

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Scheme To Dependent Type theory In 100 Lines Gershom Bazerman

Do Types Have the Lisp Nature?

Types Do Not Have Lisp Nature

To Have Lisp Nature Everything Must Be Data To Have Lisp Nature Everything Must Be Code To Have Lisp Nature Your Program Must be One To Have Lisp Nature Compilation and Evaluation Must Be One

My Claim: Dependent Types Have Lisp Nature

Dependent Types as a DSL for Logic A Programming Language with Powerful Types A system for proving mathematical statements A system for representing knowledge equipped with an algorithmic procedure for verification.

Dependent Types as a DSL for Logic

Propositional Logic: A or B implies C First Order Logic: forall x. P(x) implies Q(x). Higher Order Logic: forall P. P(x) implies exists y. P(y)

Dependent Types as a DSL for Logic Logic with quantifiers includes symbols representing things not just drawn from logic, but drawn from the world. Lisp is our world, and we equip it with some logical symbols — And, Or, Implies. We name them as Product (*), Coproduct (+), and Function (→).

Dependent Types as a DSL for Logic Now we introduce quantifiers — forall, and exists. We write them as pi (Π) and sigma (Σ) — dependent product, and dependent sum. Alternate pronunciations: “If given a…” and “There is given a…” (or even “Give me a…” and “I have a…”).

Syntax and Semantics

forall (x : Nat). (x > 10) → (x > 5) forall (x : Nat). (x > 10) → (x < 5) forall (x : Cheese). not x → Crackers A syntax for logic is not yet a language for logic.

Syntax and Semantics

“Colorless green ideas sleep furiously”  — Noam Chomsky, 1955

The BHK Interpretation Propositions as Problems, Proofs as Constructions   [Brouwer — 1908, 1924; Heyting —1934; Kolmogorov — 1932] A proof of A ∧ B is given by presenting two proofs -- one of A, one of B  A proof of A ∨ B is given by presenting either a proof of A or a proof of B  A proof of A → B is a construction to transform a proof of A into a proof of B  A proof of ¬ A is a proof of (A → False) where False has no proof  A proof of forall (a elem A). P(a), is a procedure that converts any element of A into a proof of P(a). (This interpretation can hold with or without the excluded middle.)

Realizability Formulae as Specifications, Proofs as Numerical Realizers  [Kleene, 1945] Constructions are numbers, read as partial functions. We encode functions with Gödel codes.

The Curry-Howard Correspondence Propositions as Types, Proofs as Lambda Terms (encoded as Sets)  [Howard, 1968-69] Constructions are typed lambda terms (encoded set theoretically). In this construction, propositions directly correspond to types of these terms. Howard also introduced the world's first dependent type system, in which types may depend on terms. In this system, equality may be stated between terms. DeBruijn, in constructing Automath, contemporaneously and independently, also introduced a dependent type system.

Intuitionistic Type Theory Propositions as Types, Proofs as Lambda Terms (Directly)  [Martin-Löf, 1970, 1972…] Constructions are typed lambda terms. Types may contain terms and terms may operate on types. Equality may be stated between terms, and between types. While Howard’s system operates on Heyting arithmetic, MartinLöf’s was designed to operate on the whole of mathematics.

Computational Type Theory Propositions as (Refinement) Types, Proofs as Untyped Lambda Terms  [Constable et al., 1985] Constructions are untyped lambda terms. Types may contain terms and terms may operate on types.

Other Important Variations The Calculus of Constructions [Coquand, Huet, 1984] The Calculus of Inductive Constructions [Coquand, Paulin, 1990] The LF Logical Framework [Harper, Honsell, Plotkin, 1987] And others…

MESS Martin-Löf Extensible Specification and Simulator  [Being Presented Now, 2015] Scheme-as-a-Logical-Framework A construction to transform a proof of A into a proof of B is a scheme function that transforms an object we judge to be a proof of A into an object we judge to be a proof of B.

What do we mean by Judgment? Officially: “On the Meanings of the Logical Constants and the Justification of Logical Laws,” Martin-Löf, 1983 For our purposes: A judgment is a semi-decision procedure whose domain is one or more Scheme terms (and whose range is, naturally, #t, #f, or loop).

Some Ground Terms ; value formers  (struct lam-pi (var vt body))  (struct app (fun arg))  ; primitives  (struct closure (typ body)) ; type formers  (struct type-fun (dom codom))  ; one basic type  (define type-unit 'type-unit)  ; dependency  (struct type-pi (var dom codom))  (define type-type ‘type) ;inconsistent!

Judgement 1: "T is a type." (define (type? cxt t)   (match (red-eval cxt t)  [(type-fun a b) (and (type? cxt a) (type? cxt b))]  ['type-unit #t]  [(? symbol? vname) #:when (eq? type-type (find-cxt vname cxt)) #t]  [(type-pi var a b)  (and (type? cxt a)  (extend-cxt var a cxt (newvar newcxt) (type? newcxt (b newvar))))]  ['type #t]  [t (type?-additional cxt t)]))

Aside: Reduction (define/match (reduce cxt body)  [(_ (app (lam-pi var vt b) arg))   (if (hasType? cxt arg vt) (reduce cxt (b arg)) (error)]  ; application of closures (primitives) is non-strict.  [(_ (app (closure ty b) arg))  (closure (app-type cxt (red-eval cxt ty) arg) (lambda (cxt) (app (b cxt) arg)))]   [(_ (app fun arg)) (if (or (not fun) (symbol? fun)) (error)  (reduce cxt (app (reduce cxt fun) arg)))]  [(_ _) body]) (define (red-eval cxt x)  (match (reduce cxt x)  [(closure typ b) (red-eval cxt (b cxt))]  [v v]))

Aside: some syntactic sugar (define apps  (lambda (fun . args)  (foldl (lambda (arg acc) (app acc arg)) fun args))) (define-syntax-rule (lam (x t) body) (lam-pi (quote x) t (lambda (x) body))) (define-syntax-rule (pi

(x t) body) (lam-pi (quote x) t (lambda (x) body)))

(define-syntax-rule (pi-ty (x t) body) (type-pi (quote x) t (lambda (x) body))) (define-syntax-rule (close

t body) (closure t body))

Judgement 2: “X has type T.” (define (hasType? cxt x1 t1)  (match* ((reduce cxt x1) (red-eval cxt t1))  [((closure typ b) t) (eqType? cxt typ t)]  [((? symbol? x) t) #:when (eqType? cxt t (find-cxt x cxt)) #t]  [((lam-pi vn vt body) (type-fun a b))  (and (eqType? cxt vt a)  (extend-cxt vn vt cxt (newvar newcxt) (hasType? newcxt (body newvar) b)))]  [(x 'type-unit) (null? x)]  [((lam-pi vn vt body) (type-pi _ a b))  (and (eqType? cxt vt a)  (extend-cxt vn vt cxt (newvar newcxt)   (hasType? newcxt (body newvar) (reduce newcxt (b newvar)))))]  [(x 'type) (type? cxt x)]  [(x t) (hasType?-additional cxt x t)]))

Zooming In: Typechecking Functions Checking a function has a result type at all arguments of a type is to check that it has a type at a generic argument of that type. [((lam-pi vn vt body) (type-fun a b))  (and (eqType? cxt vt a)  (extend-cxt vn vt cxt (newvar newcxt)  (hasType? newcxt (body newvar) b)))] Checking a dependent function means reducing as we check: [((lam-pi vn vt body) (type-pi _ a b))  (and (eqType? cxt vt a)  (extend-cxt vn vt cxt (newvar newcxt)   (hasType? newcxt (body newvar)  (reduce newcxt (b newvar)))))]

Judgement 3:  "T1 and T2 are equal as types." (define (eqType? cxt t1 t2)  (match* ((red-eval cxt t1) (red-eval cxt t2))  [((type-fun a b) (type-fun a1 b1))  (and (eqType? cxt a a1) (eqType? cxt b b1))]  [((type-pi v a b) (type-pi v1 a1 b1))  (and (eqType? cxt a a1)  (extend-cxt v a cxt (newvar newcxt)   (eqType? newcxt (b newvar) (b1 newvar))))]  [((? symbol? vname) (? symbol? vname1)) (eq? vname vname1)]  [(a b) (and a b (or (eqType?-additional cxt a b) #f))]))

ITT is an Open System We extend it with types by describing how to extend judgments over them, as well as how to introduce and eliminate them. (define type-judgments '())  (define (type?-additional cxt t)  (for/or ([p type-judgments]) (p cxt t))) (define hasType-judgments '())  (define (hasType?-additional cxt x t)  (for/or ([p hasType-judgments]) (p cxt x t))) (define eqType-judgments '())  (define (eqType?-additional cxt t1 t2)  (for/or ([p eqType-judgments]) (p cxt t1 t2)))

ITT is an Open System We extend it with types by describing how to extend judgments over them, as well as how to introduce and eliminate them. (define intro-true #t)  (define intro-false #f) (define bool-induct  (pi (p (type-fun type-bool type-type))  (lam (x (app p #t))  (lam (y (app p #f))  (pi (bl type-bool)  (close (app p bl) (lambda (cxt) (if (red-eval cxt bl) x y))))))))

ITT is an Open System (define intro-pair (pi (a type-type) (pi (b type-type)  (lam (x a)  (lam (y b)  (close (pair a b) (lambda (cxt) (cons a b)))))))) (define pair-induct (pi (a type-type) (pi (b type-type)  (pi (p (type-fun (pair a b) type-type))  (lam (f type-pi (x a) (type-pi (y b) (app p (pair x y))))  (pi (z (pair a b)  (close (app p z) (lambda (cxt) (let [(z-eval (red-eval cxt z))]  (apps f (car z-eval) (cdr z-eval)))))))))))

Mathematical Propositions involve Equality The identity type (initially derived from Howard): for all types A, and B, A /\ B is a type.  for all types A, and B, A \/ B is a type.  for all types A, and B, A -> B is a type.  for all types A, and values x of type A, and functions p : A -> Type, pi_x:A P(x) is a type.  for all types A, and _values_ x, y of type A, x ==_A y is a type. To check if x ==_A y is a type, we must now know that x and y are equal as values of type A.

Judgement 4:  "X and Y are equal as values at type T." (define (eqVal? cxt typ v1 v2)  (match* ((red-eval cxt typ) (red-eval cxt v1) (red-eval cxt v2))  [((type-fun a b) (lam-pi x xt body) (lam-pi y yt body2))  (and (eqType? cxt a xt) (eqType? cxt a yt)  (extend-cxt x xt cxt (newv newcxt)  (eqVal? newcxt b (body newv) (body2 newv))))]  [((type-pi v a b) (lam-pi x xt body) (lam-pi y yt body2))  (and (eqType? cxt a xt) (eqType? cxt a yt)  (extend-cxt x xt cxt (newv newcxt)  (eqVal? newcxt (b newv) (body newv) (body2 newv))))]  [('type-unit _ _) #t]  [('type a b) (eqType? cxt a b)]  [(_ (? symbol? x) (? symbol? y)) #:when (eq? x y) #t]  [(rtyp x y) (eqVal?-additional cxt rtyp x y)]))

ITT is an Open System (define (new-form type-judgment hasType-judgment eqType-judgment eqVal-judgment)  (cond [type-judgment  (set! type-judgments (cons type-judgment type-judgments))])  (cond [hasType-judgment  (set! hasType-judgments (cons hasType-judgment hasType-judgments))])  (cond [eqType-judgment  (set! eqType-judgments (cons eqType-judgment eqType-judgments))])  (cond [eqVal-judgment  (set! eqVal-judgments (cons eqVal-judgment eqVal-judgments))]))

(struct type-eq (type v1 v2)) (new-form  (match-lambda** ; type?  [(cxt (type-eq type v1 v2) (and (hasType? cxt v1 type) (hasType? cxt v2 type))]  [(_ _) #f]) (match-lambda** ; hasType?  [(cxt _(type-eq type v1 v2)) (eqVal? cxt type v1 v2)] ;note we ignore the term  [(_ _ _) #f]) (match-lambda** ; eqType?  [(cxt (type-eq t1t t1a t1b) (type-eq t2t t2a t2b))  (and (eqType? cxt t1t t2t) (eqVal? cxt t1t t1a t2a) (eqVal? cxt t1t t1b t2b))]  [(_ _ _) #f]) (match-lambda** ; eqVal?  [(cxt (type-eq t a b) _ _) #t] ;this is mysteriously always true and does not internalize  [(_ _ _ _) #f]))

Equality Rules (define equal-intro (pi (a type-type)  (pi (x a) (close (type-eq a x x) (lambda (cxt) 'refl))))) (define equal-induct (pi (a type-type)  (pi (c (pi-ty (x a) (pi-ty (y a) (type-fun (type-eq a x y) type-type))))  (lam (f (pi-ty (z a) (apps c z z 'refl)))  (pi (m a)  (pi (n a)  (pi (p (type-eq a m n))  (close (apps c m n p) (lambda (cxt) (app f m)))))))))) ; n is ignored!

An Actual Simple Proof (define not-bool (apps bool-elim type-bool #f #t))  (define not-not-bool (lam (x type-bool) (app not-bool (app not-bool x))))  (define id-bool (lam (x type-bool) x)) ; not-not-is-id  (define nnii-fam  (lam (x type-bool) (type-eq type-bool (app id-bool x) (app not-not-bool x))))  (hasType? '() nnii-fam (type-fun type-bool type-type)) (define nnii-type (pi-ty (x type-bool) (app nnii-fam x)))  (define nnii (pi (x type-bool)  (apps bool-induct nnii-fam (apps refl type-bool #t) (apps refl type-bool #f) x))) (hasType? '() nnii nnii-type)

Extensionality, Axioms, and Computation (define eta-axiom (pi (a type-type) (pi (b type-type)  (pi (f (type-fun a b))  (pi (g (type-fun a b))  (pi (prf (pi-ty (x a) (type-eq a (app f x) (app g x))))  (trustme (type-eq (type-fun a b) f g) ‘eta-axiom))))))) (define nnii-extensional  (type-eq (type-fun type-bool type-bool) id-bool not-not-bool)) (define nnii-extensional-term  (apps eta-axiom type-bool type-bool id-bool not-not-bool nnii)) (hasType? '() nnii-extensional-term nnii-extensional)

The Homotopy Interpretation Types are (Homotopy) Spaces, Elements are Points and Paths  (alternately: Formulae are Spaces, Constructions are Points)  [Awodey and Warren — 2006,Voevodsky — 2006] Univalence Axiom  (“Equivalence is Equivalent to Equality”)  (“All functions on the universe act continuously”)  (“Equivalent things are indiscernible things”)  [Voevodsky 2009] Earlier Work: The Groupoid Interpretation  [Hofmann and Streicher, 1995]

Aside: Nonstandard Models Pick an equational theory, such as the following Terms composed of:  T, F, ∧, ∨, ¬ Formulae hold such as:  A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)  ¬ ¬ A = A  etc. The “standard model” is boolean logic — but it isn’t the only one!

Aside: Nonstandard Models Add the axiom that: exists A. A = ¬ A The this enforces a U such that ¬ U = U. One way to make this consistent is to have:  T ∨ U = T, F ∨ U = U, T ∧ U = U, F ∧ U = F This axiom forces a nonstandard model. Now consider the axiom: forall A. A ∨ ¬ A = T This axiom rules out such a nonstandard model!

Aside: Nonstandard Models

We have nonstandard models of Peano Arithmetic (which are fun), Real Numbers (which are useful), and soforth. Nonstandard models typically come from extending or quotienting standard models. We can “inflate” or “flatten” possibilities through additional axioms.

Nonstandard Models and Type Theory Unique-Identity-Proofs:  (pi-ty (a type) (pi-ty (x a) (pi-ty (y a)  (pi-ty (p (type-eq a x y))  (pi-ty (q (type-eq a x y))  (type-eq (type-eq a x y) p q)))))) Compatible with ITT, but not provable within it. Rules out certain models!   

Question: What is the axiom that might necessitate such a model?

The Univalence Axiom (define (fun-comp a f g) (lam (x a) (app f (app g a)))) (define (type-homotopy a p f g)  (pi (x a) (type-eq (app p x) (app f x) (app g x)))) (define (type-isequiv a b f) (pair-ty   (sig-ty (g (type-fun b a)) (type-homotopy b (lam (x a) b) (fun-comp b f g) (lam (x b) x)))  (sig-ty (h (type-fun b a)) (type-homotopy a (lam (x b) a) (fun-comp a h f) (lam (x a) x))))) (define (type-equiv a b)  (sig-ty (f (type-fun a b)) (type-isequiv a b f))) (define type-ua (pi-ty (a type-type) (pi-ty (b type-type)  (type-equiv (type-equiv a b) (type-eq type-type a b)))))

Two New Judgments

“P is a path at type T between points X and Y”  (This fills in the place where we ignored the equality term before) “In type T, between points X and Y, P and Q are equal as paths”  (And this fills in the other place where we ignored the equality term)

And … new computation rules

(define equal-induct (pi (a type-type)  (pi (c (pi-ty (x a) (pi-ty (y a) (type-fun (type-eq a x y) type-type))))  (lam (f (pi-ty (z a) (apps c z z 'refl)))  (pi (m a)  (pi (n a)  (pi (p (type-eq a m n))  (close (apps c m n p) (lambda (cxt) _?_?_?_?_)))))))))

HoTT enables synthetic Mathematics

In particular, but not only: Synthetic Homotopy Theory Additionally: more straightforward category theory Work is ongoing

References on Writing Dependent Type Systems • A simple type-theoretic language: Mini-TT 

http://www.cse.chalmers.se/~bengt/papers/GKminiTT.pdf

• Simply Easy 

http://strictlypositive.org/Easy.pdf

• Simpler, Easier 

http://augustss.blogspot.com/2007/10/simpler-easier-in-recent-paper-simply.html

• PTS 

http://hub.darcs.net/dolio/pts

• Pi-Forall 

https://github.com/sweirich/pi-forall

• Mess: 

https://github.com/gbaz/mess

References on Type Theory • Software Foundations (Pierce et. al, ongoing) 

http://www.cis.upenn.edu/~bcpierce/sf/current/toc.html

• Programming in Martin-Löf’s Type Theory (Nordström, Petersson, and Smith, 1990)  http://www.cse.chalmers.se/research/group/logic/book/book.pdf

• Papers of Per Martin-Löf 

https://github.com/michaelt/martin-lof  (see in particular “Intuitionistic Type Theory,” “Constructive mathematics and computer programming,” and “On the Meanings of the Logical Constants and the Justification of Logical Laws”).

• “A Framework for Defining Logics,” (Harper, Honsell, and Plotkin, 1991)  http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-162/

• “The Theory of LEGO,” (Pollack, 1994) 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.2610

• “Type Checking with Universes” (Harper and Pollack, 1991) 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8166

Dependently Typed Languages in Use Coq: https://coq.inria.fr/ Agda: http://wiki.portal.chalmers.se/agda/pmwiki.php Idris: http://www.idris-lang.org/ Nuprl: http://www.nuprl.org/

References on Homotopy Type Theory http://homotopytypetheory.org/ http://homotopytypetheory.org/book/ https://github.com/HoTT/HoTT https://github.com/HoTT/HoTT-Agda http://www.math.cornell.edu/~hatcher/AT/ATpage.html  (A general textbook on Algebraic Topology including Homotopy Theory)

Appendix: Universe Checking (define/match (check-u cxt x) ; something along these lines generates a dependency graph  [(_ (lam-pi a at body)) ; this code is evocative but not yet fully correct  (let*  ([au (check-u cxt at)]  [vu (check-u (cons (cons a (car au)) (cdr au)) a)]  [bu (extend-cxt a (car vu) (cdr vu) (nvar newcxt)  (check-u newcxt (body nvar)))])  (cons (maxs (car bu) (car vu)) (cdr bu)))]  [(_ (app fun arg))  (let*  ([funu (check-u cxt fun)]  [argu (check-u (cdr funu) arg)])  (cons (car funu) (cons (cons (car funu) (car argu)) (cdr argu))))]  [(_ (? symbol? vname)) #:when (find-cxt vname cxt)  (cons vname cxt)]  [(_ x) (cons 0 cxt)])

[image: An algebraic formulation of dependent type theory -]
An algebraic formulation of dependent type theory -

[image: Macro-based type providers in Scala - GitHub]
Macro-based type providers in Scala - GitHub

[image: Type-Directed TDD in Rust - GitHub]
Type-Directed TDD in Rust - GitHub

[image: Context-Dependent Fine-Grained Entity Type Tagging]
Context-Dependent Fine-Grained Entity Type Tagging

[image: BDE Type Taxonomy - GitHub]
BDE Type Taxonomy - GitHub

[image: type theory and semantics in flux - Free]
type theory and semantics in flux - Free

[image: type theory and semantics in flux - Free]
type theory and semantics in flux - Free

[image: Applying Type-Level and Generic Programming in Haskell - GitHub]
Applying Type-Level and Generic Programming in Haskell - GitHub

[image: Type of article: Research Paper DiffusionKit - GitHub]
Type of article: Research Paper DiffusionKit - GitHub

[image: 1 Group Theory - GitHub]
1 Group Theory - GitHub

[image: Open putty and type remote hostname - GitHub]
Open putty and type remote hostname - GitHub

[image: type theory and semantics in flux]
type theory and semantics in flux

[image: Type theory and language From perception to linguistic ...]
Type theory and language From perception to linguistic ...

[image: Type theory and language From perception to linguistic ...]
Type theory and language From perception to linguistic ...

[image: Type theory and language From perception to linguistic ...]
Type theory and language From perception to linguistic ...

[image: to Bulletin - Surplus Lines Clearinghouse]
to Bulletin - Surplus Lines Clearinghouse

[image: Electric Flux and Field from Lines of Charge - GitHub]
Electric Flux and Field from Lines of Charge - GitHub

[image: pdf-100\the-sage-encyclopedia-of-theory-in-counseling-and ...]
pdf-100\the-sage-encyclopedia-of-theory-in-counseling-and ...

[image: LOFAR Imager: taking Direction Dependent Effects into ... - GitHub]
LOFAR Imager: taking Direction Dependent Effects into ... - GitHub

[image: to Bulletin - Surplus Lines Clearinghouse]
to Bulletin - Surplus Lines Clearinghouse

[image: Time-Dependent Density Functional Theory Study on ...]
Time-Dependent Density Functional Theory Study on ...

[image: Operator Type Operator Java Flow of Control - GitHub]
Operator Type Operator Java Flow of Control - GitHub

[image: Shipping One Million Lines of Haxe to (Over) One Million ... - GitHub]
Shipping One Million Lines of Haxe to (Over) One Million ... - GitHub

Scheme To Dependent Type theory In 100 Lines - GitHub

these terms. Howard also introduced the world's first dependent type system, in which types may depend on terms. In this system, equality may be stated between terms. References on Writing Dependent. Type Systems. â€¢ A simple type-theoretic language: Mini-TT http://www.cse.chalmers.se/~bengt/papers/GKminiTT.pdf.

 Download PDF

 1022KB Sizes
 0 Downloads
 194 Views

 Report

Recommend Documents

[image: alt]

An algebraic formulation of dependent type theory -

Pre-extension algebras. A pre-extension algebra CFT in a category with finite limits consists. â–· a fundamental structure CFT, and. â–· context extension and family extension operations e0 : F â†’ C e1 : F Ã—e0,ft F â†’ F, implementing the introduct

[image: alt]

Macro-based type providers in Scala - GitHub

Apr 5, 2014 - dc.title ->- "Frankenstein Draft Notebook B" ... We'll be using the W3C's Banana RDF library throughout: . 9 ...

[image: alt]

Type-Directed TDD in Rust - GitHub

Jul 21, 2014 - Give a taste of a practical software development process that is: â–» test-driven ... Recently, Apple ditched Objective C for its new language Swift!

[image: alt]

Context-Dependent Fine-Grained Entity Type Tagging

Dec 3, 2014 - Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse Kirchner, David Huynh. Google Inc. Abstract. Entity type tagging is the task of assign- ing category labels to each Machine Learning Research, 7(1). [Doddington et al.2004] George

[image: alt]

BDE Type Taxonomy - GitHub

Dec 4, 2015 - bslmf::IsFundamental baltzo::Loader bslma::DeallocatorGuard bslma::DestructorProctor utility meta- function protocol bdlt::Date bslstl::StringRef.

[image: alt]

type theory and semantics in flux - Free

clear from the context which is meant. The set of leaves of r, also known as its extension (those objects other than labels which it contains), is {a, b, binary sign âˆ§.. phon concat âˆ§.. binary cat(np)(vp)(s) âˆ§.. fin hd. âˆ§ .. cnt forw a

[image: alt]

type theory and semantics in flux - Free

objects than are provided by classical model theory, objects whose components can be manipulated by ... type theory as an important component in a theory of cognition. of a video game.8. (15) As they get to deck, they see the Inquisitor, calli

[image: alt]

Applying Type-Level and Generic Programming in Haskell - GitHub

Feb 10, 2018 - (Haskell allows to say deriving Eq on a datatype declaration, invoking compiler magic that conjures up a Since type-level programming is a bit peculiar in Haskell, we'll move step by step: from normal lists over Before we mov

[image: alt]

Type of article: Research Paper DiffusionKit - GitHub

website of DiffusionKit includes test data, a complete tutorial and a series of tutorial The 3D show panel supports only one active image at a Illustrations of how to extract a specific fiber bundles from entire brain tractography, ... As

[image: alt]

1 Group Theory - GitHub

describing the group, one can encompass the transformations and their corresponding sym- metries. In fact, every symmetry has an associated group encompassing it. To make this discussion concrete, let's consider an example first and then delve into t

[image: alt]

Open putty and type remote hostname - GitHub

(here I put simply hostname) and then click Save button. From now on your connection to remote host with tunnel is saved and can be reused anytime you open ...

[image: alt]

type theory and semantics in flux

Robin Cooper. DRAFT September 26, 2010. 1 INTRODUCTION. A frequent assumption in computational and corpus linguistics as well as theo- retical linguistics is that words are associated with a fairly Î»s:[s-event:[phon:Phon]]([s-event:[phon=s.s-

[image: alt]

Type theory and language From perception to linguistic ...

tense and aspect in natural language we will probably want to add time ã€ˆPred, ArgIndices, Arityã€‰ is a (polymorphic) predicate signature Fernando, Tim (2006) Situations as Strings, Electronic Notes in Theoretical Computer Science,. Vo

[image: alt]

Type theory and language From perception to linguistic ...

a scientific theory. Use, PhD dissertation, King's College, London. ... Theory (International Series of Monographs on Computer Science 7), Clarendon Press, ...

[image: alt]

Type theory and language From perception to linguistic ...

Page 1 Your theory is not very interesting if it does not make predictions, that is, by making certain ... Thus we see types as theoretical entities in their own.

[image: alt]

to Bulletin - Surplus Lines Clearinghouse

Apr 22, 2015 - Business rules for calculating the correct service fee will be programmed into FSLSO's management system. No changes will be needed for ...

[image: alt]

Electric Flux and Field from Lines of Charge - GitHub

We make use of Gauss' law to find the electric field equation. Remember E-field is only going out in the radial direction because it's coming from an infinite line of ...Missing:

[image: alt]

pdf-100\the-sage-encyclopedia-of-theory-in-counseling-and ...

... psychology. from SUNY (State University of New York) Binghamton, his M.S. in counseling from Miami. University of Ohio, and his doctorate in counselor education from the University of Cincinnati. He. Page 3 of 10. pdf-100\the-sage-encyclopedia-of

[image: alt]

LOFAR Imager: taking Direction Dependent Effects into ... - GitHub

Grid the data. Gridding in practice ... Beam is variable in frequency and time. - Beam can be ... Big field of view : station, direction, time and frequency dependent.

[image: alt]

to Bulletin - Surplus Lines Clearinghouse

Apr 22, 2015 - Transactions reported to the Clearinghouse for NIMA associate member ... information technology vendor or staff regarding needed revisions to ...

[image: alt]

Time-Dependent Density Functional Theory Study on ...

azopyrrole oligomers in Nero's theoretical study (Figure. 4 in ref 13) and found that the resulting Eg is 0.8 eV larger than the experimental Eg (about 1.0 eV11). Furthermore, it is very interesting to understand why polyazopyrrole shows the narrow b

[image: alt]

Operator Type Operator Java Flow of Control - GitHub

Operator Type. Operator. Java Flow of Control. Unary ! ++ -- + -. Java Evaluates First. Mul plica ve. * / %. Addi ve. + -. Rela onal. < > = Equality. == !=

[image: alt]

Shipping One Million Lines of Haxe to (Over) One Million ... - GitHub

Interfaces. Run-time. Devices: TiVo set-top boxes, Android TV devices ... to Haxe; WWX 2013. Summer: Conversion from. AS3 to Haxe begins. 0. 10. 20. 30 ...

×
Report Scheme To Dependent Type theory In 100 Lines - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

