x axis.

Fig. 10-8

POLAR

COORDINATES

(Y, 9)

A point P cari be located by rectangular coordinates (~,y) or polar eoordinates (y, e). The transformation between these coordinates is

10.14

x

=

1 COS 0

y = r sin e

or

T=$FTiF

6 = tan-l

(y/x)

Fig. 10-9

FORMULAS

RQUATIQN

10.15

FROM PLANE

OF’CIRCLE

(a-~~)~ + (g-vo)2

ANALYTIC

OF RADIUS

GEOMETRY

37

R, CENTER AT &O,YO)

= Re

Fig. 10-10

RQUATION

10.16

OF ClRClE

OF RADIUS

R PASSING

T = 2R COS(~-a)

THROUGH

ORIGIN

Y

where (r, 8) are polar coordinates of any point on the circle and (R, a) are polar coordinates of the center of the circle.

Fig. 10-11

CONICS

[ELLIPSE,

PARABOLA

OR HYPEREOLA]

If a point P moves SO that its distance from a fixed point [called the foc24 divided by its distance from a fixed line [called the &rectrkc] is a constant e [called the eccen&&ty], then the curve described by P is called a con& [so-called because such curves cari be obtained by intersecting a plane and a cane at different angles]. If the focus is chosen at origin 0 the equation of a conic in polar coordinates (r, e) is, if OQ = p and LM = D, [sec Fig. 10-121 10.17

T =

P 1-ecose

=

CD 1-ecose

The conic is (i)

an ellipse if e < 1

(ii)

a parabola if e = 1

(iii) a hyperbola if c > 1.

Fig. 10-12

38

FORMULAS

FROM PLANE

10.18

Length of major axis A’A

=

2u

10.19

Length of minor axis B’B

=

2b

10.20

Distance from tenter C to focus F or F’ is

ANALYTIC

GEOMETRY

C=d--

= c =

E__

10.21

Eccentricity

10.22

Equation in rectangular

a

-

~

0

a

coordinates:

(r - %J)Z + E b2 a2

Fig. 10-13

=

3

re zz

a2b2

10.23

Equation in polar coordinates if C is at 0:

10.24

Equation in polar coordinates if C is on x axis and F’ is at 0:

10.25

If P is any point on the ellipse, PF + PF’

=

a2 sine a + b2 COS~6

r =

a(1 - c2) l-~cose

2a

If the major axis is parallel to the g axis, interchange x and y in the above or replace e by &r - 8 [or 9o” - e].

PARAR0kA

WlTJ4 AX$S PARALLEL

TU 1 AXIS

If vertex is at A&,, y,,) and the distance from A to focus F is a > 0, the equation of the parabola is 10.26

(Y - Yc?

10.27

(Y - Yo)2 =

=

4u(x - xo)

if parabola opens to right [Fig. 10-141

-4a(x - xo)

if parabola opens to left [Fig. 10-151

If focus is at the origin [Fig. 10-161 the equation in polar coordinates is 10.28

T

=

2a 1 - COSe Y

Y

-x

0

Fig. 10-14

Fig. 10-15

x Fig. 10-16

In case the axis is parallel to the y axis, interchange x and y or replace t by 4~ - e [or 90” - e].

FORMULAS

FROM PLANE

ANALYTIC

GEOMETRY

39

Fig. 10-17 10.29

Length of major axis A’A

= 2u

10.30

Length of minor axis B’B

=

10.31

Distance from tenter C to focus F or F’

10.32

Eccentricity

10.33

Equation in rectangular

10.34

Slopes of asymptotes G’H and GH’

10.35

Equation in polar coordinates if C is at 0:

10.36

Equation in polar coordinates if C is on X axis and F’ is at 0:

10.37

If P is any point on the hyperbola,

e = ;

= -

2b =

c = dm

a coordinates:

=

(z - 2# os

(y - VlJ2 -7=

1

* a



PF - PF!

=

=

If the major axis is parallel to the y axis, interchange [or 90° - e].

a2b2 b2 COS~e - a2 sin2 0

22a

r =

Ia~~~~~O

[depending on branch]

5 and y in the above or replace 6 by &r - 8

11.1

E

i

p

qc

n r

E

1

1 i

1

A

b1

1

A

o 1o

r

l

+ y

An

o

r=

uo

= a c

2

. cn

u

q (

o

e

l 2

2 a

0

c

a

2 o

= C S - y* A e.

a

&f . n

B xga r

o

e

ao

a

o

’lx

o

B w

a

E

i

p q

fn [

C =

CE

L-

1y = a 1

A

1

A T

a r

o 1o l

a

1

2

o r ae

i a c dh a x ao

s l

.=

o

r 8f

(

F o o

E

1 i

r

q %

E

1

1

i

p q

A

11.11

A

u

b l

T i a c a i r o /t

brc o

e r

e

u

y

2 Z

a

=

a

s

li

dh s bu a p ei P o si t o o a n c4h n o rl f

d

A

o



s

\ l ’

eB,

/

xg

n

n

i 1

1

g-

l

m

i

2

,

tY

n-

nn

j

m i

O

:

e o

t n

n S

a

#

h

)

2

c g

h t

v i

ic f

a g

is

h er

nr n. F

1

d

c

ti g i

1

i

l

b g

-

u

ViflTH FOUR CUSf’S

/ Z

c 2

a

f

9o

o

3 Z

r

O

0

f= n6 c

a

1

o ss o r n n

8 o Z

l

u

a

r

a

a

t

m

3

ar ta

n gr

ya r c o ss o r n v i ai e s f al r.

i

d

m i

:

n

o

i

g

n

e o

t n

9

n

a

40

t 3

r

S

nu

t

3

i

o = & yeu ec

r

e

i

F

)

a

a

ya r c

. fn a u x = a C y

11.10

. cn +

c

7

HYPOCYCLOID

1

, e

o i

C

O

= 6e

nc rn

ei

p

a i

e

bu a p ei x l

r

a &

Y

- C

r = 3f . n

o

a u (s + +

r

i d\ ,

,

\

)!

5d

Y

r

t (

C

11.5

t

s)

t’=3 4 n

\

s

G

a 4e

tA r

z

2

v i

ic f a i sd

d

e

tv er c

r nr F d

1

e

d

he d i

e c l

ti i e

i 1 u

l e

b g

-

u s

.

SPECIAL

PLANE

CURVES

41

CARDIOID

11 .12

Equation:

11 .13

Area bounded by curve

11 .14

Arc length of curve

r = a(1 + COS0) = $XL~

= 8a

This is the curve described by a point P of a circle of radius a as it rolls on the outside of a fixed circle of radius a. The curve is also a special case of the limacon of Pascal [sec 11.321. Fig. 11-4

CATEIVARY

11.15

Equation:

Y z : (&/a + e-x/a)

= a coshs

This is the eurve in which a heavy uniform cham would hang if suspended vertically from fixed points A anda. B.

Fig. 11-5

THREEdEAVED

11.16

Equation:

ROSE \

r = a COS39

The equation T = a sin 3e is a similar curve obtained by rotating the curve of Fig. 11-6 counterclockwise through 30’ or ~-16 radians. In general n is odd.

v = a cas ne

or

r = a sinne

‘Y

\ \ \ \ \ , /

has n leaves if

/ +

,/

, Fig. 11-6

FOUR-LEAVED

11.17

Equation:

ROSE

r = a COS20

The equation r = a sin 26 is a similar curve obtained by rotating the curve of Fig. 11-7 counterclockwise through 45O or 7714radians. In general n is even.

y = a COSne

or

r = a sin ne has 2n leaves if

Fig. 11-7

a

X

42

SPECIAL

11.18

PLANE

CURVES

Parametric equations: X

=

(a + b) COSe -

b COS

Y

=

(a + b) sine -

b sin

This is the curve described by a point P on a circle of radius b as it rolls on the outside of a circle of radius a. The cardioid

[Fig. 11-41 is a special case of an epicycloid.

Fig. 11-8

GENERA&

11.19

HYPOCYCLOID

Parametric equations: z

=

(a - b) COS@ + b COS

Il

=

(a-

b) sin + -

b sin

This is the curve described by a point P on a circle of radius b as it rolls on the inside of a circle of radius a. If

b = a/4,

the curve is that of Fig. 11-3. Fig. 11-9

TROCHU#D

11.20

Parametric equations:

x =

a@ - 1 sin 4

v = a-bcos+

This is the curve described by a point P at distance b from the tenter of a circle of radius a as the circle rolls on the z axis. If

1 < a, the curve is as shown in Fig. 11-10 and is called a cz&ate c~cZOS.

If b > a, the curve is as shown in Fig. ll-ll If

and is called a proZate c&oti.

1 = a, the curve is the cycloid of Fig. 11-2.

Fig. 11-10

Fig. ll-ll

SPECIAL

PLANE

CURVES

43

TRACTRIX

11.21

PQ

x

Parametric equations:

u(ln cet +$ - COS#)

=

y = asin+

This is the curve described by endpoint P of a taut string of length a as the other end Q is moved along the x

axis.

Fig. 11-12

WITCH

11.22

Equation in rectangular

11.23

Parametric equations:

coordinates:

OF AGNES1

u =

8~x3

x2 + 4a2

x = 2a cet e y = a(1 - cos2e)

Andy

-q-+Jqx

In Fig. 11-13 the variable line OA intersects and the circle of radius a with center (0,~) at A respectively. Any point P on the “witch” is located oy constructing lines parallel to the x and y axes through B and A respectively and determining the point P of intersection.

y = 2a

FOLIUM 11.24

OF DESCARTRS Y

3axy

\

Parametric equations:

1

x=m

y =

11.26

Area of loop = $a2

11.27

Equation of asymptote:

3at

1

3at2 l+@ \

x+y+u

Z

Fig. 11-14

0

INVOLUTE il.28

Fig. 11-13

Equation in rectangular coordinates: x3 + y3 =

11.25

l

OF A CIRCLE

Parametric equations: x = ~(COS+ + @ sin $J)

I y = a(sin + - + cas +) This is the curve described by the endpoint P of a string as it unwinds from a circle of radius a while held taut. jY!/--+$$x . Fig. Il-15

I

44

S

11.29

E

i

r

q

(axy’3

+

P

11.30

e

x

(bvp3

1b = i t he u = 1e s z d

e

o

u tu3

-

1

P

of

6a

so h t i n r /i h lF 1a

+ qa4 .

a

s

z i

2

G 2

T I

i t 2 a

c

c d

hd s h i a c a p

i a ih F u 1 s t

b = u

cf

-

u b a p ie ib s o

t

u

A

C

a

m

r

R

N

I

V

E

A

a

i

d

t

e

n

o

i

g

2 u 3=

n

o he 2 s wg

lre

yr t sos t a 2s n

s[

a r

e1e

e lm l n. 1e F 1

F

o

i

rS

W

i oa 6d 1

p pi g

L t

i

m 1

v

i

r.

-k

o

1 7 eo

e

g

-

S

p u v h o i cih d r c e a f nrt e t i o hf trp t is ws d i .r t s t a t ] n a c

i g va1 - b s- a1 rc

r

t

s

e -h

A

aO e a 4

ba

Pe s

i

)

OF CASSINI V

so nFe i r1 1

i , a Zh

U

t

)

tf the s eov v a nb o i 1s

l~i

2

o

_--\ ++Y !---

T [

e 1

a

u C

O 1

E

by3

COS3 z 8

- b ys

L

ELLIPSE

c

r

- b

(

C

OF Aff

q = (

P

EVOWTE

=

a c

T c + y

cn

P

8

1c

oo b

n

sr

.

1a

P

X

a

F

1

i

1

g

LIMACON 11.32 t

P

L c T

c

O b i t c i a c

e

o r = qb

l

-

.

1

i

1

g

-

u+

a

aa

r

tc

y i gai p f a n s

s os nFe i 1r 1 a r i g a1v -b >c a og .b s< -e a1 r c r F r 1 v id e ig 4 o

ii h r. .

t

io

os

r in a0 t t

aTn h c nt s. s

2 I9 e o1 = a 1 i

t

0 f sr , . d

-

F

1

i

1

.

OF PASCAL

a l ej Q eo i 0to t a rp n Q ioo an c io eo dnn h l u o a s ph oe P rs f 1t oe Pc = vub 1h i Q u . ec i a ih F u 1 u [ s a1

17

F

g

-

.

1

F

1

9

i 1

g-

m hg r h

SPECIAL

PLANE

C

11.33

Equation

in rectangular y

11.34

Parametric

OF

CURVES

Ll

IS

x

2a -

2

3

x

equations:

i

=

2a sinz t

?4 =-

2a sin3 e COSe

This is the curve described by a point P such that the distance OP = distance RS. It is used in the problem of duplicution of a cube, i.e. finding the side of a cube which has twice the volume of a given cube.

SPfRAL

Polar

BS

coordinates: ZZZ

x

11.35

45

equation:

Y =

a6

Fig. 11-21

OF ARCHIMEDES

Y

Fig. 11-22

OO

C

FORMULAS APJALYTK

12

SCXJD GEOMETRY from

Fig. 12-1

RlRECTlON

12.2

COSINES OF LINE ,lOfNlNG

1 =

COS L

=

% - Xl

~

d



m

=

where a, ,8, y are the angles which line PlP2 d is given by 12.1 [sec Fig. 12-lj.

FO!NTS &(zI,~z,zI)

COS~

=

Y2 d,

Y1

n

=

AND &(ccz,gz,rzz)

c!o?, y

=

22 -

-

21

d

makes with the positive x, y, z axes respectively

and

RELATIONSHIP EETWEEN DIRECTION COSINES

12.3

or

cosza+ COS2 p + COS2 y = 1

lz + mz +

nz

=

1

DIRECTION NUMBERS

Numbers L,iVl, N which are proportional The relationship between them is given by

12.4

1 =

L dL2+Mz+

to the direction cosines 1,m, n are called direction

M

m= N2’

dL2+M2+Nz’

46

n=

N j/L2 + Ar2 i N2

numbws.

FORMULAS

OF LINE JOINING

EQUATIONS

12.5 These

FROM

x-

x,

% -

Xl

are also valid

Y-

~~~~ Y2 -

Y1

z -

Y1

752 -

ANGLE

are

also valid

+ BETWEEN

if 1, m, n are replaced

TWO

LINES WITH

12.7

12.8

x -

OF PLANE

AND

y

=

Y-

12.9

xz -

Xl

x3 -

Xl

2 -

Y1

m

FORM

Zl

n

IN PARAMETRIC

1 =

FORM

.zl + nt

by L, M, N respectively.

DIRECTION

mlm2

THROUGH

X

x -

Y =p=p

I’&z,y~,zz)

y1 + mt,

EQUATION

PASSING

Xl 1

COSINES

L,~I,YZI

AND

h

,

+ nln2

OF A PLANE

.4x + By + Cz + D

EQUATION

IN STANDARD

~&z,yz,zz)

or

47

by L, M, N respeetively.

COS $ = 1112 +

GENERAL

GEOMETRY

21

I’I(xI,~,,zI)

x = xI + lt, These

AND

.z,

if Z, m, n are replaced

12.6

ANALYTIC

~I(CXI,~I,ZI)

OF LINE JOINING

EQUATIONS

SOLID

=

[A, B, C, D are constants]

0

POINTS

Y1l

2 -

.zl

Y2 -

Y1

22 -

21

Y3 -

Y1

23 -

Zl

(XI, 31, ZI), (a,yz,zz),

=

(zs,ys, 2s)

cl

or

12.10

Y2 -

Y1

c! -

21

Y3 -

Y1

z3 -

21

~x _ glu

+

EQUATION

z+;+;

12.11 where a, b,c respectively.

are

the

z2 -

Zl

% -

Xl

23 -

21

x3 -

Xl

OF PLANE

z intercepts

~Y _

yl~

+

IN INTERCEPT

xz -

Xl

Y2 -

Y1

x3

Xl

Y3 -

Y1

-

(z-q)

FORM

1 on

the

x, y, z

axes

Fig. 12-2

=

0

48

FOkMULAS

FROM

E A

z

t

N

YB

X”

A

N t A B C

OQ

P

x -

-

Yn

P z

-

F I

2

P

T

T



R( S y

O

2 w

.

t

s

i hc

x

=

N

I

(

x,, + At,

r oe

T

O

+ B

F

A N

x

R

T E

+ C q+ D 3 d

EO

= yo + Bf, z =

y

R

y

O

I

N

.z(j

,

oees s

N

M

R

T

,

r e ir n

,NC ~

,

, B

n e t

FUM L

U

E

+ t

,

ct

+

A

OQ R P

O

nA b o +rhB c +l C + eDx =e p 0ey at a z

z

nas

o

E

I AZO + eM By L A ,+ Cz N + L ~ =A N0,

s teh d e Ogh i nhro i

F

H

ti mt et e pr

O xP T ,

1 k

h S it

GEOMETRY

R Ax O+ By L + C.z P + L =A 0

a al u ep

A 1

FU

PD

or

C

i ft

ANALYTIC

L

E

d o h n h , , .

D

SOLID

n na

A

A A

e

L

T N

1

1

2 x cas L + y COS,8 . i- z COSy w P a a

p = p C/ y a

h an x

de Xb3

=1

ef On d a e

r

4

p

0 i tr p r r a ,e,p e P xg y nz s

s op l to

eo t ,l , d .

t e a ws

m e

a n n ei

n d e et

s

Fig. 12-3

T

R

22

1

=

2y = z

w ( t t r t t x o t n s

=

x’ +

O

A

F

x’

x()

y’ + yo d

C

c

x -

y’ ZZZ 1Y -r

. o +

O IN

x

ON PS

(

T

RV UF

R

DO RO

A

l

J

5

Y0

z

(

a h o c% r e [l oc , e rird oy i (o y z y a v n a c z’ ’ s r e e[ ? o , ) t e s i oa ’ ( y vz a n yt q c s0 ee r d ’ h , o t, o f 0h r e r t t ’ e o e wq i c o h l l z go y s t

s



J

e.e ro, rw , o ) e ze e da e

e o e io

el e

m

X

Fig. 12-4

d r~ r ’ t

m r m nr

.a l

d i) d i

.

] d ] d

FORMULAS

FROM

TRANSFORMATION

x

=

1

2

=

n

+ &

+

ANALYTIC

OF COORDINATES

+ 1

n

l+

y

1

y = WQX’+ wtzyf+

12.16

SOLID

3

r

INVOLVING

!

x

n

n

2

x

y

'

z

PURE ROTATION

*

% 1

p

3

49

GEOMETRY

? '

\



%

\

'

\

O i

=

Z

+' m

+I

y'

l=

1

+

x

=

z

+' m

m ?

T

1

X

z

y

l

+2

n

2

x

p

y

.

+z

?

a

x

%

y

g

\

Z

\ \

z

where the origins of the Xyz and x’y’z’ systems are the same and li, ' n 1 mm nl 1 2 m 2 l n 2 ; are 3, 3 the , , sdirection ; , , cosines of the x’, ,y’, z’ axes relative to the x, y, .z axes respectively.

3

1

, ,

,

\ X



\

, Y

, ?/‘ ’ ’ ~



Y

,,/ X Fig. 12-5

TRANSFORMATION

z

12.17

OF COORDINATES

Z

=

+ &

+ l&

+ I x.

INVOLVING

y

X

TRANSLATION





y = miX’ + mzy’ + ma%’ + yo 2

or i

=

n

+

n

l+

2+

zX

3

y

.'

y!

zz &z(X- Xo) + mz(y - yo) + n&

- 4

x’

=

- zO)

d-

y

x I+

F’

\

\

=

+t m

z

ROTATION

'

X

4

-' X

n

AND

n

-d z t

&(X - X0) + ms(y - Y& + 42

z

'

l

d y

COORDINATES

/

/

‘X’

(r, 0,~)

A point P cari be located by cylindrical coordinates (r, 6, z.) [sec Fig. 12-71 as well as rectangular coordinates (x, y, z). The

transformation x

12.18

=

between

these

coordinates

is

r COS0

y = r sin t

or

0 =

tan-i

r

(y/X)

z=z

Fig. 12-7

-

Y

1 '

$

l

Fig. 12-6

CYLINDRICAL

/

o

/

where the origin 0’ of the x’y’z’ system has coordinates (xo, y,,, zo) relative to the Xyz system and Zi,mi,rri; cosines of the la, mz, ‘nz; &,ms, ne are the direction X’, y’, z’ axes relative to the x, y, 4 axes respectively.

y

,

\ b

,

,

l

'

"

FORMULAS

50

FROM

SPHERICAL

[sec

SOLID

ANALYTIC

COORDINATES

GEOMETRY

(T, @,,#I)

A point P cari be located by spherical coordinates (y, e, #) Fig. 12-81 as well as rectangular coordinates (x,y,z). The

transformation

12.19

between

those

=

x sin .9 cas .$J

=

r sin 6 sin i$

=

r COSe

coordinates

is

x2 + y2 + 22 or

$I =

tan-l

(y/x)

e =

cosl(ddx2+y~+~~) Fig. 12-8

EQUATION

12.20

OF

SPHERE

(x - x~)~ + (y - y# where

the sphere

has tenter

IN

RECTANGULAR

+ (,z - zo)2 =

COORDINATES

R2

(x,,, yO, zO) and radius

R.

Fig. 12-9

EQUATION

12.21

OF

SPHERE

CYLINDRICAL

COORDINATES

rT - 2x0r COS(e - 8”) + x; + (z - zO)e where

the sphere

If the tenter

has tenter

(yo, tio, z,,) in cylindrical

is at the origin

the equation

12.22

7.2+ 9

EQUATION

12.23

OF

SPHERE

rz + rt where

the sphere

If the tenter

12.24

IN

has tenter

IN

and radius

= Re

SPHERICAL

COORDINATES

2ror sin 6 sin o,, COS(# - #,,)

the equation r=R

R’2

is

(r,,, 8,,, +0) in spherical

is at the origin

coordinates

=

is

coordinates

=

Rz

and radius

R.

R.

FORMULAS

E

FROM

OQ E

SOLID

ANALYTIC

C

tA (L

FW U L

51

GEOMETRY

E

A TTx I S

N

N HI ~P a Eb

T

D O, ,S M,

E

N y O dI

Fig. 12-10

E

1

C

2 w I

L

W Y

.

a I a

sh

b = a

i b

A I xL A X I

2

, f

A L

o re ee ac

c

ST

I X PI

H N I S T

D S I

6 fs e l

t e c

mr

r

e l

io r c y u

rf

ie

o

c i

a o l .

c

-

s

t p

d mi

u

a i

s

i t

en

l

x u

sd

Fig. 12-11

E

1

2

C

.

L

W

AO

2

L A I z A XN

J ST

X IE

P

H

I S

T

S

7

Fig. 12-12

H

1

2

$

.

Y O

z+

1

2

$

O

S

P F

8

_

N

H

E

E

$

Fig. 12-13

E

R

E

B

I

5

2

FORMULAS

FROM

SOLID

H

Note

orientation

of axes

ANALYTIC

YO

in Fig.

T

GEOMETRY

S

IF

W

H



O

E

E

E

12-14.

Fig. 12-14

E

1

2

P

.

L

3

A

L

R

I

A

P

0

Fig. 12-15

H

1

2 Note

xz --a2

orientation

y2 b2 of

axes

= .

PY

_z

3

AP

RE

AR

1

C

in Fig.

12-16.

/

-

Fig. 12-16

X

D

If y = f(z),

OE

A D

FF

E

t

R

N

t

~

lim f(X+ ‘) - f(X)

=

d

+h

hX

=

G

R

a

O

where h = AZ. The derivative is also denoted by y’, dfldx called di#e~eAiatiotz.

E

O

D

f

+ A

or f(x).

l

- fi

(

~

(r

~

)

~

F E

A

Ax

Ax-.O

The process of taking a derivative

N

F

t

t

E

F k

R

is

In the following, U, v, w are functions of x; a, b, c, n are constants [restricted if indicated]; e = 2.71828. . . is the natural base of logarithms; In IL is the natural logarithm of u [i.e. the logarithm to the base e] where it is assumed that u > 0 and a11 angles are in radians. 1

g(e) =3

1

&x)

0

=

3

c

.

2

.

3

1

3

.

4

1

3

.

5

c u

1

&

3

1

&

3

1

$-(uvw) 3 =

1 1 1 1

= =

du dx -H

v

3

du

_

ijii

-

du -=-

2

dv

3

du

du dx

1

dyidu

3

-

dxfdu

z n

c

6

.

u

7

dv + dx

vw-

u(dv/dx)

V

&

.

uw.

+

v(duldx)

dxfdu

=

v

-

3

dx

dy z

uv-

_

3z &

-

V

the derivative of y or f(x) with respect to z is defined as

13.1

1

l

$

-(Chai?

.

.

Z

du dx

gu gv g

8 9 1

0

. rule)

1

1

.

1

2

.

1

3

j

5

3

) )

+

E S

54

DERIVATIVES

AL”>. 1 _. .i



.,

13.14

-sinu

d dx

=

du cos YG

13.17

&cotu

=

-csck&

13.15

$cosu

=

-sinu$

13.18

&swu

=

secu tanus

13.16

&tanu

=

sec2u$

13.19

-&cscu

=

-cscucotug

13.20

-& sin-1

13.21

&OS-~,

13.22

u

-%<

=$=$ =

&tan-lu

-1du qciz

=

13.23

&cot-‘u

=

13.24

&sec-‘u

=

&

csc-124

[O < cos-lu

dx

< i

C

+&

[O < cot-1 u < Tr] 1

du zi

-I

1

< z-1

LJ!!+ 1 + u2 dx

ju/&zi 13.25

sin-‘u

< tan-lu

1

< t

if 0 < set-lu

d -log,u dx

-

=

13.27

&lnu

13.28

$a~

=

13.29

feu

=

~l’Xae u

=

=

-du

if 0 < csc-l

=

I

u < 42

< csc-1 u < 0

1

ig

aulna;<

TG

d"

fPlnu-&[v

13.31

gsinhu

=

eoshu::

13.32

&oshu

=

13.33

$

=

tanh u

< r

a#O,l

dx

-&log,u

< 7712

if 7712 < see-lu

=

+ if --r/2

13.26

du

lnu]

=

vuv-l~

du

+ uv lnu-

dv dx

13.34

2

cothu

=

- cschzu ;j

sinh u dx

13.35

f

sech u

=

- sech u tanh u 5

sech2 u 2

13.36

=

- csch u coth u 5

du

A!- cschu

dx

dx

dx

DERIVATIVES

13.37

d - sinh-1 dx

13.38

-dx cash-lu

13.39

-tanh-1

13.40

-coth-lu d

u

d

d dx

u

dx

13.41

=

~

=

~

=

--

=

-- 1

+ if cash-1 u > 0, u > 1 if cash-1 u < 0, u > 1

-

du

1

[-1

1 - u2 dx

1 _

-&sech-lu

55

du dx

u2

71

=

- d csch-‘u

if sech-1 u > 0, 0 < u < 1 + if sech-lu
[ -

du

-1

=

du

[-

dx

HIGHER The second, third

and higher

derivatives

13.43

Second derivative

=

d dy ZTz 0

13.44

Third

=

&

13.45

nth derivative

derivative

13.46

DERtVATlVES

are defined =a

if u > 0, + if u < 0]

d’y

=

as follows. f”(x)

=

y”

f’“‘(x)

LEIBNIPI’S Let Dp stand

< u < 11

[u > 1 or u < -11

u-z 13.42

RULE FOR H26HER

for the operator

&

uD%

+

D+.w)

=

so that

II

y(n)

DERIVATIVES

OF PRODUCTS

= :$!& = the pth derivative

D*u

;

(D%)(D”-2~)

of u. +

...

0

where

0n

1 ’

As special

0n

2

‘...

coefficients

are the binomial

[page

31.

cases we have

13.47 13.48

DlFFERENT1ALS Let

y = f(x)

and

Ay = f(x i- Ax) - f(x).

13.49

AY x2=

where

e -+ 0 as Ax + 0. Thus

13.50 If we call

13.51

the differential

Then

f(x + Ax) - f(x) Ax

AY Ax = dx

1

=

=

f/(x)

+ e

f’(x) Ax -t rzAx

of x, then we define the differential

dv

=

=

j’(x) dx

of y to be

Then + wDnu

1

DERIVATIVES

56

RULES

The rules

for differentials

are exactly

FOR DlFFERENf4ALS

analogous

13.52

d(u 2 v * w -c . ..)

13.53

d(uv)

13.54

d2 0

=

udv

=

-

d(sinu)

=

cos u du

13.57

d(cosu)

=

- sinu

=

du

PARTIAL

x and y. Then

af

lim

az=

derivative

2

13.59

with

derivatives

of higher

order

respect

of f(x,y)

is defined

dx =Ax

Extension

and

x constant,

a2f

of more

than

to be

a df ax 0 ay 9

a2f -=ayiG ayax

and its partial

a af 7~ 0 ay a

af 0

derivatives

as =

$dx

+ $dy

dy = Ay.

to functions

is defined

as follows.

a1/2=

df

where

to y, keeping

a af TGFG' 0

The results in 13.61 will be equal if the function case the order of differentiation makes no difference. The differential

of f(z, y)

AY

can be defined

a2f -=--axay

13.61

derivative

Ax

AY'O

@f -= a22

13.60

the partial

lim fb, Y + AY) - fb, Y)

-

dY

Partial

we define

I

fb + Ax, Y) - f&y)

Ax-.0

of f(x,y)

_^.1 :“” _

i”

DERf,VATIVES

Let f(x, y) be a function of the two variables respect to x, keeping y constant, to be

the partial

du?dvkdwe...

nun- 1 du

13.56

Similarly

that

udv

d(e)

13.58

we observe

212

V

13.55

with

As examples

+ vdu

vdu

=

to those for derivatives.

two variables

are exactly

analogous.

are continuous,

i.e. in such

If

2

= f(z),

or the indefinite

then

y is the function of f(z),

integral

Since the derivative

derivative

is f(z)

and is called

of a definite

integral,

see page

94.

The

process

of finding

In the following, u, v, w are functions of x; a, b, p, q, n any constants, e = 2.71828. . . is the natural base of logarithms; In u denotes the natural logarithm that u > 0 [in general, to extend formulas to cases where u < 0 as well, replace are in radians; all constants of integration are omitted but implied. 14.1

14.2

14.3

14.4

S

S

S

S

adz

=

uf(x)

dx

ax

=

a

(ukz)kwk udv

14.6

14.7

14.8

Sf(m) S

=

WV -

dx

F{fWl

dx

undu

=

14.10

=

_(‘udx

vdu

S

integration



svdx

*

[Integration by parts,

.(‘wdx

*

by parts]

see 14.48.

aSf(u) du

-

=

F(u)2

S

du

=

F(u) f’(z)

S

du

where

u =

.&a+1

S

du -= S

S

s

n-t

n#-1

1’

In u

U

...

1

=

= 14.9

f(x) dx

. ..)dx

For generalized 14.5

S

if

[For n = -1, see 14.81

u > 0 or In (-u)

if

u < 0

In ]u]

eu du

=

eu

audu

=

S

@Ina&

the anti-derivative

denoted by if y = f (4 dx. Similarly f (4 du, then s S is zero, all indefinite integrals differ by an arbitrary constant.

of a constant

For the definition integration.

whose

=

eUl”Ll

-=-

In a

au

In a ’ 57

a>O,

a#1

f(z)

an integral

of f(s) $

=

f(u).

is called

restricted if indicated; of u where it is assumed In u by In ]u]]; all angles

INDEFINITE

58

du

=

- cos u

cosu du

=

sin u

tanu

du

=

In secu

14.14

cot u du

=

In sinu

14.15

see u du

=

In (set u + tan u)

=

In tan

csc u du

=

ln(cscu-

=

In tan;

=

#u

-

=

j&u + sin u cos u)

14.11

14.13

14.16 14.17 14.18

14.19 14.20 14.21 14.22 14.23

14.24 14.25 14.26 14.27 14.28 14.29 14.30

sinu

INTEGRALS

I‘

I‘

I‘ .I'

tanu

=

-cotu

tanzudu

=

tanu

cot2udu

=

-cotu

sin2udu

=

- 2

=

;+T

du

=

secu

=

-cscu

S S S s

' co532u du

S

secutanu

s

cscucotudu

S I‘ I‘ J

U

-

sin 2u

du

=

coshu

coshu

du

=

sinh u

tanhu

du

=

In coshu

coth u du

=

In sinh u

sechu du

=

sin-1

csch u du

=

In tanh;

(tanh u)

J

sechzudu

=

tanhu

14.32

I‘

csch2 u du

=

- coth u

tanh2u

=

u -

s

du

u

sin 2u 4

14.31

14.33

cosu

u

sinhu

S S

-In

cotu)

=

sec2 u du * csc2udu

I

=

tanhu

or

or

sin u cos u)

2 tan-l

- coth-1

eU

eU

INDEFINITE

14.34 14.35 14.36 14.37 14.38

S S S S s

sinheudu

=

sinh 2u --4

coshs u du

=

sinh 2u ___ i- t 4

59

cothu u 2

- sech u

csch u coth u du

=

- csch u

=

+(sinh

=

Q(sinh u cash u + U)

u cash u - U)

du ___ = u’ + CL2

14.42

s

14.43

u -

=

14.41

14.40

=

sech u tanh u du

S S S

14.39

cothe u du

INTEGRALS

u2 =

-

du ___ @T7

s

>a2

u2 < a2

=

ln(u+&Zi?)

01‘

sinh-1

t

14.44 14.45

14.46 14.47 14.48

S

f(n)g dx

This

=

is called

f(n-l,g

-

generalized

f(n-2)gJ

+

integration

f(n--3)gfr

-

. . .

(-1)”

s

by parts.

Often in practice an integral can be simplified by using an appropriate and formula 14.6, page 57. The following list gives some transformations 14.49 14.50 14.51 14.52 14.53

S S S S S

F(ax+

b)dx

F(ds)dx

F(qs)

1 a

= = dx

=

F(d=)dx

=

F(dm)dx

=

S S S S S

fgcn) dx

F(u) du

transformation and their effects.

where

u = ax + b

i

u F(u) du

where

u = da

f

u-1

where

u = qs

F(u) du

a

F(a cos u) cos u du

where

x = a sin u

a

F(a set u) sec2 u du

where

x = atanu

or substitution

INDEFINITE

14.54 14.55 14.56 14.57

F(d=)

I‘

F(eax)

dx

F(lnx)

s

=

dz

a

F(u)

s =

apply

x, cosx)

tan u) set u tan u du

F(a

where

x = a set u

where

u = In 5

where

u = sin-i:

s

dx

results

F(sin

s

$

=

F (sin-l:)

Similar 14.58

=

s

I‘

s

dx

INTEGRALS

dx

e” du

oJ

F(u)

for other =

cosu

inverse

du

trigonometric

2

functions. -

du

1 + u?

where

u = tan:

Pages 60 through 93 provide a table of integrals classified under special types. The remarks page 5’7 apply here as well. It is assumed in all cases that division by zero is excluded.

14.59

dx s

‘, In (ax + a)

as= xdx ax + b

14.60

X

=

-

a

dx

x3

14.62

S i&T-%$-

14.63

S z(az

14.64

S x2(ax

14.65

I‘

14.66

S ~(ax

14.67

S ~(ax

14.68

Sm

b

- ;E- In (ax + 5)

(ax + b)2 --ix---

2b(az3+

(ax + b)s ---m----

3b(ax + b)2 + 3b2(ax + b) _ b3 2 In (ax + b) 2a4 a4

b, + $ In (ax + b)

dx

= dx + b)

=

b)

=

dx x3(ax+

dx

-1

+ b)2

=

a(ux + b)

x dx + b)2

=

a2(af+

=

ax + b --- a3

=

(ax + b)2 _ 2a4

x2 dx x3

dx

14.69

~ S (ax

+ b)2

14.70

S x(ax

dx + b)2

14.71

S

xqax

dX

+ by

b)+ $ In(ax+ b) a3(ax

b2 + b)

3b(ax + b) + a4

$

In (ax + b) bs + z aJ(ax + b)

In (ax + b)

given

on

INDEFINITE

14.72 14.73 14.74 14.75

14.76

dx

s

x3(az+

s

dx ~(ax + b)3

s

14.79 14.80 14.81

S S S S

14.82

2b a3(az+

=

b)2

+ +3 In (as + b)

b3 2u4(ax+

6x2 =

2b2(u;a+

=

2b5(ux + b)2 -

b)ndx

n = -1, -2,

b)2 -

b3(ux + b)

a4x2

4u3x b5(ux + b) -

(ax + b)n+l

=

(n+l)a =

If

*

(ax + b)n+2 ~-

+ b)n dx

(n

(ax + b)n+3 + 3)a3

=

_

'

2b(ux +. b)n+2 (n+ 2)u3

nZ-1*--2

t b)” dx

+

b2(ux + b)n+’ (nfl)u3

see 14.61, 14.68, 14.75. + b)n

=

xm(ux

(m +

nb

+

m+n+l x”‘(ux

see 14.59.

b(ux + b)n+l (n+l)u2

-

(n + 2)u2

n = -1,

see 14.60, 14.67.

n = -l,-2,-3,

S

In (ax + b)

b3(ax + b)

xm+l(ax

14.83

- 2

by

2ux

2b3(ux + b)2 -

=

x(ux + b)ndx

If

b2 2a3(ax+

b) -

3b2 u4(ux + 6) +

5-

dx

x3(ux + bJ3

SX~(UX

b)

2u

+ bJ3

(ax+

b4(:3c+

b

dx

x2@

If

b4x

a2(as + b) + 2a2(ax + b)2

=

dx + bJ3

x(ax

3

3a(az + b) _

-1

=

x3 dx ~(ax + b)3

61

-1 2(as+ b)2

=

x dx (ax + b)3 dx ~ (ax + b)a

(ax + b)2 + -2b4X2

=

~

S x2 S

14.77 14.78

b)2

INTEGRALS

S

xm(ux

mfnfl

n

+ b)n+’

+ 1)~

-xm+l(ux+b)n+l

(n + 1)b

_

mb

(m + n + 1)~ .f +

xm--l(ux

(n S

m+n+2

+ 1)b

+ b)n-1

xm(ux

dx

+ b)“dx + b)“+’

dx

62

INDEFINITE

14.89 14.90

14.93

=

xd-6

s

14.91

14.92

dzbdx

s

dx

x%/G

s

“7 =

dx

2(3a;z;

14.96

14.98

dx

=

&dx

2d&3

X

&T”

s

X+GT3

=

dx

=

t2;$8,,

.(‘

Xm

x(ax

-

=

-(ax + b)3/2 (m - l)bxm-’

+ b)““z

(as +xbP”2

(ax + b)m’z

x(ux

-

x-l:= X~-QL-TTdX

c2;“+b3,a

s

=

dcv

dx

X2

dx + b)m/2

1) s

x--l:LTT >T gm--1

_ (2m - 5)a (2m - 2)b s

2b(ux -

2(ax + b)(m+s)lz u3(m -I- 6) ~(CLX + b)““z m

=

=

2(mf

2(ax + b)(“‘+Q/z a2(mf4)

=

=

dx

+

dx

-

4b(ux

+ b)(m+4)/2 4)

+

2b2(ax

a3(m+

(ax + b)(m-2)/2

+ b s

(ax + b)(m+2)‘2 bx

(m - Z)b(ax

_

+ b)(m+z)/z aym + 2) + b)(“‘+2)‘2 2)

u3(m+

dx

X

(ax + b)m’2

+z

2 + b)(m-2)/2



INVOLVfNC

S S 1 5

X

x(ax

dx

dx + b)(“‘--2)/z

c&z + b AND

p;z! + q

>:“:

dx

14.105

14’109

b)3’2

dx

2(ax + b)(“‘+z)lz a(m + 2)

INTEGRALS

14.108

+

(m-l)xm-’

=

z2(ax + b)m’2 dx

S S

_ (2m - 3)a (2m - 2)b s (as

=

c (ax + b)m’2 dx

s

dXGb

&&x5 dx

Xm

l/zT-ii -----dx

s

[See 14.871

X&iZT

2mb (2m + 1)a s

-

\/azfb

-

s

14.107

s

(m - l)bxm-1

xmd=

s

(2m + 1)~

= dx

14.102

14.106

dx

+;

2LlFqz s

[See 14.871

x&zz

&zTT

=

s

14.104

dx

+ b

x2

14.100

14.103

+ 8b2) ,,m3

s

s

14.99

14.101

;$a;bx

‘&zT J

&iTx

14.97

2b’ l&a@

2(15a’x2

=

14.94

14.95

INTEGRALS

(ax + b)(w x dx . (‘ (ax + b)(px

S S j-

+ d + d

dx (ax + b)2bx

+ d

xdx (ax + b)2(px

+ 4

x2 ds (ax + b)z(px

+ q)

=

=

&

g In (ax+

(bp - aq;&ux+

b) -

b) +

(b-

% In (px+

’ ad2

q)

b(bp ,Z 2uq) In (uz + b)

INDEFINITE

14.110

dx (ax + bpqpx

I’

+ qp

-1 (Yz - l)(bp

=

INTEGRALS

63

1 - aq)

(ax + b)+l(pz

1

+ q)“-’

+ a(m+n-2) ax + b -dds s PX + Q

14.111

=

7

dx (ax + bpqpx

s

-1 (N

-

l)(bp

-

(ax (px

uq)

+ +

bp+’ q)“-l

+

(x-m

-

va

s

1 (ax

14.112

+

bp

(px+

s

q)n dx

-1

=

(m

I

14.113

S

14.114

s

-E!C&.Y d&zT

dx

=

+ q)n-1

+ yh(px+q)

-

m

(ax + bp -

(n--:)p

l)p

i

{

(px

+

q)n-l

(ax + ap (pxtqy-1

+

-

m@p

-

aq)

s

,E++q;!Tl

dx >

(ax + b)m- 1 (px+ 4”

dx

>

(ax + by-1 \ (px + qy- l dx1

S

mu

2(apx+3aq-2bp)Gb 3u2

dx

(Px + 9) &ii-G

14.115

14.116

14.117

Jgdx

=

(px + q)” dn~

s

=

S S

=

=

(n - l)(aq

=

S,

+ q)n-l

+ 2n(aq - W (2n + 1)a

(2n + 1)u -&m (n -

+

(Px + q)” dn

2(n ‘“^I),;)”

+ qy-

l + 2(n ” 1)p s

INVOLVING

ds

bp) s

* (px + q)“s

l dx

&ii%

1

l)p(pz

INTEBRAES

14.120

- bp)(px

2(px + q)n &iTT

da

14.119

b - aq (2n + 3)P s

daxi-b

-bx + dn dx

&zTiT Smdx

I

(2n + 3)P

dx

(px + 9)” &z-i

14.118

2(px + q)n+ l d&T?

dx

dx (px + qp-’

AND

~GzT

J/K

&ln(dGFG+~)

dx

ZI

(ax + b)(w + q') i

14.121

xdx (ax + b)(px

= + q)

dbx

+ b)(px UP

+ 4

b + w --x&T-

dx (ax + b)(w

+ q)

dx

dx (px + q)n-1

&-TT

INDEFINITE

64

INTEGRALS dx

14.122

(ax + b)(px + q) dx

.

14.123

.('

j/sdx

=

=

(ax + b)(px + 4

‘@‘+

y(px+q)

+ vj-

(ax+;(px+q)

2&izi 14.124 (aq - W d%=i

lNTEGRALS

14.125

s--$$

=

$I-'~

14.126

J-$$$

=

+ In (x2 + a2)

14.127

J$$

=

x -

14.128

s&

=

$

‘4-l

J

x2(x?+

14.131

J

x3(x?+a2)

14.132

J

(x2d;Ga2)2

14.137 14.138

($2)

-

$ln(x2+az)

+3 tan-l:

2a2(xf+

S

14.140

S

(~2

14.141

S

dx x(x2 + a2)”

.

(x2+ a2)"

-~

x -- 2:5 tan-l: 2a4(x2 + a2)

1 2a4x2

1 2a4(x2 + u2) 2n - 3 + (2n- 2)a2

X

=

2(n - l)a2(x2 + a2)%-*

xdx

S

dx

(x2 + a2)n-1

-1 2(n - 1)(x2 + a2)n-1

+ a2)n=

dx

1 2(12 - l)a2(x2 + uy--1

=

xm dx dx S x9z2+a2)n

+ &3 tan-':

a2)

--- 1 a4x

dx S x2(x2 + c&2)2 = dx + a2)2 = S x3(x2 (x2d+za2)n

14.143

1 2a2x2

-=

14.139

14.142

six

=

=

x’ + a2

a tan-13c a

--30

INVOLVtNO

S

= =

xm--2 dx (x2

+

a2)n-l

-

a2

+ $

S

dx 1 2 S 33x2 + a2)n--1

S x(x2 + a2)n-1

x*--2 dx (x2 + a2)" --

1 a2 S

dx

xme2(x2 + a2)”

INDEFINITE

:INTEORAES I.

14.144

14.145

s

~ x2 - a2

xdx

14.147

s m--

14.150

14.151

14.156

14.157

14.158

s

x2(x2 - a2) =

s

x3(x2-a2)

s

(x2?a2)2

s

(x2 - a2)2

s

(x2--2)2

dx

dx

14.162

=

__ 1 2a2x2

=

2a2(sta2)

=

-1 2(x2-a2)

=

2(xFTa2)

=

2(x2 - a‘9

xdx

Lln

-

z

~~3

(

>

x2 dx

'

+

-a2

x3dx

(,Zya2)2

&ln

+ i In (x2 - a2)

dx

s

x(x2 - a2)2

s

x2(x2-a2)2

=

dx

S S

=

dx

-

---

1

xdx

=

dx

u2)n

-

--x

$5'"

2n - 3 s (2~2 - 2)a2

dx (x2

-

a2p-

1

-1 2(n - 1)(x2 - a2)n--1

S - = =S S --a?)" S S x(x2

+

2(n - 1)u2(x2 - a2)n-1

a2)n

(X2-a2)n

2a4(xi-a2)

2~~4x2

=

dx

(x2 -

--

=

x3(x2-a2)2

s

14.161

+ $ In (x2 - a2)

dx

x(x2 - a2) =

14.159

14.160

$

s

14.154

14.155

;

Jj In (x2 - ~22)

x3 dx

14.152

14.153

z2 > a2

x2 dx s n--

14.149

=

65

ix2 - a’,

1 - a coth-1

or

m=

14.146

14.148

INVOLVlNO

dx

*

INTEGRALS

-1 2(n - l)dyx2 - dy-1

x77-2 dx

xm dx

-

1 az

S

x(x2-

S - u2p-S a?

a2)n--1

dx

xm--2 dx

(x2

(x2-a2)n-1

dx Xm(X2qp=

1

dx

,z

xm-2(x2

+

a2

(x2-a2)n

1

xm(x2-

dx u2)n-l

INDEFINITE

66

tNVOLVlNO

IWTEGRALS

14.163

S

~ dx a2 - x2

14.164

S

__ a2 - x2

14.165

S

g-z-p-

14.166

Sm

14.167

S

x(a2 - 22)

14.168

S

22(d

=

= ---2

dx

S

-

S

$ In (a2 - x2)

=

22)

22 x3(,Ex2)

=

-&+

&lln (

dx

22>

-

5

2a2(a2 - x2)

=

2(a2--x2)

=

2(Lx2)

-

a2 2(&-x2)

+ i In (a2 - x2)

1

x dx

(a2 -

__ a2

=

x2)2

S

22 dx (&-x2)2

14.173

S

(CL2- x2)2 =

14.174

S

14.175

S

14.176

S

14.177

S

(a2 -dx x2)n

S

(a2 - x2)n =

14.179

S

x(a2

14.180

S

(,2-x2p

14.181

i tanh-I$

dx

14.172

14.178

xz
- f In (a2 - x2)

x2

x3 dx

(a2-x2)2

14.171

or

u~--~,

x2 dx

14.169J 14.170

=

x dx

INTEGRALS

x3 dx

=

-

5”’ dx

S

(a2

-

dx

=

dx

1

-

x‘p

(2n2n - 2)a2 3

+

l)a2(;2-x2)n-l

1 2(n - l)(a2 - x2)n-1

xdx

dx

qn-

2(n - l)a2(a2

a2

xm -2dx

S

j- xmc,~xp)n =

+2s

- x2)n-1

(a2 - x2p

S

+f

x(u2 - xy--1

x*-2dx

-

xm(a2?z2)n-~

s

(a2-

x2)n-l

+$f

x--$-x2)n

x2)n-l

INDEFINITE

14.182

In (x + &&?)

INTEGRALS

or

sinh-1s a

S

x dx ___ ~~

S

lfzT-2

S

~I2xz

14.183

14.184

II

x2 dx

-- a2 2 In(x+@Tz)

2 dx

x3

14.185

x 7 2 +a

=

(x2 + a2)3/2 3

=

-

a2&GZ

14.186 S

14.187 S

=

.2&F&i

s 14.189 14.190 14.191 14.192

14.193

14.194

=

dx

14.188

-

J/Xa22 ~~

+ k3

-2a2x2

x3~~5

S S s

a+&3T2

In

X

+ $l(x+~W)

xdmdx

(x2 + a2)3/2

=

x%jmdx

3

=

ad-g-q

dx

=

S

x(x2 + a2)312 4 (x2 + a2)5/2 _ 5

a2x&T2

&T S-dx S

a2(x2 + a2)3/2 3

= --&G-G

+ ln(z+drn)

&s-T-z

X

dx

14.196

S

(x2

14.197

s

(%2

14.198

.f

(x2

s

(x2

s

x(x2 +

S

x2(x2

dx +

x3(x2

dx + a2)3/2

14.199

14.200

14.201

14.202

a2)3/2

x dx

+

a2)3/2

x2 dx

+

x3

a2)3/2

dx

+ a2)3/2

= = &is = d& =

+ ln(x

@TTP

1 a2)3/2

a2)3/2

+ d&i7)

im+a2

dx

S

a-l-&372

- $a In

x3

+

a4

sln(x+j/~)

8

=&qgwalIn

s

X2

14.195

>

=

=

-

a+JZ2

In

2

(

~~ - ~ a4x

-1 =

f

a2&SiZ

2a2x2>

x -

a4&FS

-

3

2a4&FiZ

3

+ s5ln

a+&-TS 2

INDEFINITE

68

14.203 14.204 14.205 14.206 14.207

14.208 14.209

14.210

14.211 14.212 14.213

S S S S S S S

(x2

+

x(x2

a~)312

+

dx

dx

u2)3/2

x(x2

=

+

3&q/~

u2)3/2

4 (x2

=

+

+

~2)3/2

ds

=

x3(x2

+

u2)3/2

dx

=

u2)5/2

x(x2

+

u2)5/2

_

+

u2)3/2

dx

(22

=

+

(x2+

ds

=

u2)3’2

~2(~2

+

U2)3’2 x3

dx

=

(x2 +

-

-

--

u4x@TF2

~~ln(~+~2xq

16

~2)5/2

CL+@-TT?

+ u2@T2

-

x a2)3/2

a3 In

x

>

+ 3a2 ln (x + q-&-T&) 2 U-kdlXS

2x2

x

S

In (x + j/277),

S

u2)3/2

5

2

s ~ x2 dx &G=z

+

-

_ (x2 + u2)3’2 + 3x-

x2

(x2

+

24

~247’2

3

X

(x2 + UT’2

u2x(x2

6 7

(x2

+~a4ln(x+~2TTq

8

5

x2(x2



+

INTEGRALS

5 P--x-a

=

2

x3dx

s G= 1 5

asec-l

x2- u2

X

I

U

I

14.214

14.215

14.216 14.217 14.218 14.219

14.220

@=2 S

=

x3(&

s

dndx

S Sx2@73 S

=

xda~dx

,“d~

s-dx

+ k3 see-l xU I I

2u2x2 x =

dx

=

dx

=

7

x2-a

(x2

_

-$ln(x+dm) u2)3/2

3

x(x2

cAq/m~ - a2)3/2 +

4

cx2

-

~2)5/2

+

8 ~2(~2

-

5 =

dm-

~2)3/2

3 a see-l

I;1-

-- “8” ln(x

+ +2TS)

>

INDEFINITE

INTEGRALS

69

14.224

14.225

14.226

14.227

14.228 14.229

S 22 dx S S S S (~2 -

a2)3/2

=

x3 dx (22 - a2)3/2

=

-~

-1 a2@qp

=

dx

z2(s2

-

lJZ2

a2)3/2

=

-_

x3(x2

-

(~2 -

x a+iGZ

&)3/z

&

x(x2 - a2)3/2 4 -

z

x(52 - a2)3/2 dx

(x2

=

-

14.236

x2(99 -

a2)3/2

x3(52 -

a2)3/2

S

dx

2(x2 -

=

a2)5/2

14.238

dx

(22 -

=

a2)7/2

a2x(x2

+

-

14.240

az(x2

-

In (5 + &372)

a4x&FS 16

-

a2)5/2

@2 _ a2)3/2

S S S

X

(x2 _ a2)3/2

dx

=

tx2

-

a2)3'2

-

a2da

+

a3 set-'

c

3 dx

=

-

(x2

,jx

=

_

(x2;$33'2

I

-xa2)3'2

+

3xy

+

"y

_

ia

I

ln (1 + da)

X2

@2 -

a2)3/2

_

ga

sec-'

x3

Sda& =

lNVC)LVlNG

<%=??

sin-l:

xdx ____ = -dGi ___x2 dx ).lm x3 dx ____

S

sjlzz

[El a

x 7 a-x

=

-

=

(a2 - x2j312 _ 3

2

a2dpz3i

a+&KG X

14.243

:

Ia I

5

7

14.241

14.242

a2)3/2

24

@G?

14.239

see-l

+ :a4

8

+

6

1NtEORAtS

14.237

3a2x&iF2

2a5

a!2)5/2

S

14.235

3

--

5

14.233 14.234

3

=

* I

2 IaI

-

a4x

1

a2)3/2

S

14.232

1 -- a3 set-1

dx

14.230 14.231

- dx2aLa2

GTZ-

dx

4x2 - a2P2

+ ln(x+&272) &z

dx

Sx743x5 -~ 2a2x2

-

&3 In

a + I/-X; 5

+ $

In (z + $X2 - a2 )

INDEFINITE

70

14.244

14.245

+

xqTF-2

s

dx

x+s-?5

s

14.249

&AT s ~ x2

14.250

S~

14.252

14.253

14.254

14.255

14.256

14.257

14.258 14.259 14.260 14.261

dx

-

x(a2-

=

_

a2(a2-

=

x2 dx (a2 ex2)3/2

=

*

x3 dx (a2-x2)3/2

=

daz_,Z+d&

g

a

a+@=-2 (

1

_sin-1: x a +

2x2

xdx (,2mx2)3/2

sin-l

8

x2)3/2

>2

-~

x3

+ g

3

~~-CLln

=

a+@=2

&In

(

X

>

X

>

X

.3Lz2 &A?

-

x2)3/2

-

a2&z

=

2

sin-l-

dx

a

a+&GS

i31n

(

diFT1

dx x2(a2-x2)3/2

S

a2xF

8

dx= _~

x(a2-

+

5

dx @2ex2)3/2

s

x2)3/2

4

(a2 - x2)5/2

=

Wdx=

S S S S S

-x2)3/2

3

=

@=z -dx

S

-ta2

=

x3dmdx

s

14.248

14.251

sin-l:

s

14.246

14.247

$f

INTEGRALS

=

x

614x

dx

a4&iGz

-1

x3(a2-x2)3/2

=

3

+

x(a2

-

&51n

2a4&FG

2a2x2@T2

S($2 - x2)3/2 dx= Sx(&-43/2& = Sx2(& - &)3/2 ,&= S x2)3/2 dx=

-

+

3a2x&Ci3 8

x2)3/2

4

a+@? (

X

>

ia4 sin-l:

+

(a2-x2)5/2

s

(a2 -xx2)3'2

14.263

S

14.264

s

(a2-

x2)3/2

-

x2)5/2

+

a2x(a2--2)3/2

6 x2)7/2

=

(a2 -3x2)3'2

dx

=

-(a2-x2)3/2

+

_

a2(a2-

=

+

x2)5/2

a2dm

3x&z%

-

2

a3 ln

_

(a

+ y)

;a2sin-1~ a

_

“7

+ gain

a+&PZ X

.

+ igsin-l;

5

_

_ ta2 ;x;2)3’2

a6

16

X

dx

a4xjliGlF

24

7

dx

x2

la2 -x;2)3’2

x(a2

(a2 -

x3(&2 -

14.262

5

>

x

INDEFINITE

INTEOiRALS

INTEGRALS

71

ax2 f bz + c

LNVULWNG

2 14.265

s

&LFiP

dx bx + c

ax2+

=

2ax + b - \/b2--4ac $-z

If results

14.268

14.269

14.270

14.271

14.272

14.273

14.274

14.275

s

xdx ax2 + bx + c

=

&

s

x2 dx ax2 + bx + c

=

--X a

s

ax2-t

x”’ dx bx+c

S s

dx + bx + c)

xz(ax2

S S S S S

xn(ax2

ax2 + bx + c

(

dx + bx + c)

14.277

14.278

14.279

X2

1 =

-(n

- l)cxn-l

-- b c

b 2c

--

( ax2 + bx + c )

&ln

2ac

~“-1 dx ax2 + bx + c

I b2 - 2ac 23

x”-l(ax2

(4ac -

x dx (ax2 + bx + ~$2

=

- (4ac -

=

2c (b2 - 2ac)x + bc f4ac - b2 a(4ac - b2)(ax2 + bx + c)

=

- (2n - m - l)a(ax2

2ax + 6 2a +b2)(ax2 + bx + c) 4ac - b2, f

x”’ dx

+ bx + c)n--l

(n - m)b (2n - m - 1)a s

dx ax2 + bx + c

S

xnp2(ax2

dx ax2 + bx + c

S S

dx ax2 + bx + c

(m - 1)~ (2n-m1)a s



~“‘-2 dx (ax2 + bx + c)n

xm-1 dx (ax2 + bx + c)fl

+bx+c)n= $S(a392f~~3~~)“-I - $S(ax:";;:!+ -iS S S S S S S .I S Sx~-~(ccx~ s

x2n--1 dx (m2

dx x(ax2 + bx f

x2n-2

dx

(ax2 + bx -t- c)n

c)~

dx x2(ax2 f bx + c)~

xn(ax2

dx + bx + c)

dx ax2 + bx + c

b

-4ac

xWL-l

(ax2 + bx f CP

S

dx -- a + bx + c) c

S

=

$2 dx

use

S

dx (ax2 + bx + c)2

(ax2 + bx + c)2

b = 0

dx ax2 + bx + c

J

_ 1 cx >

bx + 2c b2)(ax2 + bx + c)

If

dx ax2 + bx + c

s

x”-2 dx -- b ax2 + bx + c a

s

60-61 can he used.

dx ax2 + bx + c b2 -

X2

$1,

=

a

:i

on pages

+ T

C

--

(m-l)a

=

s

&ln(ax2+bx+c) x?T-l

=

dx + bx + c)

x(ax2

In (ax2 + bx + c) - $

-

14.276

i( 2ax + b + dn

b2 = 4ac, ax2 + bx + c = a(z + b/2a)2 and the results on page 64. If a or c = 0 use results on pages 60-61.

14.266

14.267

In

dx f bx $

1 -2c(ax2 + bx + c)

=

1

=

- cx(ax2

+ bx + C)

b 2c

-- 3a c

dx +$ (ax2 + bx + c)2

dx -- 2b (ax2 + bx + c)2 c

1

c)~

=

-(m

- l)cxm-l(ax2

_ (m+n-2)b (m - 1)~

+ bx + c)n--l

-

(m+2n-3)a (m - 1)c

dx + bx + c)n

dx x(ax2 + bx + c)

x(6x2

dx + bx + c)2

x-~(ux~

dx + bx + c)”

72

INDEFINITE

INTEGRALS

In the following results if b2 = 4ac, \/ ax2 + bx + c = fi(z + b/2a) and the results be used. lf b = 0 use the results on pages 67-70. If a = 0 or c = d use the results $

ax

14.280

=

ax2+bx+c

a

In (2&dax2

-&sin-l

on uaaes 60-61 can on pages 61-62.

+ bx + e + 2ax + b) (J;rT4ic)

or

&

sinh-l(~~~c~~2)

14.281 14.282

x2 dx s,

ax2+bx+c

14.283

dx

14.284

=

-

ax2 + bx + c

14.285

ax2+bx+cdx

(2ax+

=

14.286

b)

ax2+ 4a

bx+c

+4ac-b2

16a2

14.288

14.289 14.290 14.291 14.292 14.293

=

6az4a25b

bx+c

(ax2 + bx + c)~/~ +

“““,,,“”

J

d ax2f

bx+c

dx

ax2+bx+c

S“

X

ax2+bx+c X2

S S ax2 Scax2 x2 S+x2+%+c)3’2 = cdax2 : bx+e+: SJ s S, S dx (ax2 + bx + c)~‘~

2(2ax + b)

(4ac - b2)

x dx

(ax2 + bx + dx + bx +

x2(aX2

ax2 + bx + c

2(bx + 2c)

~)3’~

(b2 - 4ac) \/

43’2

a(4ac - b2)

+ bx + c

(2b2 - 4ac)x

+ 2bc

dx + bx +

c)~‘~

=

ax2 + 2bx + c - &?xdax2 + bx + c +

2c2

(ax2 + bx + c)n+1/2dx

=

dx

1~x2 + bx + c

-- 3b

14.295

ax2 + bx + c

axz+bx+c

x

14.294

.

(ax2 + bx + c)3/2 b(2ax + b) dp ~ ax2+ 3a 8a2 dx - b(4ac - b2)

=

14.287

dx 8a

ax2+bx+c

S +ifif+

dx

(QX~

axz+bx+c

b2 -

26

2ac

Scax2

dx + bx +

43’3

dx

x

ax2+bx+c

(2ax + b)(ax2 + bx + c)n+ 1~2 4a(nf 1) + (2% + 1)(4acb2) (a&+ 8a(n+ 1)

S

bx + c)n-1’2dx

4312

.

INDEFINITE

14.296 14.297

S s’(ax2-t

x(uxz + bx + C)n+l/z dx

=

(ax2 + bx + C)n+3'2 cq2n+ 3) 2(2ax

dX

bx + ~)n+l’~

=

dx + bx + ++I’2

x(ux2

s

73

.

_ $

(ax2 + bx + ~)~+l’zdx

s

+ b)

(2~2 - 1)(41x - b2)(ax2 + bx + +--1/z 8a(n1) dx (2~2 - 1)(4ac - b2). (‘ (61.x2 + bx + c)n--1E

+

14.298

INTEGRALS

1 =

(2~2 - l)c(ux’J

+ bx + c)n--1’2 dx

JPJTEORALS Note 14.299

14.300

14.301 14.303

14.304

14.305

that

14.308 14.309 14.310

dx

~

s

involving

=

+

X3

x2 - ax + c-9 + 1 (x + c-42

=

__ = x3 + CL3

$ In (x3 +

ClX

s

.(

s

x2(x3

u3)

=

'(z3yu3)2

'

1

-+

u3)2

%(X3

+ a3)2

s

x2(x3

dx +

+ &In

14.312

=

1 -

--

=

CL62

xdx + u4

=

x4

S

x3

dx

~ x4 + a4

3u5fi

(x + a)2

x2 xm-3

-

m-2

a3

~

x3

-1 1)x+-’

c&3@-

-

1

In

4u3fi

&

-L 4ufi 14.314

2x-u a \r 3

x2 - ax + a2

2x +

=

tan-l

In

-4-.---

3u6 s

3a6(x3 + u3)

xm-2 -

=

a3)

=

~

tan-l

3utfi3 tan-’

3

&,3(x3 + as)

=

u3)2

x4 + a4

S

2

-

1

u3

dx

+

F

- 3(x3 + US)

dX

I'

+3tanP1

x2 - ax + a2

+ &n

a3)

x2 + axfi x2 - uxfi

x3

x dx + u3

[See 14.3001

dx + a3 dx

-2

JNTEORALS

14.311

-

(x + a)2

=

x(x3+u3)

(xfcp

x2 3a3(x3 +

=

x-’ dx

s

G-4 In

3u3(s3 +a3)

dx

x9x3+

dx

s

1

s

s

43

x2 - ax + u2

1

-

x2 dx (x3+

+

2x-u 7

tan-l

X

=

s

x3

a by --a.

14.302

~3)

a32

xdx (x3 + c&3)2 =

~

(ax2 + bx + c),+ l/i

3ea+ a3

a\/3

x2 dx

s

x3 - u3 replace

2”~ s

x2 - ax + cl2

u3

~ x dx x3 + a3

s

14.306 14.307

for formulas

JNVOLVING

dx

--

x(ux2 + bx + c)“-~‘~

s

u3

s

+

xn-3(x3

INVOLYJNG + a2

c?+* a* 1

--

u3)

tan-1

2aqi

+ c&2

-!!tC-LT

22 - CL2

$

x2 - axfi

+ a2

x2 + ax&

+ u2

$ In (x4 + a4)

--

1 2ckJr2

tan-1

-!!G!- 6

x2 - a2

a

74

14.315 14.316

INDEFINITE

INTEGRALS

dx x(x4 + d)

s s

dx x2(x4

14.317

+ u4)

+-

=

1 2a5&

dx x3(x4

.

+ a4)

=

14.322

14.323

14.324

14.325

14.326

14.327

14.328

14.332

dx

.I’ x(xn+an) fs

=

S

xm dx (x”+ c&y

I’

dx xm(xn+ an)’

xn + an

‘, In (29 + an)

=

s

xm--n dx (xn + (yy-l 1

=

2

x”’ dx s-- (xn - an)’

14.333

14.334

&nlnz

=

=

an S

s

-

an s

x”’ --n dx (xn + an)T

dx xm(xn + IP)~--~

xm--n dx (~“-a~)~

1 an -s

xm--n dx

+ s

(xn-an)r-l

=

S

dx = m..?wcos-~

!qfzGG

m/z

dx xmpn(xn + an)r

tan-l

CiXfi ___ x2 -

a2

INDEFINITE

14.335

xp-1 dx

INTEGRALS

75 x + a cos [(2k - l)d2m]

1 ma2m-P

I‘----=xzm + azm

a sin [(2k - l)r/2m]

x2 + 2ax cosv where 14.336

xv- 1 dx X2m

s

-

m-1

1

a2m

=

2ma2m-P PI2

cos kp7T In km sin m

x

(’

2*

ka

x -

tan-l

+ a2 a cos (krlm)

a sin (krlm)

k=l

+

.

2ax ~0s;

m-1

1

where

x2 -

m

k=l

-&pFz

14.337

+ a$!

0 < p 5 2m.

{In (x - 4

+ (-lJp

> ln (x + 4)

0 < p 5 2m.

x2m+l

xP-ldX + a2m+l 2(-l)P--1 (2m + l)a2m-P+1k?l

=

m

sin&l

x + a cos [2kJ(2m

a sin [2krl(2m

+ l)] + l)]

m

(-1p-1 (2m + l)az”-“+‘k?l

-

tan-l

cossl

In

x2 + 2ax cos -$$$+a2

+ (-l)p-l In (x + a) (2m + l)a2m-P+ l where

14.338

O
s

x2m+l

-

dx a2m+l 77,

1

(zrn+

x -

2kpr

kzlSin

l)a22m-P+l

2m + 1 Iian-’

a cos [2krl(2m

a sin [2k7;/(2m

+ l)] + l)]

>

m

+

s

14.340

sinaxdx

=

=

%sinax+

14.342

=

(T-

siyxdx

=

14.345 14.346

14.347

=

-$)sinax

sin ax

s

dx

+ a S Ydx

= =

sin2 ax dx

+ (f-f&--$)

cosax

5*5!

X

S sin ax xdx S sin ax

s

cos ax

3*3!

dx

sin ax

ax-(aX)3+(a2)5-...

s sinx;x

lNVOLVlNC3

x cos ax ___ a

y-

14.341

14.344

2ax cos

-- cos ax a

=

‘ssinaxdx

14.343

x2 -

O
INTEGRALS 14.339

In

In (x-a) (2m + l)a2m-n+1

+ where

cos&

(2m + 1)ta2m-p+ ‘,li,

=

: _ sin 2ax 2

4a

[see 14.3731

a2

76

INDEFINITE

14.348 14.349

x sin2 ax dx sin3 ax dx

s

X2

=

-

x sin 2az 4a

-

4

=

_ cos ax -+-

=

3x 8

14.351

~

=

- 1. cot ax a

__ dx sin3 ax

=

-

14.352

s

14.353 14.354

1 -

dx sin ax

sin 4ax 32a

cos ax 2a sin2 ax

sin px sin qx dx

s

3a

sin 2ax -+-t 4a

sin4 ax dx

cos 2ax 8a2

--

cos3 ax

a

14.350

INTEGRALS

sin (p - q)x 2(P - 4)

=

=

_ sin (p + q)x

[If

2(P + (I)

p = *q,

see 14.368.1

‘, tan

14.355 14.356

14.357 14.358

p tan *ax

14.360

14.361

14.362

dx p + q sin ax

I‘

ad&2

tan-’

a&2

In

+ q

@q

= ptan+ax+q--

If

p = *q

see 14.354

s

dx (p + q sin ax)2

If

p = *q

( p tan +ax

-

+ q + dm

and 14.356. q cos ax a(p2 - q2)(p + q sin ax)

=

see 14.358

t--J---p2

and 14.359.

dx p” + q” sin2 ax

p2 -

s

14.364

14.367 14.368

xmsinaxdx

1

.I’ s

=

sijlnuxdx = sinn ax dx

s

=

-’

In

m cos ax mxm--l + a

sin ax (n - 1)xn-l _ sinn--l

tanax

tan

ap&2

dx q2 sin2 ax

_ 2wdF7z

14.366

dx p + q sin ax

s 1

14.365

1

q2

-1 dm

14.363

)

+a

- dx sinn ax

=

- cos ax a(n - 1) sin”-’

ax

~ xdx sinn ax

=

-x cos ax a(72 - 1) sinn--l

ax -

dn

tan ax +

( dm

tan ax -

sin ax

a2 =$

n-1

ax cos ax an

P

m(m - 1) -7 dx

s

xmp-2 sin ax dx

[see 14.3951

s +-

72-l n

s

sinnp-2 ax dx

dx sin”-” ax az(n - l)(n

1 - 2) sinnez

ax

+-

n-2

n-1

xdx sinnP2 ax

.

INDEFINITE

14.369

14.370

' cosax

*

xcosaxdx

s

- xzcosaxdx

14.372

'

cosax

x3

dx

Fdx

a

=

$,,,a.

=

(T---$)cosax

";,'

dx

+

(axY

--GE-=

14.376

=

- cos ax _ a

2*2!

14.377

x dx cos ax

-

14.378

14.379

14.380

14.381

s

=

=

cos4

ax dx

=

dx

=

14.383

cos ax cos px dx

14.384 14.385

dx 1 - cosax

s

x dx 1 - cos ax

=

14.387

xdx 1 + cos ax

=

14’389

S

dx cos ax)2

dx (1 + cosax)2

=

sin3 ax

3a

sin (a - p)x

2(a - P)

-- x cot E a 2

=

dx 1 + cosax

_

...

cos 2ax 8cG

+

sin (a + p)x

2(a + P)

=

14.386

JtI

+

=

s

14.388

+2

tan ax a

-

ax

x sin 2ax -+4a -sin ax a

14.382

cos3

=

sin 2ax 4a

f+-

=

ax dx

COG ax

[See 14.3433

En(ax)2n

cos3

___dx

dx

...

(2n-k2)(2n)!

x co9 ax dx

s

'y S'

=

co532ax dx

s

-+(axF 6*6!

+ 4*4!

$ In (see ax + tan ax)

cos ax

S

--kd4

Ins--

X

14.375

sin ax

+ ($-$)sinax

=

s

14.374

77

-cos ax ~x sin ax a2 + a

=

14.371

14.373

=

dx

INTEGRALS

=

=

2 + - In sin ax a2 2

[If

a = *p,

see 14.377.1

78

INDEFINITE

I

INTEGRALS

ad-2tan-’

14.390

dx p+qcosax

s

=

dt/(p - Mp tan *ax

&j&2

14.391

dx (p + q cos ax)2

s

=

a($

dx

14.392

=

! tan &ax -

tan-l

s

tan-l p2-

ptanax-dm ( ptanax+dv

14.395

14.396

14.397 14.398

14.399

14.400

14.401 14.402

14.403

14.404

14.405 14.406 14.407

ydx

=

-

s

s

co@ ax dx

S

S

S

s

S

S

co@ ax xdx COP ax

-

sinax

a cos ax -n-1 (n - 1)x*- 1

cos ax -

sin ax cosn--I ax +?Z-1 n an

=

=

x sin ux a(n - 1) COP--I ax

=

-

sin px cos qx dx

=

_ cos (P - q)x VP - 4

sinn ax cos ax dx

=

COP ax sin ax dx

=

dx S sin ax cos ax

s

xm-2

S

sinn + 1 ax (n + 1)~ -cosnflax

(n + 1)a

=

co@-2ax

dx

dx

COP-2 ax 1 - l)(n - 2) cosnP2 ax

a2(n

+n-2

cos (P + q)x VP + 9)

_

[If

n = -1,

[If

n = -1,

sin 4ax 32a

X

- 8

dx sin2 ax cos ax

=

-

S

dx sin ax ~052 ux

=1 ;lntan

1 a sin ax

A In tan a

-2cot2ax a

y

+ &

cos ax dx

[See 14.3651

=1 a In tan ax

=

a2

2a

S

dx S sin2 ax cos2 ax

mtm - 1)

sin2 ax

cosax dx

sin2 ax cos2 ax dx

>

sdx

S’

sin ax +n-2 a(n - 1) co@--I ax n-l -s

.-AL= s

xm sin ax mxm--l +a a2

=

[If p = *q see 14.388 and 14389.1

E

In

1

xm cos ax dx

s

dx p + q cos ux

P 42 - P2 s

q2

I WdFT2 14.394

- P)

dn7

ap

=

-PI

d(q + dl(q --

[If p = *q see 14.384 and 14.386.1

P tan ax

w/FS

+

dx p2 - q2 cos2 ax

+ d(q + dl(q

q sin ax - $)($I + q cos ax) 1

s p2 + q2 cos2 ax

14.393

In

+ 4 tan ?px

see 14.440.1 see 14.429.1

n-1 -s

xdx

cosn-2 ax

INDEFINITE

14.408

INTEGRALS

79

s

14.409 s cos ax(1

dx C sin ax)

=

.

sinax(1

dx 2 cosax)

-

S

dx sin ax rfr cos ax

14.410 14.411

14.412

14.413

14.414

s

L a&

sin ax dx sin ax * cos ax

=

I

cos ax dx sin ax f cos ax

=

2:

sin ax dx p+qcosax

=

14.416

cos ax dx p+qsinax

=

14.417

14.4 18

1 f sin ax)

2a(l

1 * cos ax)

k

=

14.415

2a(l

i

- $

$

In tan

T $a In (sin ax * cos ax)

+ +a In (sin ax C cos ax)

In (p + q cos ax)

In (p + q sin ax)

S

sin ax dx (p + q cos axy

=

aq(n - l)(p

1 + q cos axy-1

s

cos ax dx (p + q sin UX)~

=

aq(n - l)(p

-1 + q sin UX)~--~

dx p sin ax + q cos ax

14.4 19

=

adi+

q2 In tan

ax + tan-l 2

(q/p)

2 dx p sin ax + q cos ax + T

14.420

p + (r - q) tan (ax/z)

a&2-p2-q2tan-1 =

T2

1

ln

aVp2 + q2 - ~-2 If

14.421

I‘

r = q see 14.421.

If

q + p tan 5

=

ax + tan-’ 2

=

1 In 2apq - sinmP1

14.425

I‘

(q/p)

dx p2 sin2 ax + q2 cos2 ux dx p2 sin2 ax - q2 COG ax

14.424

q2

dp2 + q2 - r2 + (r - q) tan (ax/2)p + dp2 + q2 - r2 + (T - q) tan (ax/2)

dx

S

-

p -

psinax+qcosax*~~

14.423

p2

~~ = p2 i- q2 see 14.422.

dx p sin ax + q(1 + cos ax)

14.422

-

sinm uz COP ax dx

p tanax - q p tan ax + q ax co@+ l ax m-l +a(m + n) mfn

sinm-2

ux cosn ax dx

= sin”

+ l ax cosnwl a(m + n)

ax +

n-l m+n

s

sinm ax COS”-~

ux

dx

80

14.426

INDEFINITE

_r’s

dx

=

INTEGRALS

sinm-l ax a(n - 1) co??--1 ax -

m-l -n-l

sinm + 1 ax a(n - 1) cosn--1 ax

m--n+2 n-l

- sinme ax I a(m - n) cosnel ax - cosn-l

ax

a(n - 1) sinn--l 14.427

S

Ed,

ax

a(n - 1) sinn--l COP-~

14.428

S

ax

14.430

14.431

14.432

14.433

14.434

14.435

14.436

14.437

14.438

14.439

S S S S

tan ax dx

1

=

-ilncosax

tan3 ax dx

=

tan2 ax 2a + $ In co9 ax

=

edx

dz= tan ax

ydx

s;;;”

2”zx dx

S

‘;?&l,az

dx

m+n-2 n-1

S S

dx

sinm ax cosnw2 ax sinm-2

dx

ax COP ux

tamuzc

ax

x

tarP + 1 ax (n + 1)a

=

1 (ax)3 ;Ei 1 3

=

I 2(ax)7 105

-2 tan ax + $ In cos uz - f a

=

p2 + 42

PX

tan”-’

ax

(n _ l)a

+

Q

ah2 + q2) -

S

I . . . + 22922n-

l)B,(ax)*~+' (2n + 1) !

2*n(22n - 1)B,(ax)2n-1 (2n- 1)(2n)!

~(cLx)~

=

dx

+ q tanax

I (ax)5 15

(ad3 a~+~+~+-+

=

tann ax dx

s

dx

ilntanax

=

xtanzaxdx

Sp

z;;:;;z

i In sin ax

xtanaxdx

s

‘-, lnsec

tan ax a

S S S s

1

=

=

tann ax sec2 ax dx

s

INVOLVING

dx

tanzax

m-l m-n

dx

-1 mtn-2 + 1 a(m - 1) sinm--l ax ~0.9~~~ ux m-l

INTtkRAlS 14.429

+-

dx

sic”;;z;x

n-l

ax

c;;:;;x

S S

1 + ~(72 - 1) sinmP1 ax cosn--l ax

=

sinm ux co@ a5

-- m-l 72-l

ax

I a(m - n) sinn--l

dx

m-l m-n

.s

_ m-n+2

-coSm+lax

=

f-

sinme ax cos”-!2ax dx

S

In (q sin ux + p cos ax)

tann--2 ax dx

+ *”

+

...

INDEFINITE

14.440 14.441

14.442

14.443 14.444 14.445

14.446

14.447

14.44% 14.449

14.450

14.451 14.452

14.453 14.454

14.455

14.456

14.457

14.458

cot ax dx

s s

s

=

=

-- cot ax a

cot? ax dx

=

- -

=

dx

cot ax

=

+%dx

qcotax

set ax dx

S

S

ax

(n-1)a

-

cotn--2 ax dx

i In (set ax + tan ax)

=

tan ax

sec3 ax dx

=

set ux tan ax + & In (set a2 + tan ax) 2a

se@ ax tan ax dx

x secax

=

S

x sec2 ax dx

a

=

se@ ux na

-sin ax a

dx

ydx

...

cot--l S

-

dx

-

Q In (p sin ax + q cos ax) a(p2 + 92)

p2’Tq2

-

.**

sin ax - g

=

S set ax

S

+ -$ln

--

=

(2n-1)(2n)!

sec2 ax dx

S S

a

x cot ax

=

=

135

- -

-

22nBn(ax)2n--1

ax

=

+1

(2n+l)!

-~-!$%-i!?%..,-

dx

cotn ax dx

2w3n(ux)~~

ax

a2

dx

p+

ax ax

1

=

x cot2ax

S

-iIncot

=

1 In sin ax a

-cotnflax (n + 1)~

=

--a Incas

zcotaxdx

x

cots ax 2a

cotn ax csc2 ax dx

sdx

81

i In sin ax

cotzaxdx

S S S S S S S S

INTEGRALS

=

(ax)2 + (ax)4 + 5(ax)6 8 - 144 W2 lnx+T+-gg-f-

=

=

5(ax)4

E tan ax + 5 In cos ax

E,(ax)2n +2

+

Gl(ax)s 4320

**.

+ (2n+2)(2n)!

+

. . . + E,(ax)2” 2n(2n)!

+

.”

+

**’

INDEFINITE

82

14.459 14.460

dx

S s

dz P Q s p + q cos ax

=x ---

q + p set ax

Q

se@ ax dx

INTEGRALS

secne2 ax tan ax n-2 +n-1 a(n - 1)

=

se@--2 ax dx

s

; 1NTEQRALS

14.461

14.462

14.463 14.464

14.465

s

s

csc ax dx

csc2ax

S

csc3

s s

14.466

=

k In (csc ax -

--

ax dx

=

- csc CL5 2a

csc

cot

+ z

1

UX

In tan T

_ cscn ax na

=

a

,jx

=

$

ax

.l

14.467

c&x

-- cos ax

=

ar

$ In tan 7

a

CSC” ax cot ax dx

- x

=

ax

=

dx csc r&x

cot ax)

cm az

cot

dx

-

INVOLVING

+

k$

+

!k$

+

. . .

+

2(22n-’

-

S S csc2 S ?%!!?

dx

=

1)B,(ax)2n+’

+

. . .

(2n + 1) !

f

_ &

+ $? + !&I?$

+

... +

2’22’;;n-m1$$;‘2’-

’ +

...

5

14.460

14.469

14.470

x

ax dx

=

- ~x

=

E-I?

dx

q + p csc ax

s

Q

CSC” ax dx

=

S

sin-1

14.473

14.474

Ed%

=

s

sin-l

(x/a)

z & a dx

= =

=

[See 14.3601

n-2 n-1

S

csc”-2

ax dx

IRZVRREiZ TR100NQMETRfC

a

x3

j- sin-l z+-

z + a

X&Z? 4

(x2 + 2a2) &K2

z +

9

(x/aj3

- sin-1

+

(x/u) X

1 * 3(x/a)5 2.4.5.5

1 3 5(x/a)7 + 2*4*6*7*‘7 l

l

a-kdG2

-

$l

-

2x + 2dm

X

2

14.476

fl&CtlONS

ZZ + dm

2*3*3 dx

+-

sin-l

5

14.475

dx p + q sin ax

=

39 sin-1

In sin ax

S

P

5 sin-l

U

S

+ $

lNVotVlN@

‘xsin-lzdx

14.472

ax

a

CSC~-~ ax cot ax a(n - 1)

-

INTEORALS

14.471

cot

sin-l

z

+

...

“’

INDEFINITE

14.477

cos-1 :dx a

.(‘

=

zc,,-l~&

x cos-1%

-

INTEGRALS

@?2

=

cos-ls

_

xr a

a

39 cos-l

14.479

: a

,&

cos-1 (x/a)

14.480

x

cos-;;xln)

14.481

=

cos-1

fj

;lnx

-

dx

=

_ cos-1 (x/a)

tan-1Edx

14.484

x tan-1

14.486

14.487

=

Edx

=

x2 tan-1

z dx

=

tan-~(xiu)

dx

=

-

a

&(x2+

(x/a) x

&i72

-

dx

[See 14.4741

a+~~~

+ iln

z ( cos-1 xa)2 xtan-1E

2a2)

+

9

x

=

-5

4

sin-1

=

s

(x2

-

dx

ds

X

2x -

cot-‘?dx

14.489

x cot-’

=

a zdx

2dz&os-'~

zIn(xzfa2)

a2) tan-1

(x/u)3 ; _ 32

cot-* (x/u)

14.491

X

(x/a)

cot-1

14.492

x2

s

see-*z

a

x cot-l

=

52 cot-’ ; dz

x a

7

+ ~(xla)5

_ -(x/a)772

+ *.*

z + % In (x2 + a2)

4(x”

a2) cot-1 E + 7

+

=

;

dx

=

g In x -

dx

=

_

tan-’

(x/a)

dx

[See 14.4861

X

(x/a)

cot-' X

dx

!

=

2 set-l

z -

a In (x + &?C3)

x set-*

z + a In (x + dm)

o
2 see-lE - a 7x-a 14.494

>

.

14.488

14.493

i?3

83

S

x set-1

z dx

x2

see-* f +

x3 ,secelz s

x2 see-1:

a

ds

0 < set-1 z < i

=

z

14.495

2 < i7

-

= X3 i

ysec-1

z +

t < set-*

2 ax&F2

6 ax&2G3 6

-

$In(x

-t $ln(x+da)

t

< T

+ dZ72)

0 < see-1 i

< set-11

i

< g < T

INDEFINITE

84

14.496

set-l

(x/a) X

.I’

dx

=

;1nx

dx

=

+ ; + w3

_ see-l

14.497

set-l s

(da) X2

14.499

s

s

* csc-1

2 dx a

x csc-1:

a

x2 csc-1

5 < set-1

dx

dx

(x/a)

xcsc-1:

-

-5

E +

a 7 x-a

22 y csc-l

% -

2

csc-l

X ;

csc-1

a -

E ,

(dx)3 2-3-3

-5

14.506

s

=

_

dx

(x/u)

- csc-1

5 a

z < 0

< ;

dx

-5

I 1 ’ 3(a/x)5 204-5.5

+

1 ’ 3 5(a/x)7 2*4*6*7-T l

(x/u)

=

< csc-1;

...

0 < w-1 z < ;

+

; < csc-1:< 0 ___

mt1

s

Stan-l:

-

xm cot-1 f dx

=

-$+eot-l~

+ -&.I'=""

set-l mfl

&Jsdz

(x/u)

0 < s,1:

< 5

i

< set-l%

< T

0 < csc-1

E < ;

= xm+l

see-1 (x/a)

+ -

a m+l

mS1

xm+l csc-1(x/u) m+l dx

+

-

=

xm see-1 z dx

< 0

X

x dx a

' x"'tzsc-1:

< ;

+

=

xm+l

14.508

< ,se-1;

X

(x/a)

xm tan-1

< T

< csc-1

0 < csc-1;

Xlnfl

I'

t

=

X

14.505

< i

0 < csc-1;

uln(x+~~)

X2 2 csc-1

X

sin--l

...

=

f dx

X2

xm

+

ax

_ csc-1 .s

1*3*5(a/2)7 2-4.6-7-7

0 < set-lz

&ikS

+ aIn(x+@=2)

X

14.502

+ &GFG

x csc -1:

3

CSC-~

+

1~3(cLlX)5

2-4-5-5

=

X3

s * w-1

+

.

X

x3 3

14.501

(x/u)

.

_ sec-lx(xiu) 1

14.498

INTEGRALS

xm+l

csc-1 mfl

a m+1

=

i

I

(x/a)

~ xm dx

s d=

S

xm dx @qr

-;
< 0

INDEFINITE

14.509

14.510

14.511

14.512

eaz dx

=

a

xeaz dx

=

e””

s dx

Z2eaz

=

"" a

xneaz dx

$dx

=-

eaz xn---+ a (

Inx

~

P + waz

S

dx (p + qeaz)2

14.516

14.517

dx

S

n

a

I taxJ2 .

X

- P

S

14.519 S

14.520

. . . ~(-l)%! an

S

14.522

&

1 + WY

a&

-

$2

t ...

w 1

In (p + qeaZ)

2?em Q >

tan-l

eaz - jLjFp

In

eaz + &G&

e” sin bx ds

=

eaz(a sin bx - b cos bx) a2 + b2

eaz cos bx dx

=

eQz(a cos bx + b sin bx) a2 + b2

xem sin bx &

=

xeaz(a si~2b~~2b

xeax cos bx dx

=

xeax(a cos bx + b sin bx) a2 + b2

eaz In x dx

=

14.523 S

14.524 S

integer

In (p + qeaz)

=

e”lnx --a

S

n = positive

3*3!

‘OS bx)

_ ea((a2

S

14.521

if

a

___ 1 2&G

14.518

-

--ssdx n-l

1 adiG

peaz + qe-a.%

I taxj3

Z-2!

+

;+

=

dx n(n - 1)xn-2 a2

nxnel

(n - 1)x”-’

=

>

xn--leaz

a S

+ la;, -

dx

S

a2

-eaz

z

S

14.515

a

Pea2 --a

S

14.514

%2-&+Z

(

=

=

Fdx

1 a>

X--

a (

s

14.513

85

e""

s

s

INTEGRALS

1 5 a S

- b2) sin bx - 2ab cos bx} (a2 + b2)2

_ eaz((a2 - b2) cos bx + 2ab sin bx} (a2 + b2)2

dx

eu sinn bx dx

=

e”,2s~~2’,~

eaz co@ bx dx

=

em COP--~ bx (a cos bx + nb sin bx) a2 + n2b2

in sin bx - nb cos bx)

+

+

n(n

- l)b2

a2 + n2b2 S n(n - l)b2 a2 + n2b2

S

eu sin”-2

em

bx dx

cosn--2 bx dx

86

INDEFINITE

INTEGRALS

HWEOiRA1S 1NVOLVfNO 14.525 14.526 14.527 14.528 14.529 14.530 14.531 14.532 14.533 14.534 14.535 14.536

s

14.538 14.539

=

S S S$Qx

xlnx

xlnxdx

=

xm lnx

dx

-

$1

=

2

nx-4)

--$ti

1 m+1

-

lnx (

=

14.541 14.542

see 14.528.1

;lnzx

P 1+x dx J

=

x ln2x

~Inn x dx

=

-lP+lx

s

dx

xln

=

x

-

lnnx

[If

In (lnx)

=

In x

+ 2x

n = -1

+ lnx

ln(lnx)

dx

xlnnx

=

+ $$

+ s

* .

-

n

m = -1

see 14.531.

S S

S

Inn-1

=

x ln(x2+&)

In (x2 - ~2) dx

=

x In (x2 - u2) xm+l

=

sinh ax dx

x sinh ux dx

x2 sinh ax dx

+ (m+3!)~~x

x dx

In (x2 + ~2) dx

xm In (x2 f a9 dx

.*a

.

+ (m+2t)Iyx

n xm+l Inn x -m+l m+1

=

+ l

+ (m+l)lnx

xmlnnxdx

S S S

see 14.532.1

In (lnx)

=

xm dx

2x lnx

nfl

X

S Sf& S S S

-

-

In (x2* m+l

INTEGRALS

14.540

[If m = -1

s

If

14.537

lnxdx

Inx

xm Inn-1

s

2x + 2a tan-1

&)

--

2

m+1

!NVOLVlNO

~

=

x cash ax -- sinh ax U

=

u2

coshax

z

2x + a In

cash ax a

=

x dx

-

$sinhax

S

Y$gz

sinh (cx

c-lx

+ a**

INDEFINITE

14.543

'14.544

14.545

14.546

14.547

14.548

14.549

14.550

sinLard

14.552

14.553

14.554

sinizax

*

i In tanh 7

xdx sinh ax

=

1 az

ax

sinhz ax dx

=

sinh ax cash ax 2a

-

s

s

x sinha ax dx

,I'

dx sinh2 ax

~

I‘

I

.(

cash 2ax 8a2

x2 4

a

px dx

sinh (a + p)x %a+p)

=

p)x aa - P)

sinh (a -

' sinh ax sin px dx

=

a cash ax sin px -

' sinh ax cos px dx

=

a cash ax cos px +

p sinh ax sin pz a2 + p2

ax+p--m qeaz + p + dm

1

s

(p +

=

ad~2

dx

S

p +

q sinh ax

=

dx -

’ sinh” ax dx

dx

S sinhn ax ~ x dx

.I’ sinhn ax

xrn

cash a

ux

--

m a

+ -n-l

=

- cash ax a(n - 1) sinhnP1

ax

=

- x cash ax a(n - 1) sinhn--l

ax -

dx

=

I’

p + dm

tanh ax

p - dm

tanh ax

xm--l

sinhn--l ax coshax _ -n-1 n an - sinh ax (n _ l)xn-’

sinh ax Xn

2apGP =

=

In

1

=

q2 sinh2 ax

xm sinh ax dx

~

a(p2 +

dx

q2 sinh2 ax

p2 +

-

=

>

- q cash ax +” q2)(p + q sinh ax) P2 + 92

dx

q sinh ax)2

p sinh ax cos px

c&2+ p2

dx

p + q sinhax

S

2

a = *p see 14.547.

s

14.558

-~--

X

--

-- coth ax

=

sinh ax sinh

.I'

x sinh 2ax 4a

=

[See 14.5651

=Fdx

s

=

87

,. . . .

I a

dx sinh ax

I‘ p” S

14.561

=

-

S

14.556

14.560

dx

x

S

14.559

I jJ$: / 05 * . 5*5!

s

14.555

14.557

ax

s

For

14.551

=

INTEGRALS

cash ax dx

S

sinhnP2

cash ax

a

S QFr -- n-2 92-l

[See 14.5851

ax dx

[See 14.5871

dx dx

S sinh*--2

as(n - l)(n

ax

1 - 2) sinhnP2

ax

-- n-2 n-l

~- x dx

S sinhnP2 ax

88

INDEFINITE

INTEGRALS

INTEGRALS

14.562

cash ax dx

14.563 14.564

cash -& ax

14.565

s

a

x sinh ax -- cash ax a a2

=

- 22 cash ax a2

=

z

*

dx

=

- dx cash ax

14.570 14.571 14.572 14.573 14.574

14.575 14.576 14.577

14.580

14.581

=

xcosh2axdz

s

dx

cosh2 ax

s

=

s

4+

P)

%a + P)

=

a sinh ax sin px - p cash ux cos px a2 + p2

cash ax cos px dx

=

a sinh ax cos px + p cash ax sin px a2 + p2

dx

s

dx cash ax - 1

s

cash ax + 1

=

$tanhy

=

-+cothy

=

!? tanh a

xdx

x dx

cash ax - 1

--$coth

=

dx

(cash ax + 1)2 dx

(cash ax - 1)2

7

7

-$lncosh + -$lnsinh -

&tanh3y

=

& coth 7

-

&

coths y

tan-’ ln

s war + p - fi2

( qP

s

7

&tanhy

p + q cash ax

dx (p + q cash ax)2

f

=

S dx =

14.582

+

sinh (a - p)z + sinh (a + p)x

=

cash ax sin px dx

cash ax + 1

s

. . . + (-UnE,@42n+2 (2%+2)(272)!

~tanh ax a

2(a -

s

S

5(ax)6 + 144

x sinh 2ax cash 2ax 4a -8a2

X2

=

+

(ad4 8

sinh ax cash ux 2a

;+

cash ax cash px dx

s

[See 14.5431

s

-

S

14.570 14.579

cosh2 ax dx

s

. . .

= -

14.569

+

; a

X

s

(axP 6*6!

4*4!

.

cash ax

s

14.567

+

lnz+$!!@+@+-

X

cos&ax

14.566

-

x2 cash ax dz

.

cash ax

sinh ax

=

x cash ax dx

.

INVOLVING

=

+ p + @GF

q sinh ax -a(q2 - p2)(p + q cash as)

)

P 42 -

P2

dx p + q coshas

S

***

INDEFINITE

In

1

14.583

p2 -

s

dx q2 cosh2 ax

INTEGRALS

p tanh ax + dKz p tanh ax -

2apllF3

=

89

I

14.584

dx

!

p tanh ax + dn

In

p tanh ax - dni

2wdFW

=

s p2 + q2 cosh2 ax

1

1

tan

--1 p tanhax

dF2

14.585 14.586

xm cash ax dx

.

coshn ax dx

s

coshnax

14.587

dx

coshn--l

= =

ax sinh ax

14.591 14.592 14.593

s s s

14.594 s 14.595

I

ax +

(n-

=

sinh2 ax ~ 2a

sinh px cash qx dx

=

cash (p + q)x 2(P + 9)

sinhn ax cash ax dx

=

sinhn + 1 ax (n + 1)a

coshn ax sinh ax dx

=

coshn+ l ax (n + 1)a sinh 4ax ~ 32a

dx sinh2 ax cash ax

=

14.597

S

______ dx sinh ax cosh2 ax

zz -sech a2 + klntanhy

S

14.600

S

14.601

S

z

dx

=

sinh

;s,hh2;;

dx

=

cash ax + ilntanhy a

dx cash ax (1 + sinh ax)

[See 14.5591

i tan-1

ax

- 2,‘a2 coshn--2

ax ’

cash (p - q)x

[If

n = -1,

see 14.615.1

[If

n = -1,

see 14.604.1

ax _

- 2 coth 2ax a

-

,jx

n-2 -n-l

sinh ax AND c&t USG

a

a

ax dx

-- x 8

S

=

coshn--2

ax

_ t tan - 1 sinh

[See 14.5571

2(P - 9)

14.596

14.599

1 In tanh a

+

dx sinh ax cash ax

dx sinh2 ax cosh2 ax

l)(n

INVOLVCNG

S

14.598

S

dx coshnPz

sinh ax cash ax dx

=

n-1 n ?$!?

x sinh ax a(n - 1) coshn--l

=

sinh ax dx

s

ax

sinh2 ax cosh2 ax dx

f-

xn--l

a n-1

sinh ax a(n - 1) coshn--l

INTEGRALS

,('

_ m a s

an

-cash ax (n - l)xn-1

s

14.590

l.h=7

xm sinh ax a

=

>

sinh ax

csch ax a

J

~- xdx coshn--l:

ax

.:,".'

INDEFINITE

90 14.602 14.603

S S

dX

sinh ux (cash ax + 1) dX

sinh ax (cash

14.604

14.605

14.606

14.607

14.608

14.609

14.610

14.611

14.612

14.613

14.614

14.615

14.616

14.617

14.618

14.619

14.620

S S S S S S S S S S S

tanhax

dx

x

=

tanhs ax dx

=

=

=

ax

tanhn + 1 (72 + 1)a

1 2

1

X2

=

=

(ax)3

3

- 2

-

bxJ5 +

-

-2k47 105

15

ax _ k!$

dx

=

+ ?k$

tanhn ax dx

cothax

dx

=

- PX

P2 -

_

dP2 - q2)

- tanhn--l ax + a(?2 - 1)

=

x -

coths ax dx

=

i In sinh ax -

cothn ax csch2 ax dx

- dx coth ax

dx

=

S

=

-

=

-

-coth2 ax 2a

cothn + 1 ax (n + 1)a

- i In coth ax

$ In cash ax

...

...

(-l)n--122n(22n - l)B,(ax)2n+ (2n + 1) !

(-l)n--122n(22n - l)B,(ax)2n-’ (2% - 1)(2?2) !

In (q sinh ax + p cash as)

tanhnw2 ax dx

coth ax a

coth2 ax dx

s

Q

-

42

i In sinh ax

=

-

x tanh ax + -$ In cash ax a

X

S S

1 2a(cosh ux - 1)

tanh2 ax 7

k In cash ax -

=

p+qtanhax

S S S

-

‘, In sinh ax

xtanhzaxdx

s

-&lntanhy

ilntanhax

xtanhaxdx

tanh ax dx ___

=

1 2a(cosh ux + 1)

+

tanhax a

tanhn ax sech2 ax dx

=

7

i In cash ax

tanhe ax dx

~ dx tanh ax

klntanh

- 1)

ux

=

edx

=

INTEGRALS

-t . . .

1

+

... >

INDEFINITE

14.621

14.622

14.623

s

s

x coth ax dx

1 i-2

=

x coth2 ax dx cothaxdx

1

ax

x2 -

=

-

2

x coth ax + +2 In sinh ax a b-d3 135

-$+7-v

X

14.624 14.625

14.626

14.627

14.628 14.629

14.630

14.631

14.632 14.633

14.634

14.635

14.636

14.637

14.638 14.639

S S

dx

p+

qcothax

cothn ax dx

S S S S S S S S Sq + p S

- PX

=

sech ax dx

cothn--l ax + a(n - 1)

-

=

+

i tan-l

. . . (-l)n22nBn(ux)2n--1 (2n- 1)(2n)!

9 In a(P2 - q2)

-

P2 - !I2

=

cothn-2

tanh ax ___ a

sech3 ax dx

=

sech ax tanh ux + &tan-lsinhax 2a

xsechaxdx

na

+ 5(ax)s + 144

=

x sech2 ux da

x tanh ax a

=

=

sechn ax dx

=

=

“-2 9

9

S

Gus 4320

dx

i In tanh y coth ux a

csch2 ax dx

=

- -

csch3 ax dx

=

- csch ax coth ax 2a =

cschn ax na

- -

+

. . (-lP~,kP 2n(2?2)!

[See 14.5811

p+qcoshax

sechnP2 ax tanh ax + n-2 a(n - 1) m-1

cschn ax coth ax dx

. . . (-1)n~&X)2”+2 (2n + 2)(2n)!

+

...

$ In cash ux 5(ax)4

lnx--m++-- (ad2

=

dx sechas

csch ax dx

- ~sechn ax

=

sinh ax a

.A!-= sech ax

S S S S

ax dx

eaz

=

sechn ax tanh ax dx

+ ---

(p sinh ax + q cash ax)

sech2 ax dx

“e”h”“,-jx

91

INTEGRALS

$lntanhy

ssechnm2

ax dx

+ ** *

INDEFINITE

92

14.640 14.641

14.642

14.643

S S

ds= csch ax

i cash ax

x csch ax dx

S Sq + p S

csch*xdx

1 2

=

x csch2 ax dx

s

= =

X

14.644 14.645

14.646 14.647 14.648

dx csch ax

cschnax

S S S

sinh-1

=

S

a

-

$+f

=

sinh-1

S

(x/a)

dx

I

14.650

14.651

14.652

14.653

14.654

sinh;~W*)

dx

S S

E dx

S

; dx

S S

14.656

14.657 14.658

cash;:

S S S r

(u/x)2 2.2.2

--

- ln2 (-2x/a) 2 -

1 3 5(a/xY 2*4*6*6*6 l

+

1x1 < a

+

l

...

l-3 * 5(alx)6 2*4*6*6*6

_

x>a

...

*Jr&F2

:In

X

(

)

(x/a)

-

d=,

cash-1

(x/a)

> 0

i x cash-1

(x/a)

+ d=,

cash-1

(x/a)

< 0

&(2x2 - a2) cash-1

(x/a)

-

i a(222 - a2) cash-1

(x/a)

+ $xdm,

=

f

(x/a) > 0, dx

E dx a

= =

x tanh-19

dx

x2 tanh-1

z dx Il.

ix@??,

4x3

cash-1 (x/a)

-

$x3

cash-1

+ Q(x2 + 2a2) dm,

-

C f

ln2(2x/a)

if cash-1

_ cash-1

(x/a) X

tanh-1

...

cash-1

(x/a)

> 0

cash-1

(x/a)

< 0

3(x2 + 2~2) dm,

cash-1 (x/a)

> 0

cash-1

< 0

=

dx

(da)

_

1*3(a/x)4 2*4*4*4

-

+

l

+ 1. 3(a/x)4 2.4.4.4

+ __ (a/~)~ 2.2.2

(x/a)

1.3 5(x/a)’ 2*4*6*7*7

x cash-1

i

cosh-;W*)

_

l

=

x2 cash-1 E dx

+ if cash-1 14.655

+ 1 3(x/a)5 2.4~505

(xlaJ3

2.3.3

_ sinh-1

=

&FT2

9

=

a

x cash-’

cschn--2 ax dx

x m x 4 +a

-

X

cash-1

S

(2a2 - x2)

z +

ln2 (2x/a) 2

=

X

...

[See 14.5531

)

g sinh-1

+

dm~ sinh-1;

(

f dx

dX

p + q sinhax

xsinh-1: =

a

Q

cschnm2 ax coth ax -- n-2 a(n - 1) n-l

-

z dx

x2 sinh-1

E-P Q

=

g dx a

x sinh-1

x coth ax + -$ In sinh ax a - 1)B,(ax)2n-1 v*x)3 + . . . (-l)n2(22n-1 e&-y+1080 (272 - 1)(2n) ! -

=

dx

ax

X --a

14.649

INTEGRALS

x tanh-1 = =

7 F

(x/a)

+(a/5)2 +

1. 3(a/x)4 2-4-4-4

292.2

+ 1.3 * 5(a/x)6 2*4*6*6*6

+

...

1

(x/a) < 0 r

1 ln a + v a X (

z + % In (a2 - x2)

+ # x2 - ~2) tanh-1: + $tanh-1:

(x/a)

a

+ $ln(a2-x2)

[- if cash-1 (x/a) > 0, + if coshk1 (x/a) < 0]

x < -a

INDEFINITE

tanh-1

14.659

14.660 14.661 14.662 14.663

14.664

14.665

S S S S S S

tanhi:

14.669 14.670

=

“+@$+&f$+... a

(z/u)

dx

=

_ tanh-1

!! dx a

x coth-’

'Oth-i

(x/u)

=

7

a

(xia)

' sech-'2

a

x sech-1

+ +(x2 - ~2) coth-’

dx

=

F

+ fcoth-1:

dx

=

_

;

dx

=

_ coth-1

dx

J? dx

(x/a)

(x/u)

+ a sin-l

(x/u),

sech-1

(x/u)

> 0

r x sech-1

(z/u)

-

(x/u),

sech-1

(x/u)

< 0

=

dx

(x/u)

-

+a~~,

sech-1

(x/u)

> 0

+x2 sech-1

(x/u)

+ +ada,

sech-1

(x/u)

< 0

-4

=

14.674 14.675

4 In (a/x)

S S

csch-1

” dz

=

x csch-1

U

x ds a

x csch-’

S

csch-;

(x/u) dx

S

xm sinh-15

s

xm cash-’

S S

a

x”’ coth-’

dx

E

U

U

T

=

=

14.677

xm sech-1

S

1 * 3Wu)4

_

...

2.4.4.4



sech--1

(s/u)

z+--

=

xm csch-’

: dx a

U

5

> 0

if x > 0, -

if x < 0]

[+

if z > 0, -

if

1. 3(d44

+

-

sech-1

(x/u)

x < 0] ...

O
2-4.4-4

+

...

1x1 > a

-

cash-’

E -

cash-’

i

--&s$=+

xmfl

coth-’

+

? U

-

dx

~

a

mt1

E -

-J?m+l

+ am

xm+1

m+lswh-‘s

U

cash-1

(x/a)

> 0

cash-1

(x/u)

< 10

S x2 SCL2- x2 S Zm+l

dx

u2 -

Zm+l

+ 1

xm dx ~~

dx

seckl

(da)

> 0

sech-1

(s/a)

< 0

xm+l

m+l

csch-1:

c a

< 0

- $T$$ + ' '3(x/u)4 -.... -u
-

a

tanh-1

mS-l

=

=

f. .,

@+l

i : dx

+

[+

1. 3W45

U

U

3(x’u)4

2.4.5.5

Xmfl

m-tl

5 dx



2.4.4.4

2.404.4

(a/xl3

nz+lSinh-lE

+

+ +@$.$ . .

ln (-x/4u)

2.3.3

=

=

2

In (4alx)

+ In (-x/a)

U

dx

a&FTS

k

U

s s dx

xm tanh-15

S

-

.

+ -$$$ . .

z k a sinh-1

x2 csch-‘z

=

In (4ulx)

~sp&l% 14.676

- a.

In (4ulx)

In (u/x)

X

i

14.673

a sin-1

&x2 sech-1

--

14.672

+ $In(xZ--2)

(x/a)

4 In (x/u)

14.671

x

x sech-1

=

U

sech-1

+ tIn(xz-u2)

a

coth;~(xlu)

S

xcoth-lx

U

x2 coth-1:

S

=

” dx

.(

14.668

dx

93

X

coth-’

14.666

14.667

(z/a) x

s

INTEGRALS

[+

if

x > 0, -

if x < 0]

15

DEFINITE

DEFINITION

OF A DEFINITE

INTEGRAL

a)/n.

Let f(x) (b -

INTEGRALS

the interval into n equal parts be defined in an interval a 5 x 5 b. Divide Then the definite integral of f(x) between z = a and x = b is defined as

of length

Ax

=

b

15.1

f(x)dx

s a

The limit If

will f(x)

=

certainly

S

if f(x)

f(x)dx

S

dx

=

lim

dx

S S S S f(x)

b-tm

dx

=

b-m

continuous. theorem

=

g(x)

calculus

the above

definite

integral

a

=

c/(b)

-

in the interval, the definite limiting procedures. For

integral example,

s(a)

dx

f(x)

dx

dx

=

lim t-0

f(x)

dx

=

lim

f(x)

a

dx

if b is a singular

point

if a is a singular

point

b

f(x)

c-0

dx

a+E

F6RMULAS

INVOLVING

b

DEFINITE

INTEGRALS

b

{f(x)“g(s)*h(s)*...}dx

S

=

a

f(x)

dx *

a

b g(x) dx * s a

Sb h(x) dx a

2

* **

b

b

cf(x)dx

=

c

S

where

f (4 dx

c is any constant

cl

a

15.9

of the integral

a

GENERAL

15.8

f(a + (n - 1) Ax) Ax}

b--c

f(x)

a

S S Sa S Sb Sb

. . . +

a

iim n-r--m

b

15.7

+

b

Cc f(x) -m

a

15.6

Ax

or if f(x) has a singularity at some point and can be defined by using appropriate

b

15.5

+ 2Ax)

b

m f(x)

a

15.4

f(a

b

b d -g(x) (I dx

=

If the interval is infinite is called an improper integral

S S S S

is piecewise

f

the result

a

15.3

Ax + f(a + Ax) Ax

then by the fundamental

by using

b

15.2

{f(u)

exist

= &g(s),

can be evaluated

lim

n-m

f(x)

dz

=

0

=

-

a

b

15.10

f(x)dx

a

15.11

a f(x)dx

b

f(x)dx

=

a

15.12

S

f(z)dx

=

SC f(x) a

dx + jb

(b - 4 f(c)

f(x)

dx

c where

c is between

a and b

a

This aSxSb.

is called

the mearL vulzce theorem

for

94

definite

integrals

and is valid

if f(x)

is continuous

in

DEFINITE

b s

15.13

f(x) 0)

dx

=

$

This is a generalization g(x) 2 0.

of 15.12 and is valid

LEIBNITZ’S

RULE FOR DIFFERENTIATION

S

a

a and b

* a

dlz(a)

15.14

95

where c is between

f(c) fb g(x) dx

a

and

INTEGRALS

if j(x)

and g(x)

are continuous

in

a 5 x Z b

OF lNTEGRAlS

m,(a) aF

F(x,a)

dx

S

=

xdx

f

F($2,~)

2

-

F(+,,aY)

2

m,(a)

6,(a)

APPROXIMATE

FORMULAS

FOR DEFINITE

INTEGRALS

In the following the interval from x = a to x = b is subdivided into n equal parts by the points a = ~0, . . ., yn = j(x,), h = (b - a)/%. Xl, 22, . . ., X,-l, x, = b and we let y. = f(xo), y1 = f(z,), yz = j(@, Rectangular

formula b

S(I f (xl dx

15.15 Trapezoidal

=

h(Y, + Yl +

i=

$(Y,

Yz

+ ..*+

Yn-1)

formula b

S

15.16

j(x)

dx

+ 2yi

+

ZY,

+

...

+

%,-l-t

Y?J

a

Simpson’s

15.17

formula

(or

b

I‘ a

f(z)

dz

DEFINITE

15.18

15.19

15.21

INTEGRALS

xp-ldx

1+x

=

-

o

for

--?i

sin p7r ’

=

RATiONAl

+ 4Yn-l f

Yn)

OR IRRATIONAL

O
,an+l-n

n sin [(m + 1),/n]

cos p + x2

=

sin



o
mi7

77

xm dx

1 + 2x

n even

INVOLVING

xmdx

~ + an xn

o

formula)

; (y. + 4y, + 2Y, + 4Y, + . . . + 2Y,-2

=

dx x2 + a2 Som---z-g y; S~ = S S 0

15.20

parabolic

sin m/3 sin /3

15.22

15.23

15.24

a ,,mdX s

=

?$

0

S

a xm(an - xn)p dx

0

am+*+n~l?[(m+l)ln]~(p+l) =

nl’[(m

+ 1)/n

+ p + l]

(-l)r--17ram+1-nrr[(m 15.25

n sin \(m + l)nln](r-

l)! l’[(m

+ 1)/n] + 1)/n - T + l] ’

o
EXPRISS!ONS

DEFINITE

96

DEFINITE All letters 15.26

15.27

s

IM’fEGRdiLS~JNVdLVSNO

are considered

positive

0

S

mxcos nx

S TTsin

and m f n

i r/2

m, n integers

and m = n

0

m, n integers

and m # n

sin2 x dx 0

m, n integers

and m + n odd

m, n integers

and m + n even

1.3.5...2rn-l1 2-4-6..*

2m

??I2

a/2

sin2mx

dx

=

cos2”‘x

S

0

dx

n/2

n/2

si$m+l

s

15.32

jr12

x dx

co+“+12

=

0

s

sin2P-1

"-dx

=

2 r(P

0

p

m sin p:;in

qx dx

<

0

0

15.37

15.38

0

S 0

15.39

S

0 < p < q

i iTI4

p = q > 0

i uql2 m sin2px -

dx

=

X2

x2 m cos px -

cos qx dx

dx

5 q

p 2 q > 0 15.41

15.42

2 2 =

=

m sinmx dx s o X(x2+ a2)

15.43

49 2- P)

15.44

S

cosmx

0 277

S

:e-ma

ike-ma

15.45

S

0

=

s(l-e-ma)l

=

cos-1

dx

dx

a + b cos x ii/2

=

=

a + b sin x

0

* ___ o x2 + u2 dx

S

m -dx x sin mx

211

ln 9 P

0

15.40

S 0

2

m~o~p~-/sq~

0
9 2 =

"l--osPxdx s

p>q>o

d2

apl2

=

S S

9)

X

0

15.36

+

p=o

=

m sin px cos qx dx

0

15.35

m=l,2,...

X

0

S

2*4*6..*2m ... 2m+l’ 1.3.5

)...

p > 0

-%-I2

15.34

=

m=1,2

2’

UP) r(4)

=

x cos29--1z dx xl2

0

dx

0

0

s

=

0

15.31

15.33

= ;

cot325 dx

0

15.30 s

n

0

a/2

S

=

and m =

2mf (m2 - 4)

II

mx cos nx dx

FUNCTIONS

indicated.

i 7~12 m, n integers

T/2 s

otherwise

m, n integers

0

15.29

TR10ONOMETRIC

0

=

dx

0

15.28

unless

=

ii sin mx sin nx dx

D cos

INTEGRALS

dx

a + b cosx

$2-3

(ala)

DEFINITE

15.46

2r; S S S S o

(a + b sin x)2

257

15.47

0

15.48

S

=

o

dX

o

dx l-2acosx+az

=

cos mx dx l-2acosx+a2

Ial

ram l-a2

> 1

a2 < 1,

m = 0, 1,2, . .

r

sin ax2 dx

S naYn

cos ax2 dx

=

=

i

S S S S S S

w sinaxn

=

-

m cos axn dx

=

---&

0

15.52

1

dx

2 II-

0

15.51

r(lln)

sin & ,

rfl/n)

cos

jc sin

0

15.54

S

m cos x dx 6

dx=

-@/dx

=

0

15.55

-!?$i?dx

=

0

15.56

=

0

6

2Iyp)

Sk (pn/2)



2l3p)

c,“, (pa/2)



m sin ax2 cos 2bx dx

=

k

=

i

O
O
0

15.57

S

m cos ax2 cos 2bx dx

0

15.58

S

* sin3 x

-

15.60

S S S S

=

* -tanxdx

0

$f

=

T z

x

VT/2

15.61

&y

x3

0

0

dx 1 + tarP

=T 4

2

?r/z

15.62

0

1

15.63

tan-'

1

S

sin-'x

dx

ll-cosxdx

S

15.66

s:

15.67

S

X

(h 5, tan-l

0

'+$A+... _ 32

$

=

;ln2

_

S

X

0

15.65

=

X

0

15.64

x dx

-

cosx)'$

px - tan-lqx X

m cos x -dx

=

X

= dx

y =

p

n>l n>l

2,

0

15.53

b’)312

laj < 1

77 In (1 + l/a)

=

(az-

O
(57/a) In (1 + a) =i

97

227-a

(a Jr b cos x)2 27r 1--’

=

x sin x dx iT o 1 - 2a cos x + a2 Tr

15.49

27r

dX

INTEGRALS

y

e-axcosbx

15.69

15.70

s

=

a2 + b2

m e-az sin bx dx

=

b ~ a2 + b2

0

S S S S S

m e-az

sin

mC-az-

dx

=

tan-l

k

e-bz dx

=

In!! a

X

0

15.72

bx

X

0

15.71

a

dx

0

15.73

m ecaz2 cos bx dx

1

=

15.74

-

b2/4a

5

0

e-(az2tbz+c)

dz

erfc - b

=

2fi

0

where co

15.75

S S

,-&tbztc)

ds

=

--m

cc

15.76

0

xne-azdx

Iyn + 1)

=

an+1

cc

Xme-azz dx

15.77

r[(m

=

s 0

15.78

S S S

m e-k&+b/z2)

+ 1)/2]

2a(mfl)/Z

dx

=

;

15.79

"-g+

=

;e2'6

a

d-

0

A+$+$+$+

***

=

f

0

15.80

-

xn-l s

dx

=

L+&+$+ ln

l'(n)

. . . >

(

0

For even n this can be summed 15.81

15.82

15.83

= -12

S-

1

m xdx

ez + 1

0

m

S o

xn-l

dx

eZ+l

=

$+$-$+

r(n)

For some positive

integer

S

=

“cdl:

$ -&+

S

co e-z2-e-*dx

0

15.86

&-

values

+coth;

X

=

&

of Bernoulli ..*

(

0

15.85

in terms

***

=

numbers

9 12

>

of n the series can be summed -

&

[see pages 108-109 and 114-1151.

[see pages 108-109 and 114-1151.

DEFINITE

m e-az

15.87

15.88

_

m e-~x

s

@-bs

_

e-bz

dx

x csc px

0

m e-“‘(lx;

s

‘OS

‘)

,jx

1

xm(ln x)” dx

i -

cot-l

=

tan-l%

a

(--l)%! (m + l)n+l

=

s 0

If

n#0,1,2,...

replace

S o

l - lnx 1+x

dx

=

-$

&

=

-$

’ In (1 + x) dx

S S S S S

2

0

15.94

tan-1

=

-

;

’ ln(l-x) x

0

(a2

+

dx

=

$

=

-?

m > -1,

1)

n = 0, 1,2, . . .

n! by r(n. + 1).

6

1

15.95

In

0

15.90

15.93

99

x set px

15.89

15.91

INTEGRALS

In x In (1 + x) dx

=

2-2ln2-12

In x In (l-x)

=

2 -

572

0

1

15.96

dx

c

0

15.97

- 772WC pn cot pa

O
0

’ F

dx

=

In s

=

-y

m e-xlnxdx

=

-5(-y

dx

=

S S

In sin x dx

=

RI2

lncosx

=

-l

(In cos x)2 dx

=

dx

In2

a/2

(ln sin x)2 dx

=

0

15.104

S S 0

0

15.103

$

n/z

n/2

15.102

+ 2 ln2)

0

srxlnsin

x dx

=

-$ln2

0

S

7712

15.105

sin x In sin x dx

In 2 -

=

1

0 2a

15.106

S 0

2n

In (a + b sin x) dx

=

S 0

In(a+bcosz)dx

=

2rrIn(a+dn)

DEFINITE

100 7r 15.107

ln(a

s

+ b cosx)dx

U+@=G

T In

=

(

0

2

7i 15.108

INTEGRALS

2~ In a,

a 2 b > 0

2~ In b,

b 2 a > 0

=

In (a2 - 2ab cos x + b2) dx

.(‘ 0

)

T/4

15.109

S

In (1 + tan x) dx

=

i In2

0

dx

=

+{(cos-~u)~

sin 2a

y

+ T+

-

(cos-1

sin 3a 32

b)2}

+ ...

(’

See also 15.102.

“.

:

DEFiNlTi

ti!tThRAl.S

1NVOLVlNG

S

m - sinaz dx sinh bx

=

$ tanh $

15.113

p -cos ax dx s o cash bx

=

&

15.114

S

15.112

0

-6

=

$

=

Sr(n+

NYPERBQLIC

FUNCTtC?NS

a7 sech%

0

15.115

m xndx o sinh az

S

If n is an odd positive m ___ sinh ax dx ebz + 1 0

15.116

S

15.117

S

* sinh ux ebz

dx

m ftux)

i ftbx)

1) integer,

=

2

csc $

=

&

-

5

the series can be summed

-

[see page 1081.

1

2a

cot %

0

15.118

S

&

=

{f(O) - f(m)}

ln i

0

This 15.119

is called ’ dx

S

-

Ia

(u+x)m-l(a--x)-l&

0

15.120

Frulluni’s

--a

It holds

integral.

=

22

=

(2a)m+n-1;;'f;;

if f’(x)

is continuous

and

s

- f(x) - f(m) dx converges. 1

x

16

THE GAMMA

DEFINITION

OF THE GAMMA

16.1

r(n)

FUNCTION

FUNCTION

r(n)

cc S

tn-le-tdt

=

FOR n > 0

n>O

0

RECURSiON

FORMULA

16.2

lT(n + 1)

=

nr(n)

16.3

r(n+l)

=

n!

THE GAMMA For

n < 0 the gamma

function

r(n)

GRAPH

by using

=

n=0,1,2,...

where

O!=l

FOR n < 0

FUNCTION

can be defined

16.4

if

16.2, i.e.

lyn + 1) ___ n

OF THE GAMMA

FU

CTION

Fig. 16-1

SPECIAL

VALUES

FOR THE GAMMA

r(a)

16.5 16.6 16.7

r(m++) r(-m

FUNCTION

= 6

= 1’3’5’im * em - 1) 6 + 22

=

(-1p2mG 1. 3. 5 . . . (2m

101

m = 1,2,3,

... _

m = 1,2,3,

...

k&n\! MI

- 1)

Y-

ti 6

THE

102

GAMMA

RELAT4ONSHIPS

FUNCTION

AMONG

GAMMA

16.8

r(P)r(l--pP)

16.9

22x-1 IT(X) r(~ + +) This is called

the duplication

=

* =

Gr(2x)

formula.

r(x)r(x+J-)r(x+JJ-)...r(..+)

16.10 For

m = 2 this reduces

OTHER

=

r(s+

OF THE QAMMA .

1) =

JE

-=1 r(x)

16.12 This

is an infinite

mM--mz(2a)(m-l)‘2r(rnz)

to 16.9.

DEflNIflONS

16.11

FUNCTIONS

product

. ..k

(x + 1:(x”+ 2”, . . . (x + k) kZ

xeY+il

representation

DERWATIVES

.

FUNCTION

{(1+;)r.‘m) for the gamma

Of

THL

function

GAMMA

where

y is Euler’s

constant.

FUNCTION

m

16.13

r’(1)

=

e-xlnxdx .(’

m4 r(x)

16.14

_ -

-y

+ (p)

ASYMPTOTIC

r(x+l)

16.15

+ (;-A)

+

EXPANSIONS

=

&iixZe-Z

=

-y

0

.**

+ (;-

FOR THE OAMMA

..t,_,>

If we let [e.g. n > lo]

is called

Stirling’s

x = n a positive is given by Stirling’s

asymptotic

integer

._ t

16.17

that

where

>

series.

in 16.15,

n! - is used to indicate

n!

1+&+&-a+...

then

a useful

&n

nne-n

approximation

for

formula

16.16 where

-.*

FUNCTION

-i This

+

the ratio

-

of the terms

MISCELi.ANEOUS Ir(ix)p

=

on each side approaches

RESUltS i7

x sinh TX

1 as n + m.

n is large

17

THE BETA

FUNCTION 7

DEFINITION

OF THE BETA

FUNCTION

B(m,n) =s1

17.1

P-1

(1 - t)n--l

dt

B(m,n)

m>O,

n>O

0

RELATIONSHIP

OF BETA

17.2

FUNCTION

Extensions

of B(m,n)

to

m < 0, n < 0 is provided

SOME

by using

IMPORTANT

17.3

B(m,n)

=

B(n,m)

17.4

B(m,n)

=

2

17.5

B(m,n)

=

17.6

B(m,n)

=

FUNCTION

r(m) r(n) r(m + n)

=

B(m,n)

TO GAMMA

16.4, page 101.

RESULTS

n/2 s0

sinzmp-1 e COF?-1 e de

T~(T-+ l)m

103

.ltm-l(l-

.(

0

Ql-1

(T + tp+n

dt

,,

fiASlC

18 tWFERfNtfAL 18.1

EQUATION

Separation

Linear

SOfJJTfON

of variables

fl(x) BI(Y) dx + f&d C&(Y) dy

18.2

difF’ERENTIA1 EQUATIONS and -SOLUTIONS

first

order

=

s

g)dx

0

equation

Bernoulli’s

ye.!-J-‘dz = I‘

equation

P(x)Y

J-P&

where

Q(x)Y”

=

=

Exact

M(x,

QeefPdxdx

U-4

If

v = ylen. lny

18.4

=

c

-t- c

I 2)e(l--n)

2 +

Sz(Y) -dy g,(y)

s

I

2 + P(x)y = Q(x)

18.3

+

=

f

Qe (1-n)

jPdz&

n = 1, the solution

.

(Q-P)dx

+

c

is

+ c

equation

y) dx + N(x,

where

aivflay = m/ax.

18.5

Homogeneous

y) dy

=

~iV~x+j+‘-$L3x)dy

0

=

where ax indicates that the integration with respect to x keeping y constant.

equation

c

is to be performed

I

dy z = F:0

S

lnx= where

104

v = y/x.

-

F(v)

If

F(w)

dw

- w

fc

= V, the solution

is y =

CX.

BASIC

DIFFERENTIAL

DIFFERENTIAL

EQUATIONS

AND

105

SOLUTIONS

EQUATION

SOLUTION

18.6 y F(xy)

dx + x G(xy)

dy

=

0

lnz where

Linear, second

18.7

homogeneous order equation

$$+ag+by

w = xy.

If

=

Case 1.

and distinct:

real y =

0 m,,me

real

constants.

y

where

nonhomogeneous order equation

the solution

is

:cy = c.

m2 + am + 6 = 0.

Then

+ c2em2J

and equal: =

clemP

+ e2xemlz

m2=p-qi:

=

epz(cl cos qx + c2 sin qx)

p = -a&

There above.

of

clemP

m,=p+qi, y

Linear, second

= F(v),

roots

Case 3.

18.8

G(v)

m2

mi,m,

+ c

S wCG(4

Let m,, be the there are 3 cases.

Case 2. a, b are real

G(v) dv - F(v))

=

q = dm.

are 3 cases

corresponding

to those

of entry

18.7

Case 1. $$+a$+ a, b are

by

real

=

=

Y

R(x)

cleWx

+ c2em2z

emP +----ml - m2

constants.

S c-ml% em9

+-

m2 - 9

R(x)

dx

S e-%x

R(x)

dx

Case 2. =

Y

cleniz

+ c2xenG

+ xernlz -

s

e-ml= R(s)

emP

S

dx

xe-mlx

R(x)

dx

Case 3. Y

=

ePz(cl cos qs + c2 sin qx) +

18.9

Euler

or Cauchy

equation Putting

x2d2Y

dx”

+ ,,dy

dx

+ by

epx sin qx e-c; R(x) cos qx dx S P - epz cos qx c-pz R(x) sin qx dx S P

=

S(x)

x = et, the equation 3

and can then

+

(a-l)%

be solved

+ by as in entries

becomes =

S(et)

18.7 and 18.8 above.

BASIC

106

18.10

Bessel’s

DIFFERENTIAL

EQUATIONS

AND

SOLUTIONS

equation

x2=d2y + Z&dy + (A‘%-n2)y

=

0

Y

=

C,J,(XX)

+ czY,(x)

See pages 136-137. 18.11

22%

dx2

Transformed + (2 +1)x& ’

dx

Bessel’s

equation --

+ (a%Pf~2)y

0

Y = x-’ {CLJo (@ where

18.12

(l-zs’)$$

Legendre’s

-

2x2

+ c2ypls (;c)}

q = dm~.

equation

+ n(n$-1)y

=

0

Y See pages 146-148.

=

cup,

+ czQn(4

19

SERIES

of CONSTANTS

ARlTHMEtlC 19.1

a + (a+d) where Some special

+ (u+2d)

I = a + (n - 1)d

+

**.

SERIES

+ {a + (n-

l)d}

=

dn{2u

+ (n-

l)d}

=

+z(a+

I)

is the last term.

cases are

19.2

1+2+3+**.

19.3

1+3+5+*.*+(2n-1)

+ n

=

+z(n + 1) =

GEOMETRIC

n2

SERIES

19.4 where If

-1

1 = urn-1

is the last term

and

r # 1.

< r < 1, then

19.5

a + ur + ur2 -I- a13 +

...

=

ARITHMETIC-GEOMETRIC a + (a+@.

19.6

where If

+ (a+2d)r2

SERIES

**a + {a+(n-l)d}rrt-1

=

!G$+Tfl

+ rd{l-nr"-'+(n-lPnl (1 - r)2

r P 1.

-1 < r < 1, then

19.7

a + (a+

SUMS

19.8

+

lnr

1p + 2p + 3* +

...

d)r + (a+

2d)r2 +

OF POWERS

...

=

OF POSITIVE

*

+ (1 ?r),

INTEGERS

+ ?zp =

where the series terminates numbers [see page 1141.

at n2 or n according

107

as p is odd or even, and

B, are the Bernoulli

108

SERIES

Some special

OF

CONSTANTS

cases are

19.9

1+2+3+...+n

19.10

12

+

22

+ 32 +

... +

%2

=

n(n+1g2n+1)

19.11

13

+

23

+

33

+

... +

n3

=

n2(n4+ ‘I2

=

19.12

14 + 24 +

34

+

... +

%4

=

n(n+

+iA(3n2

If

19.13

Sk = lkf (“+

=

2k+

3k+

...

+ (“;‘)S2

dy

+ nk where +

*..

lNzn

(1 + 2 + 3 + * * * + 72)s + 3n-

k and n are positive

+ (“:‘)Sk

=

l)

integers, (n+l)k+‘-

then (n+l)

SERIES

OF

CONSTANTS

~'P-'~~PB

P

(2P)! 19.36

&

+ &

+ &

+ &

+

...

(22~ - 1)&B

=

P

2(2P)! - l)&‘B

(22~-'

P

(2P)! 19.38

&

-

-!-

+

32~+1

1

__ 1

-

52~+1

+...

79 + ‘E,

=

72p+1

22Pf2(2p)!

MlSCEI.LANEOUS

1 2

19.39

-+cosa+cos2a+~*~+cosna

19.40

sina

19.41

1 + ?-cos(u

19.42

r sina

19.43

1 + rcosa

19.44

rsincu

+

sin2a

+

+ r2cos2a

...

+ r3cos3a

+ r2cos2a +

+ ...

2 sin (a/2)

+ sinna +

+ r2 sin 2a + + sin 3a +

+ r2sin2n

sin (n + +)a

=

+ sin3a

***

a**

SERIES

sin [*(n

= ..*

sin &na

=

1-‘2,,‘,‘,“,“;r2,

ITI < 1

r sin (Y l-22rcosafr2’

=

+ r”cos?za.

+ msinm

+ l)]a sin (a/2)

b-1 < 1

m+2COSnLu-?-r”+1cos(n+l)a-~rosa+1 1 - 2r cos a + ?-2

=

-

rsincu-V+1sin(n+l)cu+rn+2sinncu 1 - 2r cosa + r2

=

THE EULER-MACLAURIN

SUMMATION

FORMULA

n-1

19.45

&

F(k)

=

j-&k)

dk

-

f P’(O)

+ F(n)1

0

+

& {F’(n) +

- F’(O)}

&{F(v)(n) , +

THE POISSON

19.46

,=iii,

F(k)

-

...

&

- F(v)(o)}

(--lF1

SUMMATION

=

,J--,

{F”‘(n)

3 {F (Zp) !

- F”‘(O)} -

&

t

?

(ZP-~)(~)

-

FORMULA

{S” --m eznimzF(x)

dx

>

{F(vii)(n) F(~P-l,(O)}

- F(vii)(O)) +

. . .

20

TAYLOR

TAYLOR

f(x)

20.1

=

SERIES

FOR

f@&) + f’(a)(x-

SERIES

FUNCTIONS

a) + f”(4(2z,-

OF

42

+

ONE

1

.

VARIABLE

. . . + P-“(4(x

-4n-’

+ R,

(n-l)! where R,, the remainder 20.2 20.3

Lagrange’s Cauchy’s

after

n terms,

form form

R,

=

R,

=

is given

by either

f’W(x

of the following

forms:

- 4n n!

f’“‘([)(X

-p-y2

- a)

(n-l)!

The value 5, which may be different in the two forms, continuous derivatives of order n at least.

lies between

a and x.

The result

holds

if f(z)

has

If lim R, = 0, the infinite series obtained is called the Taylor series for f(z) about x = a. If tl-c-3 a = 0 the series is often called a Maclaurin series. These series, often called power series, generally converge for all values of z in some interval called the interval of convergence and diverge for all x outside this interval.

BINOMIAL

20.4

(a+xp

=

&I

+

nan-lx

=

an

+

(3

Ek$a

an--15 .

Special

+

+

20.5

(c&+x)2

=

a2 + 2ax + x2

20.6

(a+%)3

=

a3 +

3a2x

+

3ax2

20.7

(a+x)4

=

a4 +

4a3x

+

6a2x2

20.8

(1 + x)-i

=

1 -

x + x2 -

x3 + 24 -

20.9

(1+x)-2

=

1 -

2x

-

20.10

(1+x)-3

=

1 -

3x + 6x3 -

20.11

(l$

20.12

(1 fx)i’3

20.13

(1 +x)-l'3

20.14

(l+z)'/3

=

x)-l'2

=

=

+

dn--

1,‘,‘”

an--2z2

+

(‘;)

@--3X3

23

+ +

4ax3

+

x4

...

4x3 + 5x4 -

-l
10x3 + 15x4 -

-1<2<1 * *a

1-;x+~z2-~x3+. 1 + 2” 1

=

3x2

(3

an-2x2

. I

I

cases are

+

SERIES

-

2x31

-l
x3 -

..,

l-;x+~x2-~x3+.~

1 + 3x 1

-

&x2

-l
-l
+ $&x3

-

110

***

-l
-

2)

an-3z3

+

. **

+

. . .

TAYLOR

SERIES FOR EXPONENTIAL

20.15

e= =

l+x+~+~+*.*

20.16

a~ =

@Ina

20.17

ln(l+x)

20.18

$

=

=

=

(

AND

LOGARITHMIC

23

+ k$.d!+

+ _“3” -

$

-“4” +

5 + g + f

k-!&d!

...

Ins

=

2{(~)+;(++;(~)5+

20.20

Inx

=

(s?+)

+ q + . ..

+ ~(~)”

x-2”+“-sc’+ 3!

--m<2
-l
+$(z$!)“+

SERIES =

+ **.

-l
)

20.19

sin 2

20.22

cosx

20.23

tanx

=

20.24

cotx

= 1 _ : _ f 5

20.25

secx = l+g+g+!g+...+-

20.26

cscx = ;+~+~+A!??+

20.27

sin-l

20.28

cos-lx

= T2

20.29

tan-lx

=

5!

2>0

...

X2+

FOR TRIGONOMETRIC ...

20.21

FUNCTIONS

--m
1 + xlna

x -

‘2

ln

22

111

SERIES

FUNCTIONS

--m
7!

--m
- 1)&x+-1 (2n) !

+

- . . . _ 22n~~2inp1 - . . .

im

x+$+z+E+.*.+

_ g

...

0 < 1x1< P

E,x2" (2n)!

. .. +

15,120

1.3.5 ~-

x’ 7 +

2.4.6

=

1p,x2n--1 (2n) !

x

sin-lx

1x1
+ ."

2(2+‘-

x+2y+=5+ 1 x3

T2

x-$+$-$+

.**

x5

3x3

5x5

...

0 < 1x1 < ?r

I4 < 1 I4 < 1

. ..

*E-1+1-L+ 2 x

+

/xl < 1

*.*

1.3

I4 < ;

[+ if 5 2 1, -

...

if 5 zZ -11

1x1< 1 20.30

cot-lx

= 9 - tan-12

=

2

[p = 0 if x > 1, p = 1 if x < -11 0:

20.31

see-l x

=

cos-‘(l/x)

=

E2 -

20.32

csc-1 x

=

sin-1

=

k+‘-

(l/x)

I4 > 1 2-3x3

+

2

*l-3 4 * 5x5

+

...

14 > 1

/

TAYLOR

112

SERIES

SERIES FOR HYPERBOLIC 20.33

sinh x

=

x+g+g+g+

20.34

cash x

=

l+$+e+e+...

20.35

tanh x

=

x-if+z&rg+...

20.36

cothx

=

~+fA+E+

20.37

sechx

=

l-~+~x&+

20.38

cschx

=

1 -

FUNCTIONS

-m
***

--m
...

(-I)*-

122nBnx2n-

+

. . . (-l)nEnx2n (2n) !

; + g

X

-

E.

sinh-lx

-

G

+

2.4.5

1

+

, l

+

1x1
l)B,Gn--1

...

+

20.40

cash-1x

20.41

tanh-1~

=

20.42

coth-1s

=

=

-r-

lnj2xl

+ A--

1x1 < 1.

‘*’

k{In(2x)-

l-3*5 + 2.4.6.6~6

1*3 204.4~~

(

esinz =

20.44

ecosz

[‘ii

L-

1

E~~~I:~~~:

:::I

I4 < 1

x2

SERtES

x5 + . . .

x4

--m
l-$+x!pz!+...

--m
(

)

20.45

etanz

20.46

ez sin x

20.47

e2

20.48

In lsin xl

=

In(x(

20.49

~nlcosxl

=

-$

20.50

In ltan x1

=

x2 7& In 1x1 + -py + g-

20.51

In - (1 +x) 1+x

=

x -

x

+ifxZl if x 5 -1

>

1x1 > 1

e

=

’ ‘.

x+$+g+$+...

1+x+;i--s-z

=

-

(&+&+,.::“,Y”,x6+.**))

MlSCELLAN(KMJS 20.43

2

0 < 1x1 < x

= 1

2

0 < /xl < a

(2n) !

1.3 ’ 5x7 + 2.4.6.7

3x5

...

...

(-l)n2(22”-l-

-0.

1x1
. . .

+

1

(2n) !

x3

cos

1px2n-1

(2n) !



20.39

-

1+.+;+g+y+...

=

~+x2++3+~+

=

1+x-+$+...+

1x1

. . .

2nf2 sin (m/4) ?Z!

+

2ni2 cos (m/4) n! 22n-

-

-

f

-

go

$

-

$

(1 +&)x2

-

&

-

17x* - 2520 62x6 + 2835

... -

**.

+

+ (1 + & + #a+

+

22922n--1n(S)

* **

Jr

2

--m
...

22n- 1(22” - l)B,xz” n(k) !

** * +

...

...

1Bn52n

n(2n) !

-

-

xn +

xn +

<

l)B,xzn !

0 < 1x1 < ?r +

...

+

...

I4 < ; 0 < 1x1 < ;

I4 < l

If

20.52

y = qx + c‘@ +

+

c323

+

c424

c525

+ I+?9 + . * *

then

20.53

x = c,y +

+

C2Y2

+

c3y3

cqy4

+ C5y” + Csy6 + * * -

where

20.54

c,cl = I

20.55

c;C,

20.56

c;C3 =

20.57

c;C4 = Sc,c,c, -

20.50

c;C, =

20.59

c;'C, = 7cfc2c5+

20.60

= -c2 2~;

- clc3

6cfc,c,

5$

+

- c1c4 2

3cFc,2

- $c5 +

84qc~c,

14~24 - 21c,c~c3

+ 7cfc3c4-

fb, Y) = f@, b) + (z - dfzb, b) +

(?I

- W&

+ $ {(x - 4‘Vi,b, b) + 2(x where

fz(a, b), f,(a, b), . . . denote

partial

- ctc6 -

28cfc2ci

derivatives

-

a)(~

with

28cfo~c4

-

42~;

b) -

bYi&,

respect

b) +

(Y -

Wfyy(%

b))

to 5, y, . . . evaluated

+

. **

at z = a, y =

b.

21

BERNOlJtLI

and

&

DEFINITION The Bernoulli

numbers

21.1

- x ez -

1

21.2

1 -

: cot 5 2 2

=

1 -

OF BERNOULLI

B,, B,, B,, . . . are defined f

+ A?!$

_ B;r’

\ B;;”

B,x2 B2x4 ~+~+-y-+*-

=

numbers

E,x2

sechx

=

l--

21.4

set x

=

1+

2!

E,x6

E,x4

+-G---

6!

E1x2 E,x4 F+qr+F+*-

TABLE

OF FIRST

Bernoulli

by the series -

...

OF EULER

El, E,, E,, . . . are defined

21.3

NUMBERS

B,x6

DEFINJTION The Euler

EULER NUMBERS

+

NUMBERS

by the series 1x1 < 9 2

*.-

E,x6

1x1 -cE

FEW BERNOUttl

AND

numbers

Euler

2

EULER NUMBERS

numbers

Bl

=

l/6

El

=l

B2

=

l/30

E,

=

5

B3

=

l/42

~93

=

61

B4

=

l/30

E4

=

1385

B5

=

5/66

E5

=

50,521

B6

=

691/2’730

E6

=

2,702,‘765

B7

=

716

E?

=

199,360,981

63

=

3617/510

E3

=

19,391,512,145

B,

=

43,867/798

E,

=

2,404,879,675,441

ho

=

174,611/330

EIO

=

370,371,188,237,525

41

=

854,513/138

El1

=

69,348,874,393,137,901

B12

=

236,364,091/2730

E12

=

15,514,534,163,557,086,905

114

BERNOULLI

21.6

E,

=

('2")Enm1

21.7

B,

=

22.($m1,{(2n.+,

21.12

- (y)E,-,

AND

EULER

+ (;)E,-,

- (‘3Env2

-

NUMBERS

115

. ..(-l)n

+ (2n;1)Ene,

-

... (-l)n-1)

FORMULAS from VECTOR ‘ANALYSIS

22

VECTORS

AND

Various quantities in physics such as temperature, Such quantities are called scalars.

SCALARS volume

and speed can be specified

by a real number.

Other quantities such as force, velocity and momentum require for their specification a direction as by an arrow or directed well as magnitude. Such quantities are called vectors.~ A vector is represented The magnitude of the vector is determined by the length of the arrow, line segment indicating direction. using an appropriate unit.

NOTATION

A.

FOR VECTORS

A vector is denoted by a bold faced letter such as A [Fig. 22-l]. The magnitude is denoted by IAl or The tail end of the arrow is called the initial point while the head is called the terminal point.

FUNDAMENTAL 1. 2.

3.

Equality of vectors. Two vectors magnitude and direction. Thus Multiplication (scalar), then magnitude of to A according called the zero

DEFINITIONS

are equal if they have the same A = B in Fig. 22-l.

If m is any real number of a vector by a scalar. mA is a vector whose magnitude is ]m] times the A and whose direction is the same as or opposite as m > 0 or m < 0. If m = 0, then mA = 0 is or null vector.

A B

/ /

Fig. 22-l

Sums of vectors. The sum or resultant of A and B is a vector C = A+ B formed by placing the initial point of B on the terminal point of A and joining the initial point of A to the terminal point of B [Fig. 22-2(b)]. This definition is equivalent to the parallelogram law for vector addition as inThe vector A - B is defined as A + (-B). dicated in Fig. 22-2(c).

Fig. 22-2

116

FORMULAS

FROM

VECTOR

Extensions to sums of more than two vectors the sum E of the vectors A, B, C and D.

117

ANALYSIS

are immediate.

Thus

Fig.

22-3 shows how to obtain

B I D Y\

(b)

(4 Fig. 22-3 4.

Unit vectors. the direction

A unit vector is a vector with unit of A is a = AfA &here A > 0.

magnitude.

LAWS OF VECTOR If A, B, C are vectors

and m, n are scalars,

22.2

A+(B+C)

22.3

m(nA)

22.4

(m+n)A

=

mA+nA

Distributive

law

22.5

m(A+B)

= mA+mB

Distributive

law

= =

(mu)A

Commutative (A+B)+C = n(mA)

a unit

vector

in

then

A+B

B+A

then

ALGEBRA

22.1

=

If A is a vector,

law for addition

Associative

law for addition

Associative

law for scalar

COMPONENTS

multiplication

OF A VECTOR

A vector A can be represented with initial point at the origin of a rectangular coordinate system. If i, j, k are unit vectors in the directions of the positive x, y, z axes, then 22.6

A

where A,i, Aj, i, j, k directions

= A,i

Y

+ A2j + Ask

A,k are called component and Al, A,, A3 are called

vectors of A in the the components of A.

Fig. 22-4

DOT 22.7 where

A-B B is the angle

between

A and B.

OR SCALAR =

ABcose

PRODUCT 059Sn

Index of Special Symbols and Notations The following list shows special symbols and notations used in this book together with pages on which Cases where a symbol has more than one meaning will be clear from they are defined or first appear. the context.

Symbole Berri (x), Bein

(xj

B(m, n) 4l (34 Ci(x) e elp e2, e3

natural

Euler

7, T-l

Fourier

elliptic

Hermite

in curvilinear

unit vectors

In(x)

modified

Jr, (4

Bessel

in rectangular

Bessel

function

function

complete

kind, 138

coordinates,

117

integral

136

of first kind, 179

140 Bessel

or loge x

natural

logarithm

common

function

polynomials, and inverse

pn (4

Legendre

f%4

associated

Qn (4

Legendre

Qt’b)

associated

Legendre

cylindrical

coordinate,

polynomials,

functions

kind, 148

functions

of second

22, 36

sine integral,

50 184

183

polynomials

of first kind, 157

Chebyshev

polynomials

of second

function

kind,

49

Chebyshev Bessel

transform,

of first kind, 149

of second

coordinate,

sine integral,

155 Laplace

146

Legendre functions

coordinate,

Fresnel

153

Laguerre transform

spherical

kind, 139

.of x, 23

polynomials,

Laplace

polar

of second

of x, 24

logarithm

Laguerre associated

r

175, 176

124

of first kind, 138

of first kind,

elliptic

modified

L?(x)

transform,

151

of first and second

Wr)

<,-Cl

Fourier

eoordinates,

unit, 21

i, i, k

J%(r)

of first kind, 179

and inverse

functions

imaginary

160

integral

polynomials,

Hankel

kind, 1’79

114

transform

HA)

kind, 179

of second

183

function,

elliptic

scale factors

124

183

of second

integral

integral,

&Y h

or logl”x

function,

integral

numbers,

incomplete

Kern (x), Kein (x)

errer

hypergeometric

F(k, @)

eoordinates,

183

elliptic

exponential

1

in curvilinear

function,

Ei(x)

K = F(k, 742)

184

184

base of logarithms,

unit vectors

incomplete

H’;‘(x)

114

integral,

integral,

E(k, $)

i

logx

cosine

complete

En F(u, b; c; x)

lnx

Fresnel cosine

103

numbers,

complementary

erfc (x) E = E(k, J2)

H’;‘(x),

Bernoulli

errer

erf (x)

h

140 beta function,

of second

263

kind, 158

kind, 136

150

161

INDEX

264

OF SPECIAL

SYMBOLS

AND NOTATIONS

Greek Sym bols Euler’s constant, 1

6

spherical coordinate, 50

lW

gamma function, 1, 101

77

1

Hr)

Riemann zeta function, 184

ti

spherical coordinate, 50

Y

e

cylindrieal coordinate, 49

e(P)

the sum 1 + i + i + - *. +;,

e

polar coordinate, 22, 36

@(xl

probability distribution function, 189

-a(O)=O, 137

Notations A=B

A equals B or A is equal to B

A>B

A is greater than B [or B is less than A]

A
A is less than B [or B is greater than A]

AZB

A is greater than or equal to B

ASB

A is less than or equal to B

A-B

A is approximately

A-B

A is asymptotic to B or A/B approaches 1, 102

absolute value of

equal to B

A

=

AifA -A

if A 5 0

factorial n, 3 binomial coefficients, 3

Y

,, --

d2Y

D

derivatives of y or f(x) with respect to x, 53, 55 =

etc.

f’(x),

pth derivative with respect to x, 55 differential of y, 55 partial derivatives,

56

Jacobian, 125

s-

1(x) ch

lJ J a f(x) dx A * dr

line integral of A along C, 121 dot product of A and B, 11’7

AXB

cross product of A and B, 118

vs=v-v =

definite integral, 94

A-B V

v4

indefinite integral, 57

V(V2)

del operator, 119 Laplacian operator, 120 biharmonic operator, 120

I

N

Addition formulas, for Bessel functions, 145 for elliptic functions, 180 for Hermite polynomials, 152 for hyperbolic functions, 27 for trigonometric functions, 15 Agnesi, witch of, 43 Algebraic equations, solutions of, 32, 33 Amplitude, of complex number, 22 of elliptic integral, 179 Analytic geometry, plane [sec Plane analytic geometry] ; solid [see Solid analytic geometry] Angle between lines, in a plane, 35 in space, 47 Annuity, amount of, 201, 242 present value of, 243 Anti-derivative, 57 Antilogarithms, common, 23, 195, 204, 205 natural or Napierian, 24, 226, 227 Archimedes, spiral of, 45 Area integrals, 122 Argand diagram, 22 Arithmetic-geometric series, 10’7 Arithmetic mean, 185 Arithmetic series, 107 Associated Laguerre polynomials, 155, 156 [sec uZs0 Laguerre polynomials] generating funetion for, 155 orthogonal series for, 156 orthogonality of, 156 reeurrence formulas for, 156 special, 155 special results involving, 156 Associated Legendre functions, 149, 150 [sec also Legendre functions] generating function for, 149 of the first kind, 149 of the second kind, 150 orthogonal series for, 150 orthogonality of, 150 recurrence formulas for, 149 special, 149 Associative law, 117 Asymptotes of hyperbola, 39 Asymptotic expansions or formulas, numbers, 115 for Bessel functions, 143 for gamma function, 102 Base of logarithms, 23 change of, 24 Ber and Bei functions, 140,141 definition of, 140 differential equation for, 141 graphs of, 141 Bernoulli numbers, 98,107,114, asymptotic formula for, 115 definition of, 114 relationship to Euler numbers, series involving, 115 table of first few, 114

for

D

E

Bernoulli’s differential equation, 104 Bessel functions, 136-145 addition formulas for, 145 asymptotic expansions of, 143 definite integrals involving, 142, 143 generating functions for, 137,139 graphs of, 141 indefinite integrals involving, 142 infmite products for, 188 integral representations for, 143 modified [see Modified Bessel functions] of first kind of order n, 136, 137 of order half an odd integer, 138 of second kind of order n, 136, 137 orthogonal series for, 144, 145 recurrence formulas for, 137 tables of, 244-249 zeros of, 250 Bessel’s differential equation, 106, 136 general solution of, 106, 137 transformed, 106 Bessel’s modified differential equation, 138 general solution of, 139 Beta funetion, 103 relationship of to gamma function, 103 Biharmonic operator, 120 in curvilinear coordinates, 125 Binomial coefficients, 3 properties of, 4 table of values for, 236, 237 Binomial distribution, 189 Binomial formula, 2 Binomial series, 2, 110 Bipolar coordinates, 128, 129 Laplaeian in, 128 Branch, principal, 17 Briggsian logarithms, 23 Cardioid, 41, 42, 44 Cassini, ovals of, 44 Catalan’s constant, 181 Catenary, 41 Cauchy or Euler differential equation, 105 Cauchy-Sehwarz inequality, 185 for integrals, 186 Cauchy’s form of remainder in Taylor series, Chain rule for. derivatives, 53 Characteristic, 194 Chebyshev polynomials, 157-159 generating functions for, 157, 158 of first kind, 157 of second kind, 158 orthogonality of, 158, 159 orthogonal series for, 158, 159 recursion formulas for, 158, 159 relationships involving, 159 special, 157, 158 special values of, 157, 159 Chebyshev’s differential equation, 157 general solution of, 159

Bernoulli

115

115

2

6

5

110

2

6

Chebyshev’s inequality, Chi square distribution, percentile values for,

6 186 189 259

Circle, area of, 6 equation of, 37 involute of, 43 perimeter of, 6 sector of [sec Sector of circle] segment of [sec Segment of cirele] Cissoid of Diocles, 45 Common antilogarithms, 23, 195, 204, 205 sample problems involving, 195 table of, 204, 205 Common logarithms, 23, 194, 202, 203 computations using, 196 sample problems involving, 194 table of, 202, 203 Commutative law, for dot products, 118 for vector addition, 117 Complement, 20 Complementary error function, 183 Complex conjugate, 21 Complex inversion formula, 161 Complex numbers, 21, 22, 25 addition of, 21 amplitude of, 22 conjugate, 21 definitions involving, 21 division of, 21, 25 graphs of, 22 imaginary part of, 21 logarithms of, 25 modulus of, 22 multiplication of, 21, 25 polar form of, 22, 25 real part of, 21 roots of, 22, 25 subtraction of, 21 vector representation of, 22 Components of a veetor, 117 Component vectors, 117 Compound amount, table of, 240 Cone, elliptic, 51 right circular [sec Right circular cane] Confocal ellipses, 127 ellipsoidal coordinates, 130 hyperbolas, 127 parabolas, 126 paraboloidal coordinates, 130 Conical coordinates, 129 Laplacian in, 129 Conics, 3’7 [see aZso Ellipse, Parabola, Hyperbola] Conjugate, complex, 21 Constant of integration, 57 Convergence, interval of, 110 of Fourier series, 131 Convergence faetors, table of, 192 Coordinate curves, 124 system, 11 Coordinates, curvilinear, cylindrical, 49, 126 polar, 22, 36 rectangular, 36, 117

124-130

INDEX

Coordinates, curvilinear (cent.) rotation of, 36, 49 special orthogonal, 126-130 spherical, 50, 126 transformation of, 36, 48, 49 translation of, 36, 49 Cosine integral, 184 Fresnel, 184 table of values for, 251 Cosines, law of for plane triangles, 19 law of for spherical triangles, 19 Counterclockwise, 11 Cross or vector product, 118 Cube, duplication of, 45 Cube roots, table of, 238, 239 Cubes, table of, 238, 239 Cubic equation, solution of, 32 Curl, 120 in curvilinear coordinates, 125 Curtate cycloid, 42 Curves, coordinate, 124 special plane, 40-45 Curvilinear coordinates, 124, 125 orthogonal, 124-130 Cyeloid, 40, 42 curtate, 42 prolate, 42 Cylinder, elliptic, 51 lateral surface area of, 8, 9 volume of, 8, 9 Cylindrical coordinates, 49, 126 Laplacian in, 126

Definite integrals, 94-100 approximate formulas for, 95 definition of, 94 general formulas involving, 94, 95 table of, 95-100 Degrees, 1, 199, 200 conversion of to radians, 199, 200, 223 relationship of to radians, 12, 199, 200 Del operator, 119 miscellaneous formulas involving, 120 Delta function, 170 DeMoivre’s theorem, 22, 25 Derivatives, 53-56 [sec aZso Differentiation] anti-, 57 chain rule for, 53 definition of, 53 higher, 55 of elliptic functions, 181 of exponential and logarithmie functions, of hyperbolic and inverse hyperbolic functions, 54, 55 of trigonometrie and irlverse trigonometric functions, 54 of vectors, 119 partial, 56 Descartes, folium of, 43 Differential equations, solutions of basic, Differentials, 55 rules for, 56 Differentiation, 53 [sec aZso Derivatives]

64

104-106

INDEX

Differentiation (cent.) general rules for, 53 of integrals, 95 Diocles, cissoid of, 45 Direction cosines, 46, 47 numbers, 46, 48 Directrix, 37 Discriminant, 32 Distance, between two points in a plane, 34 between two points in space, 46 from a point to a line, 35 from a point to a plane, 48 Distributions, probability, 189 Distributive law, 117 for dot products, 118 Divergence, 119 in curvilinear coordinates, 125 Divergence theorem, 123 Dot or scalar .product, 117, 118 Double angle formulas, for hyperbolic functions, for trigonometric functions, 16 Double integrals, 122 Duplication formula for gamma functions, 102 Duplication of cube, 45

Envelope, Epicycloid,

27

Eccentricity, definition of, 37 of ellipse, 38 of hyperbola, 39 of parabola, 37 Ellipse, 7, 37, 38 area of, 7 eccentricity of, 38 equation of, 37, 38 evolute of, 44 focus of, 38 perimeter of, 7 semi-major and-minor axes of, 7, 38 Ellipses, confocal, 127 Ellipsoid, equation of, 51 volume of, 10 Elliptic cane, 51 cylinder, 51 paraboloid, 52 Elliptic cylindrical coordinates, 127 Laplacian in, 127 Elliptic functions, 179-182 [sec uZso Elliptic integrals] addition formulas for, 180 derivatives of, 181 identities involving, 181 integrals of, 182 Jacobi’s, 180 periods of, 181 series expansions for, 181 special values of, 182 Elliptic integrals, 179,180 [see aZso Elliptie amplitude of, 179 Landen’s transformation for, 180 Legendre’s relation for, 182

267

Equation of line, 34 general, 35 in parametric form, 47 in standard form, 47 intercept form for, 34 normal form for, 35 perpendicular to plane, 48 Equation of plane, general, 47 intercept form for, 47 normal form for, 48 passing through three points, 47 Errer function, 183 complementary, 183 table of values of, 257 Euler numbers, 114, 115 definition of, 114 relationship of, to Bernoulli numbers, 115 series involving, 115 table of first few, 114 Euler or Cauchy differential equation, 105 Euler-Maclaurin summation formula, 109 Euler’s constant, 1 Euler’s identities, 24 Evolute of an ellipse, 44 Exact differential equation, 104 Exponential functions, 23-25, 200 periodicity of, 24 relationship of to trigonometric functions, 24 sample problems involving calculation of, 200 series for, 111 table of, 226, 227 Exponential integral, table of values for, Exponents,

189

95th and 99th percentile Factorial n, 3 table of values Factors,

values

for,

for, 234

2

Focus, of conic, 37 of ellipse, 38 of hyperbola, 39 of parabola, 38 Folium

of Descartes,

43

Fourier series, 131-135 complex form of, 131 convergence of, 131 definition of, 131 I’arseval’s identity for, special, functions]

131

132-135

Fourier transforms, 174-178 convolution theorem for, 175 cosine, 176 definition of, 175 I’arseval’s identity sine, 175 table of, 176-178 Fourier’s

table of values

Fresnel

254, 255

183 251

23

F distribution,

of the first kind, 179 of the second kind, 179 of the third kind, 179, 180 for,

44 42

integral

for,

theorem,

sine and cosine

175

174

integrals,

184

260, 261

268 Frullani’s integral, Frustrum of right area of, 9 volume of, 9

INDEX

100 circular

cane, lateral

surface

Gamma function, 1, 101, 102 asymptotic expansions for, 102 definition of, 101, 102 derivatives of, 102 duplication formula for, 102 for negative values, 101 graph of, 101 infinite product for, 102, 188 recursion formula for, 101 relationship of to beta function, 103 relationships involving, 102 special values for, 101 table of values for, 235 Gaussian plane, 22 Gauss’ theorem, 123 Generalized integration by parts, 59 Generating functions, 13’7, 139, 146, 149, 151, 153, 155,157,158 Geometric formulas, 5-10 Geometric mean, 185 Geometric series, 107 arithmetic-, 107 Gradient, 119 in curvilinear coordinates, 125 Green’s first and second identities, 124 Green’s theorem, 123 Half angle formulas, for hyperbolic functions, for trigonometric functions, 16 Half rectified sine wave function, 172 Hankel functions, 138 Harmonie mean, 185 Heaviside’s unit function, 173 Hermite polynomials, 151, 152 addition formulas for, 152 generating function for, 151 orthogonal series for, 152 orthogonality of, 152 recurrence’formulas for, 151 Rodrigue’s formula for, 151 special, 151 special results involving, 152 Hermite’s differential equation, 151 Higher derivatives, 55 Leibnitz rule for, 55 Holder’s inequality, 185 for integrals, 186 Homogeneous differential equation, 104 linear second order, 105 Hyperbola, 37, 39 asymptotes of, 39 eccentricity of, 39 equation of, 37 focus of, 39 length of major and minor Hyperbolas, confocal, 127 Hyperbolic functions, 26-31 addition formulas for, 27

axes of, 39

27

Hyperbolic functions (cont.) definition of, 26 double angle formulas for, 27 graphs of, 29 half angle formulas for, 27 inverse [sec Inverse hyperbolic functions] multiple angle formulas for, 27 of negative arguments, 26 periodicity of, 31 powers of, 28 relationship of to trigonometric functions, 31 relationships among, 26, 28 sample problems for calculation of, 200, 201 series for, 112 sum, difference and product of, 28 table of values for, 228-233 Hyperbolic paraboloid, 52 Hyperboloid, of one sheet, 51 of two sheets, 52 Hypergeometric differential equation, 160 distribution, 189 Hypergeometric functions, 160 miscellaneous properties of, 160 special cases of, 160 Hypocycloid, general, 42 with four cusps, 40 Imaginary

part of a complex

Imaginary unit, 21 Improper integrals, Indefinite integrals, definition of, 57

number,

21

94 57-93

table of, 60-93 transformation of, 59, 60 Inequalities, 185, 186 Infinite products, 102, 188 series [sec Series] Initial point of a vector, 116 Integral calculus, fundamental theorem of, 94 Integrals, definite [SM Definite integrals] double, 122 improper, 94 indefinite [SW Indefinite integrals] involving vectors, 121 line [sec Line integrals] multiple, 122, 125 Integration, 57 [SM also Integrals] constants of, 57 general rules of, 57-59 Integration by parts, 57 generalized, 59 Intercepts, 34, 47 lnterest, 201, 240-243 Interpolation, 195 Interval of convergence, 110 Inverse hyperbolic functions, 29-31 definition of, 29 expressed in terms of logarithmic functions, graphs of, 30 principal values for, 29 relationship of to inverse trigonometric functions, relationships

31 between,

30

29

INDEX

Inverse Laplace transforms, 161 Inverse trigonometric functions, 17-19 definition of, 17 graphs of, 18,19 principal values for, 17 relations between, 18 relationship of to inverse hyperbolic functions, 31 Involute of a circle, 43 Jacobian, 125 Jacobi’s elliptic functions, 180 Ker and Kei functions, 140, 141 definition of, 140 differential equation for, 141 graphs of, 141 Lagrange form of remainder in Taylor series, 110 Laguerre polynomials, 153, 154 associated [sec Associated Laguerre polynomials] generating function for, 153 orthogonal series for, 154 orthogonality of, 154 recurrence formulas for, 153 Rodrigue’s formula for, 153 special, 153 Laguerre’s associated differential equation, 155 Laguerre’s differential equation, 153 Landen’s transformation, 180 Laplace transforms, 161-173 complex inversion formula for, 161 definition of, 161 inverse, 161 table of, 162-173 Laplacian, 120 in curvilinear coordinates, 125 Legendre functions, 146-148 [sec uZso Legendre polynomials] associated [sec Associated Legendre functions] of the second kind, 148 Legendre poiynomials, 146, 147 [sec uZso Legendre functions] generating function for, 146 orthogonal series of, 147 orthogonality of, 147 recurrence formulas for, 147 Rodrigue’s formula for, 146 special, 146 special results involving, 147 table of values for, 252, 253 Legendre’s associated differential equation, 149 general solution of, 150 Legendre’s differential equation, 106, 146 general solution of, 148 Legendre’s relation for elliptic integrals, 182 Leibnitz’s rule, for differentiation of integrals, 95 for higher derivatives of products, 55 Lemniscate, 40, 44 Limacon of Pascal, 41, 44 Line, equation of [see Equation of line] integrals [see Line integrals] slope of, 34

269 Linear first order differential equation, 104 second order differential equation, 105 Line integrals, 121, 122 definition of, 121 independence of path of, 121, 122 properties of, 121 Logarithmic functions, 23-25 [see uZso Logarithms] series for, 111 Logarithms, 23 [sec aZso Logarithmic functions] antilogarithms and [see Antilogarithms] base of, 23 Briggsian, 23 change of base of, 24 characteristic of, 194 common [sec Common logarithms] mantissa of, 194 natural, 24 of compiex numbers, 25 of trigonometric functions, 216-221 Maclaurin series, 110 Mantissa, 194 Mean value theorem, for definite integrals, 94 generalized, 95 Minkowski’s inequality, 186 for integrals, 186 Modified Bessel functions, 138,139 differential equation for, 138 generating function for, 139 graphs of, 141 of order half an odd integer, 140 recurrence formulas for, 139 Modulus, of a complex number, 22 Moments of inertia, special, 190, 191 Multinomial formula, 4 Multiple angle formulas, for hyperbolic functions, 27 for trigonometric functions, 16 Multiple integrals, 122 transformation of, 125 Napierian logarithms, 24, 196 tables of, 224, 225 Napier’s rules, 20 Natural logarithms and antilogarithms, 24, 196 tables of, 224-227 Neumann’s function, 136 Nonhomogeneous equation, linear second order, 105 Normal, outward drawn or positive, 123 unit, 122 Normal curve, areas under, 257 ordinates of, 256 Normal distribution, 189 Normal form, equation of line in, 35 equation of plane in, 48 Nul1 function, 170 Nul1 vector, 116 Numbers, complex [sec Complex numbers] Oblate spheroidal coordinates, 128 Laplacian in, 128 Orthogonal curvilinear coordinates, 124-i30 formulas involving, 125

2

7

Orthogonality and orthogonal series, 14’7, 150, 152, 154,156,158,159 Ovals of Cassini, 44

0

INDEX

144, 145,

Parabola, 37, 38 eccentricity of, 37 equation of, 37, 38 focus of, 38 segment of [sec Segment of parabola] Parabolas, confocal, 126 Parabolic cylindrical coordinates, 126 Laplacian in, 126 Parabolic formula for definite integrals, 95 Paraboloid elliptic, 52 hyperbolic, 52 Paraboloid of revolution, volume of, 10 Paraboloidal coordinates, 127 Laplaeian in, 127 Parallel, condition for lines to be, 35 Parallelepiped, rectangular [see Rectangular parallelepiped] volume of, 8 Parallelogram, area of, 5 perimeter of, 5 Parallelogram law for veetor addition, 116 Parseval’s identity, for Fourier transforms, 175 for Fourier series, 131 Partial derivatives, 56 Partial fraction expansions, 187 Pascal, limacon of, 41, 44 Pascal’s triangle, 4, 236 Perpendicular, condition for lines to be, 35 Plane, equation of [see Equation of plane] Plane analytic geometry, formulas from, 34-39 Plane triangle, area of, 5, 35 law of cosines for, 19 law of sines for, 19 law of tangents for, 19 perimeter of, 5 radius of circle circumscribing, 6 radius of circle inscribed in, 6 relationships between sides and angles of, 19 Poisson distribution, 189 Poisson summation formula, 109 Polar coordinates, 22, 36 transformation from rectangular to, 36 Polar form, expressed as an exponential, 25 multiplication and division in, 22 of a complex number, 22, 25 operations in, 25 Polygon, regular [sec Regular polygon] Power, 23 Power series, 110 reversion of, 113 Present value, of an amount, 241 of an annuity, 243 Principal branch, 17 Principal values, for inverse hyperbolic functions, for inverse trigonometric functions, 17, 18 Probability distributions, 189 Products, infinite, 102, 188 special, 2 Prolate cycloid, 42

Prolate spheroidal coordinates, Laplacian in, 128 Pulse function, 173 Pyramid, volume of, 9

128

Quadrants, 11 Quadratic equation, solution of, 32 Quartic equation, solution of, 33 Radians, 1, 12, 199, 200 relationship of to degrees, 12, 199, 200 table for conversion of, 222 Random numbers, table of, 262 Real part of a complex number, 21 Reciprocals, table of, 238, 239 Rectangle, area of, 5 perimeter of, 5 Rectangular coordinate system, 117 Rectangular coordinates, transformation of to polar coordinatee 36 Rectangular formula for definite integrals, 95 Rectangular parallelepiped, volume of, 8 surface area of, 8 Rectified sine wave function, 172 half, 172 Recurrence or recursion formulas, 101,137, 139, 147,149, 151, 153, 156, 158, 159 Regular polygon, area of, 6 cireumscribing a circle, 7 inscribed in a cirele, 7 perimeter of, 6 Reversion of power series, 113 Riemann zeta function, 184 Right circular cane, frustrum of [sec Frustrum of right circular

cane]

lateral surface area of, 9 volume of, 9 Right-handed system, 118 Rodrigue’s formulas, 146, 151, 153 Roots, of complex numbers, 22, 25 table of square and cube, 238, 239 Rose, three- and four-leaved, 41 Rotation of coordinates, in a plane, 36 in space, 49 Saw tooth wave function, 1’72 Scalar or dot product, 117,118 Scalars, 116 Scale factors, 124 Schwarz inequality [see Cauchy-Sehwarz Sector of circle, arc length of, 6 area of, 6 Segment of circle, area of, 7 Segment of parabola, area of, 7

29

inequality]

arc length of, 7 Separation of variables, 104 Series, arithmetic, 107 arithmetic-geometric, 107 binomial, 2, 110 Fourier [sec Fourier series] geometric, 107 of powers of positive integers, 10’7, 108 of reciprocals of powers of positive integers, 108, 109

I

S

a

N

D

E

2

X

7

e

( r r c i i e t e T n h s r t m , i . e e t5 q i i 1 n 8 a ) n u g r O s t ar o e h n ts r c To hde t w rg ofr h a1 io gui o v7 an oen g e2 na nsc o gl 1 o 1 w 0 e , 1 1 i 3 l Tr rf , iu gn oc 2 nt [ T a s s a y e e y l r c l oa i f o r d ef 1 o r d so r5 i ]r m t , u i S c ci 1l um 2o rp 3s vl d e oee 1 e d f, 1f , i n i S f i f do mi o e r 9 pn r f m 5 st d i au o ef o n nl f n g1 i ago ’ rr6 b t l r s am l e e, lu o u S i 1i n 8 n t 3e e eg v o x rf va fa aoa a l1 n crl ru3 g t, ie l F 1 r 8 e 4 s nf v q eo a i t u l r or n e a, fi r d o mr t o v af 2f a bo 5 l lr 1 u e, q e 1 u s , a 1 d 5 r S l o f i p a t f o n l1 w r r e a9 i s ng a f , ee i n o 1n n g r 7e v l m r oe u l o f s a f to p w1 rr h 9 i e a n g , c l a e l g o r 1 r f i 4 a p h S o l 3l f i 4o n p e e ,a h f a n 1 o l g 6 r f l m e u S a go n f el fa o 4 io rl r 6 dm i oy m [- eI n m t ye r , r s t us5 t n v i, fr le2 r v e c ui ac gn s S o a o e f l l 3 3q g u 2 3u e t a ba i t rn fo i agon o il rs n ce, m, u f 1ol 6 rt m i S e p o 5 q h f 0 u e , a r o n t ea f e i1 ,n g o4 g an l t e s a ou 8 r f r e , f a a p o 1c o f 6e w , e r t o [ r S n st i p er a h ie n re a g n fl l oi f x g 2e acu p l 4 tan o e o ert e i v o 8 o f l , u mr oee t h f lfo y 3 au p 1 tn e i S c p s aa ou h 9 r p f re e , , fr r a ai ae e ao l 1 1c m l 2 5a , tn i v o 9 o f l , u ms ea i p r 1m n o 9 p v b 7 l o l S c p 5 o 1 h 0 o 2 e , r 6 r s df c1 n a1 i l t 1i e oi r r ,a e s L i 1a n 2p , 6l as a v ci no 1a i g cf 2r a n l, i ns a S t p a ro 1 h r if 0e e a, r sa i ua c omn 1 frl a f , d 7 f oe l , dn ipg e d, N r fa r ua op 2i ln r i 0g eg e t h o s il d ra t af nem e ’ b di g s l ,n r e 2n 0d 6 ue r be s ael a i o n t1a 2n d f w d9t t 0g oe i, r ei, a l 2fs n a oe b e 1 dnn l s 2 is e ah S o A p f 4 r i 5 c r h a e rt oi l l a ofm o2 b f e g1 l , d a6 e S r tq o o2 2a u f o3 3b a , t8 9l r T s i, e e r 1 ,n i 2 t p 2 e l g e S w f q a1 uu v7 na e2 c rT o c n h , 4 t er 2 i o o S t q o 2 2a fu 3 3b ,a 8 9l r , e e s , U t f H n i u 1 ie o n 7 ta n c 3 v , t i S f t1 u e7 n p3 c n 1o i u sr f a i s S a t s s 1i e y r0 r m l2 U i p i t na s eo t n o 2 g t r ,m t 2 ’ Uu v 1 nl e 1 ia c 7t, t o f 1 o 0 r 2 m S t t 1 h o 2 e k 3 o e r ’ e s m , a r ol i 1 t c a fg b 1 ’ t w ,e u 7 s o s b t r S t d t 1i u 8s d 9t eV nel a en f n a r ti r 1 l o ol m 6 y m er p v e f 2 a r o 5 l c r 8 u Ve , e sf ct o 1 V o1 s8 s r u S f u E o m u 1r m l 0m a e o 9 cu te p r r r1l ic r a ot o M , no d a Vs 1 eo 1 cn 6 t, o r P 1 o 0 i 9 s a 1 d 1 6 i 7 , t S [ S u s e m c r s e i e o 1 d 1 s f ] , c n c o ar 2 u e m sa 2 m p ,l b l e S i u 1 n r 2 t f 2 e a g s oil o 1 g ,n p7 a o r o t de i f o ol 1 n u a 2 t tb c3 e ofe m1 r l e o 1 q f 1 u , 7 a l f du i en 1 n1 f d 1 v1 i a 6 o7 n T v a t c e 1 n o u c 2 g r t 4 e mv o n oue b r s t 1f ls y s c 1t , a 7i l T l ao f p a t n f o l1 w r g r a9 i e n n af n 1 o e e on t 1 t rg s 6a ,l , t l o f s a f to p w2 rr h 0 i e a1 r n1 i g6 c l a e l n u l l , T s 1a e 1y r 0l i o1r p e al s f 1 1 ar , o 1 3 w a r 6 l , f f oo o u v fr 1n n a 1e c r 0s t i o 1 s e 1u i a f 1 1m o b, 6 7 sn l , f f oo t u v fr w 1n a o1 c r t3t i 1 a i a 2 n o b 4 gn l e s e T p eo a v o 1 rf e i 1m c n 6 i t t n o a r l , u 1 n 1 i 7 t , T c o 1 o r 2 o o 9r i V di d o in a l l u tg 1 2 nt 2 ae m e L i 1a n 2p , 9l a c i a n T s oa ou 1 rr f r 0 ue , f saW a p , a1 c r l 8 e o l 8 d i u s v o 1 o f 0 l , u m W f ee 1 u b 3 n e 6 c r t ’ T 4 r 3 a c tW o A r i 4 f g i t 3 n x c e , h s T r J o a1 a f n2 c , s5 o f b o i r a m n a o c f3 o 4 4 1 6 o 8 9 2 , r , , 4 x ad 1 xi 1 in sa , t o i 5 f 6n 1 9 0t 2 , ,e 5 x ig 3 nr 4 ta el rs c T o rc f i aoa p 3 n no l 6 sr a ld n ai e tn , ia ot o p T

i T p T T s

[

s

4 a

n r o o 5e f r p r [ [ S p

p 5 f P

9 a r a f f r do a i o l t i s l st p h

c e

p,

, i e r 9p n r a r ae a er h e

y ae 1 x, 1 i ey i 3z n 4o t m e t f m 5e Z t v i u 1z e e e n l 1o r g c en 2 l r u n i n eZ n o eBa g e f ef Zre f oeir R u ci a n 1 ftci i n a

s e e i a 6i o r t s g 5e o n g 8 aac e c i

, r r t d a o s l 0, s c l 4 a l m t d

, e

c

a ee e

t l

Schaums Mathematical Handbook of Formulas and Tables.pdf ...

Schaums Mathematical Handbook of Formulas and Tables.pdf. Schaums Mathematical Handbook of Formulas and Tables.pdf. Open. Extract. Open with. Sign In.

26MB Sizes 0 Downloads 260 Views

Recommend Documents

PDF Handbook of Mathematical Functions With Formulas, Graphs and ...
PDF Handbook of Mathematical Functions With. Formulas, Graphs and Mathematical Tables Full. Books. Books detail. Title : PDF Handbook of Mathematical ...

pdf-51\schaums-easy-outline-of-introduction-to-mathematical ...
... as numerous journal. articles. Page 3 of 8. pdf-51\schaums-easy-outline-of-introduction-to-mathe ... conomics-schaums-easy-outlines-by-edward-dowling.pdf.

Handbook of Formulas and Software for Plant Geneticists and ...
Handbook of Formulas and Software for Plant Geneticists and Breeders.pdf. Handbook of Formulas and Software for Plant Geneticists and Breeders.pdf. Open.

schaums-outline-of-signals-and-systems.pdf
Page 2 of 76. CATT FORD. Una Mano Fuerte. Escaneado y corregido por MERCHE Página 2. CATT FORD. Una mano fuerte. A Strong Hand (2009).

ePub Schaum's Outline of Mathematical Handbook of ...
Schaum's Outline of Mathematical Handbook of Formulas and Tables, 4th Edition: 2,400 Formulas + Tables (Schaum's Outlines) Ebook , PDF Schaum's Outline of Mathematical Handbook of Formulas and Tables, 4th Edition: 2,400 Formulas + Tables (Schaum's Ou

pdf-1436\schaums-outline-of-human-anatomy-and-physiology ...
... of the apps below to open or edit this item. pdf-1436\schaums-outline-of-human-anatomy-and-physiology-schaums-outline-series-4th-fourth-edition.pdf.

Download Handbook of Mathematical Functions with ...
with Formulas, Graphs, and Mathematical Tables. Full Books. Books detail. Title : Download Handbook of Mathematical q. Functions with Formulas, Graphs, and.

Distance Formulas
The two points are (2,3) and (3,2) , so the distance is. 2. 2. (2 3) (3 2). 2. −. + − .... at the lattice point (0,1,-1), making the minimum distance zero. 10. Under what ...

DownloadPDF Formulas, Ingredients and Production of ...
... and Production of Cosmetics: Technology of Skin- and Hair-Care Products in Japan FULL MOBI ... training before they become qualified to design cosmetics.

Rearranging Formulas Notes and Worksheets.pdf
Example: Dam construction during the New Deal era. ❏ Governance of utility structure and rates. ❏ What is the governance structure of the local utilities that serve you? ❏ How are rates raised or lowered? | ©STEMhero, LLC 2014-2018 | STEMhero

Neuroimaging of numerical and mathematical development.pdf ...
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Neuroimaging of ...

Neuroimaging of numerical and mathematical development.pdf ...
engagement of systems involved in the formation of long-term memory (such as. arithmetic facts) in the brain. The data reported by Rivera et al. (2005) suggests ...