

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

International Journal of Research in Information Technology (IJRIT)

www.ijrit.com

ISSN 2001-5569

Secure overlay cloud storage with access control and assured deletion S.Malathi PG Student, Department of CSE Bharathiyar Institute of Engineering for Women Deviyakurichi, Tamil Nadu, India M.Karthikeyan Assistant Professor,Department of CSE Bharathiyar Institute of Engineering for Women Deviyakurichi, Tamil Nadu, India Abstract-We can now outsource data backups off-site to third-party cloud storage services so as to reduce data management costs. However, we must provide security guarantees for the outsourced data, which is now maintained by third parties. We design and implement FADE, a secure overlay cloud storage system that achieves fine-grained, policybased access control and file assured deletion. It associates outsourced files with file access policies, and assuredly deletes files to make them unrecoverable to anyone upon revocations of file access policies. To achieve such security goals, FADE is built upon a set of cryptographic key operations that are self-maintained by a quorum of key managers that are independent of third-party clouds. In particular, FADE acts as an overlay system that works seamlessly atop today's cloud storage services. We implement a proof-of-concept prototype of FADE atop Amazon S3, one of today's cloud storage services. We conduct extensive empirical studies, and demonstrate that FADE provides security protection for outsourced data, while introducing only minimal performance and monetary cost overhead. Our work provides insights of how to incorporate value-added security features into today's cloud storage services. Keywords-Time based approach for file deletion, policy based approach for assured deletion, cloud computing, data storage privacy, intermediate data set storage, policy renewal. I.INTRODUCTION Cloud storage (e.g., Amazon S3 [2], My Asia Cloud [11]) offers an abstraction of infinite storage space for clients to host data, in a pay-as-you-go manner [3]. For example, Smug Mug[19], a photo sharing website, chose to host terabytes of photos on Amazon S3 in 2006 and saved about 500K US dollars on storage devices [1]. Thus, instead of self-maintaining data centers, enterprises can now outsource the storage of a bulk amount of digitized content to those third-party cloud storage providers so as to save the financial overhead in data management. Apart from enterprises, individuals can also benefit from cloud storage as a result of the advent of mobile devices (e.g., smart phones, laptops). Given that mobile devices have limited storage space in general, individuals can move audio/video files to the cloud and make effective use of space in their mobile devices. However, privacy and integrity concerns become relevant as we now count on third parties to host possibly sensitive data of the advent of mobile devices (e.g., smart phones, laptops). Given that mobile devices have limited storage space in general, individuals can move audio/video files to the cloud and make effective use of space in their mobile devices. However, privacy and integrity concerns become relevant as we now count on third parties to host possibly sensitive data.

S.Malathi ,IJRIT

197

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

Thus, it is important to design a secure overlay cloud storage system that can work seamlessly atop existing cloud storage services. In this paper, we present FADE, a secure overlay cloud storage system that ensures file assured deletion and works seamlessly atop today’s cloud storage services. FADE decouples the management of encrypted data and encryption keys, such that encrypted data remains on third-party (untrusted) cloud storage providers, while encryption keys are independently maintained by a key manager service, whose trustworthiness can be enforced using a quorum scheme [18]. FADE generalizes time-based file assured deletion [5, 14] (i.e., files are assuredly deleted upon time expiration) into a more fine-grained approach called policy based file assured deletion, in which files are associated with more flexible file access policies (e.g., time expiration, read/write permissions of authorized users) and are assuredly deleted when the associated file access policies are revoked and become obsolete. With the pay-as-you-go model, the total application cost in the cloud highly depends on the strategy of storing the application datasets, e.g., storing all the generated application datasets in the cloud may result in a high storage cost, because some datasets may be rarely used but large in size and also deleting all the generated datasets and regenerating them every time when needed may result in a high A motivating application of FADE is cloud-based backup systems (e.g., Jungle Disk[7], Cumulus [21]), which use the cloud as the backup storage for files. FADE can be viewed as a value-added security service that further enhances the security properties of the existing cloud-based backup systems. In summary, our paper makes the following contributions: We propose a new policy-based file assured deletion scheme that reliably deletes files with regard to revoked file access policies. In this context, we design the key management schemes for various file manipulation operations. We implement a working prototype of FADE atop Amazon S3 [2]. Our implementation aims to illustrate that various applications can benefit from FADE, such as cloud-based backup systems. FADE consists of a set of API interfaces that we can export, so that we can adapt FADE into different cloud storage. But little attention has been paid to such a cloud-specific privacy issue. Existing technical approaches for preserving the privacy of datasets stored in cloud mainly include encryption. But processing on encrypted datasets efficiently is quite a challenging task, because most existing applications only run on unencrypted datasets [11].Encrypting all intermediate datasets will lead to high overhead and low efficiency when they are frequently accessed or processed. So to overcome these issues we use the following approaches. First we use a strategy to selectively store appropriate datasets and regenerate the rest when needed [2]. We present policy-based file assured deletion, the major design building block of our FADE architecture. Our main focus is to deal with the cryptographic key operations that enable file assured deletion. We first review time-based file assured deletion. We then explain how it can be extended to policy-based file assured deletion. Time-based file assured deletion, which is first introduced in [14], means that files can be securely deleted and remain permanently inaccessible after a predefined duration. The main idea is that a file is encrypted with a data key, and this data key is further encrypted with a control key that is maintained by a separate key manager service (known as Euhemerizes [14]). In [14], the control key is time-based, meaning that it will be completely removed by the key manager when an expiration time is reached, where the expiration time is specified when the file is first declared. Without the control key, the data key and hence the data file remain encrypted and are deemed to be inaccessible. Thus, the main security property of file assured deletion is that even if a cloud provider does not remove expired file copies from its storage, those files remain encrypted and unrecoverable. We organized the paper as follows. In Section II we give background on storage of Time-based file assured deletion is later prototyped in Vanish [5]. Vanish divides a data key into multiple key shares, which are then stored in different nodes of a peer-to-peer network. Nodes remove the key shares that reside in their caches for 8 hours. If a file needs to remain accessible after 8 hours, then the file owner needs to update the key shares in node caches. However, both [14] and [5] target only the assured deletion upon time expiration, and do not consider a more finegrained control of assured deletion with respect to different file access policies

S.Malathi ,IJRIT

198

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

II. EXISTING SYSTEM A.TIME BASED APPROACH Time-based file assured deletion which is first introduced in [14], means that files can be securely deleted and remain permanently inaccessible after a predefined duration. The main idea is that a file is encrypted with a data key, and this data key is further encrypted with a control key that is maintained by a separate key manager service (known as Ephemerizer [14]). In [14], the control key is time-based, meaning that it will be completely removed by the key manager when an expiration time is reached, where the expiration time is specified when the file is first declared. Without the control key, the data key and hence the data file remain encrypted and are deemed to be inaccessible. Thus, the main security property of file assured deletion is even if a cloud provider does not remove expired file copies from its storage, those files remain encrypted and unrecoverable. Time-based file assured deletion is later prototyped in Vanish [5]. Vanish divides a data key into multiple key shares, which are then stored in different nodes of a peer-to-peer network. Nodes remove the key shares that reside in their caches for 8 hours. If a file needs to remain accessible after 8 hours, then the file owner needs to update the key shares in node caches. However, both [14] and [5] target only the assured deletion upon time expiration, and do not consider a more finegrained control of assured deletion with respect to different file access policies. their nearest existing preceding data sets. Fig.1 depicts a simple DDG, where every node in the graph denotes a data set. We denote data set di in DDG as di ϵ DDG. And also d1 pointing to d2 means that d1 is used to generate d2;d2 pointing to d3 and d5 means that d2 is used to generate d3 and d5 based on different operations,d4 and d6 pointing to d7 means that d4 and d6 are used together to generate d7.To better describe the relationships of data sets in DDG, we define a symbol B. PARTICIPANTS IN THE SYSTEM Our system is composed of three participants: the data owner, the key manager, and the storage cloud. They are described as follows: Data owner: The data owner is the entity that originates file data to be stored on the cloud. It may be a file system of a PC, a user-level program, a mobile device, or even in the form of a plug-in of a client application. Key manager: The key manager maintains the policy-based control keys that are used to encrypt data keys. It responds to the data owner’s requests a performing encryption, decryption, renewal, and revocation to the control keys. Storage cloud: The storage cloud is maintained by a third-party cloud provider (e.g., Amazon S3) and keeps the data on behalf of the data owner. We emphasize that we do not require any protocol and implementation changes on the storage cloud to support our system. Even a naive storage service that merely provides file upload/download operations will be suitable. genCostd = x +

•

∥ ϵ ∧ →! → "

x

Cost Ri is di’s cost rate, which means the average cost per time unit of data set di in the cloud. The value of CostRi depends on the storage status of di,where y , f = stored #$%& R = (

-./#$%&d ∗ v , f = deleted

Hence, the total cost rate of storing a DDG is the sum of CostR of all the data sets in it, which is ∑ ∈667 #$%&R . The storage strategy of a DDG as S, where S Ϲ DDG, which means storing the data, sets in S in the cloud and deleting the rest. We denote the cost rate of storing a DDG with the storage strategy S as SCR, where

S.Malathi ,IJRIT

199

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

8#9 = : #$%&R ; . ϵ 667

Based on the definition above, different storage strategies lead to different cost rates for the application. Hence, we use cost rate, i.e., cost per time unit, represent the cost-effectiveness of the storage strategies for applications in the cloud. So we use the minimum cost benchmark for cost effectively storing datasets in the cloud. C.SENSITIVE INTERMEDIATE DATA SET MANAGEMENT Data provenance is used to manage intermediate data sets. Provenance is commonly defined as the origin, source or history of derivation of some objects and data, which can be used as the information upon how data were generated. Reproducibility of data provenance can help to regenerate data sets. The information recorded in data provenance is leveraged to build up the generation relationships of data sets [6]. Let do be a privacy-sensitive original data set. We use D= {d1,d2,….,dn} to denote a group of intermediate data sets generated from d0 where n is the number of intermediate data sets. The notion of intermediate data herein refers to both intermediate and resultant data [6]. Directed Acyclic Graph (DAG) is exploited to capture the topological structure of generation relationships among these data sets. Definition 1 (Sensitive intermediate data set graph). A DAG representing the generation relationships of intermediate data sets D from do is defined as a sensitive Intermediate data set Graph, denoted as SIG. Formally, SIG=(V,E), where V={do}ᴜD, E is a set of directed edges. A directed edge (dp,dc) in E means that part or all of dc is generated from dp, where dp,dc ϵ {do}ᴜD. In particular, an SIG becomes a tree structure if each data set in D is generated from only one parent data set. Then, we have the following definition for this situation. Definition 2 (Sensitive intermediate data set tree (SIT)).An SIG is defined as a sensitive intermediate data set Tree if it is a tree structure. The root of the tree is do. An SIG or SIT not only represents the generation relationships of an original data set and its intermediate data sets, but also captures the propagation of privacy-sensitive information in do is scattered into its offspring data sets. Hence, an SIG or SIT can be employed to analyze privacy disclosure of multiple data sets. An intermediate data set is assumed to have been anonymized to satisfy certain privacy requirements. Privacy leakage of a data d is denoted as PLs(d), meaning the privacy-sensitive information obtained by an adversary after d is observed. The value of PLs(d) can be deduced directly from d. Similarly, privacy leakages of multiple data sets in D are observed. It is challenging to acquire the exact value of PLm (D) due to the inference channels among multiple data sets . #== 〈?@AB , ?CA@ 〉 = E

P

QRPS

: 8F . G9. HF . &; . T&. IJ KLMNO

The privacy-preserving cost rate for Cpp((Denc,Dune)), denoted as C Rpp, is defined as follows: # 9== ≜ 8F . G9. HF IJ KLMNO

In the real world, Si and fi possibly vary over time, but we assume herein that they are static so that we can concisely present the core ideas of our approach. The dynamic case will be explored in our future work. With this assumption, C Rpp determines Cpp((Denc,Dune)) in a given period. Thus, we blur their meanings subsequently.The problem of how to make privacy-preserving cost as low as possible given an SIT can be modeled as an optimization problem on C Rpp: VW/WXWY. #9== = 8F . G9. HF , ?@AB ⊆ ?. IJ KLMNO

Meanwhile, the privacy leakage caused by unencrypted data sets in Dune must be under a given threshold.

S.Malathi ,IJRIT

200

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

Definition 3 (Privacy leakage constraint). Let ϵ be the privacy leakage threshold allowed by a data holder, then a privacy requirement can be represented as PLm (Dune)≤ɛ,Dune⊆D. This privacy requirement is defined as a Privacy Leakage Constraint, denoted as PLC. So, we can save privacy-preserving cost by minimizing it. III PROPOSED SYSTEM. A.POLICY BASED APPROACH Policy Revocation for File Assured Deletion If a policy Pi is revoked, then the key manager completely removes the private key di and the secret prime numbers pi and qi. Thus, we cannot recover Si from and hence cannot recover K and the file F. We say that the file F, which is tied to policy Pi, is assuredly deleted. Note that the policy revocation operations do not involve interactions with the storage cloud. Multiple Policies In addition to one policy per file, FADE supports a Boolean combination of multiple policies. We mainly focus on two kinds of logical connectives: (i) the conjunction (AND), which means the data is accessible only when every policy is satisfied; and (ii) the disjunction (OR), which means if any policy is satisfied, then the data is accessible. Conjunctive Policies. Suppose that F is associated with conjunctive policies. P1 ∧ P2 ∧ ⋅ ⋅ ⋅ ∧ Pm. To upload F to the storage cloud, the data owner first randomly generates a data key K, and secret keys S1, S2, . . . , Sm. It then sends the following to the storage cloud: {{K}S1}S2 ⋅ ⋅ ⋅Sm, Se11 , Se22 , . . ., Sem m , and {F}K. On the other hand, to recover F, the data owner generates a random number R and sends (S1R)e1 , (S2R)e2 , . . ., (SmR)em to the key manager, which then returns S1R, S2R, . . . , SmR. The data owner can then recover S1, S2, . . . , Sm, and hence K and F.

Disjunctive Policies. Suppose that F is associated with disjunctive policies Pi1 ∨ Pi2 ∨ ⋅ ⋅ ⋅ ∨ Pim. To upload F to the cloud, the data owner will send the 8 Tang et al.following: {K}S1 , {K}S2 , . . ., {K}Sm, Se11 , Se22 , . . ., Semm , and {F}K. Therefore,the data owner needs to compute m different encrypted copies of K. On the other hand, to recover F, we can use any one of the policies to decrypt the file, as in the above operations. cloud), then we have to store di, no matter how expensive di’s storage cost is. λ is the parameter used to adjust the storage strategy when users have extra budget on the minimum cost benchmark to store more data sets for reducing the average data sets accessing time. Based on users extra budget, we can calculate a proper value of λ7, which is between 0 and 1. We multiply every data set di’s storage cost rate (i.e., yi) by λ, and use it to compare with di’s regeneration cost rate(i.e., genCost(di)*vi) for deciding its storage status. Hence, more data sets tend t be stored, and literally speaking, data sets will be deleted only when their storage cost rates are (1/λ) times higher than their regeneration cost rates. For example, λi=0.8 means that users are willing to store data sets with the storage cost up to 1.25 times higher than the regeneration cost.We enhance the linear CTTSP algorithm by incorporating these two new parameters. As defined in the CTT-SP algorithm, for every two data sets in the DDG, there is a cost edge in the Cost Transitive Tournament (CTT), i.e.,]∀TF , T_ ∈ ??` ∧ TF → T_ a ⇒ ∃. < TF , T_ >.

To incorporate the parameter of data accessing delay tolerance (i.e., T), in the enhanced linear CTT-SP algorithm, the edge e has to further satisfy the condition: . < TF , T_ >⇒ ∀T f??`⋀]TF → T → T_ a ⋀h

-./#$%&T < k l. GiWj.B=C

With this condition, long cost edges may be eliminated from the CTT. It guarantees that in all storage strategies found by the algorithm, for any deleted data set di, its regeneration time is smaller than Ti, if users have the requirement on its availability.To incorporate the parameter os users cost preference of storage (i.e., λ), in the enhanced linear CTT-SP algorithm, we set the weight of a cost edge in CTT as

S.Malathi ,IJRIT

201

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

m < TF , T_ >= n_ ∗ o +

Iq ∥Iq KLLr⋀IJ →Iq →Is "

-./#$%&T ∗ p .

By introducing the two new parameters, the enhanced linear CTT-SP algorithm can find the minimum cost storage strategy of a linear DDG satisfying users preferences on storage with a time complexity of O(n4), where n is the number of data sets in the DDG or DDG segment on which the algorithm applies. These two parameters are generic for data sets storage strategies and their values are dependent on the requirements of specific applications. b) Practical Cost – Effective Data Sets Storage Strategy In this section, we introduce our local-optimization-based data sets storage strategy, which is designed based on the enhanced linear CTT-SP algorithm. The philosophy is to derive localized minimum costs instead of a global one, aiming at approaching the minimum cost benchmark with highly practical time complexity. Our strategy contains the following four rules:

Fig. 2. Dividing a DDG into linear DDG segments Given a general DDG, we first partition the DDG into linear segments and apply the enhanced CTT-SP algorithm. We search for the data sets that have multiple direct predecessors or successors (i.e., the join and split data sets in the DDG), and use these data sets as the partitioning points ti divide it into linear DDG segments, as shown in Fig.2. Based on the linear DDG segments, we use the enhanced linear DDG segments, we use the enhanced linear CTT-SP algorithm to find their storage strategies. This is the essence of local optimization. When new data sets are generated in the system they are treated as a new DDG segment and added to the old DDG. Correspondingly, its storage status is calculated in the same way as the old DDG.When a data set’s usage frequency is changed, the storage status of the linear DDG segment that contains this data set is recalculated. B.POLICY RENEWAL Policy renewal means to associate a file with a new policy (or combination of policies). For example, if a user wants to extend the expiration time of a file, then the user can update the old policy that specifies an earlier expiration time to the new policy that specifies a later expiration time. However, to guarantee file assured deletion, policy renewal can be performed only when the following condition holds: the old policy will always be revoked first before the new policy is revoked. The reason is that after policy renewal, there will be two versions of a file: one is protected with the old policy, and one is protected with the new policy. If the new policy is revoked first, then the file version that is protected with the old policy may still be accessible when the control keys of the old policy are compromised, meaning that the file is not assuredly deleted. It is important to note that it is a non-trivial task to enforce the condition of policy renewal, as the old policy may be associated with other existing files. In this paper, we do not consider this issue and we pose it as future work. Suppose that we have enforced the condition of policy renewal. A straightforward approach of implementing policy renewal is to combine the file upload and download operations, but without retrieving the encrypted file from the cloud.

S.Malathi ,IJRIT

202

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

The procedures can be summarized as follows: (i) download all encrypted keys from the storage cloud, (ii) send them to the key manager for decryption, (iii) recover the data key, (iv) re-encrypt the data key with the control keys of the new policies, and finally (v) send the newly encrypted keys back to the cloud. In some special cases, optimization can be made so as to save the operations of decrypting and re-encrypting the data key. Suppose that the Boolean combination structure of policies remain unchanged, but one of the atomic policies Pi is changed Pi′ . For example, when we extend the contract date of Bob (see section 2.2), we may need to update the particular time-based policy of Bobwithout changing other policies. In this case, the data owner simply sends theblinded version SieiRei to the key manager, which then returns SiR. The dataowner then recovers Si. Now, the data owner re-encrypts Si into Sei′ i (mod ni′), where (ni′ , ei′) is the public key of policy Pi′ , and sends it to the cloud. Note FADE: Secure Overlay Cloud Storage with File Assured Deletion 9 Pi , Si eiR ei SiR Pi , Si ei Storage cloud Data owner Key manager Pi’ ei’ , ni’ Pi’ , Si’ #F tF ≜ 8 . G9. H , 1 ≤ W ≤ w. Iq ∈xLJ

Then, CMi(ɛi) is calculated by the recursive formula: XW/ | z#VF }F = tF_ fΛ~ � 8 . G9. H F I ∈xL z q J { + #VF€� :}F − Gƒ< T ;… , z Iq ∈„LJs z y #V†€� }†€� = 0.

As a result, CM1(ɛ) is the minimum privacy-preserving cost required in the optimization problem .The privacypreserving solution (Denc,Dune) can be determined during the process of acquiring CM1(ɛ). According to the specification of CM1(ɛi), an optimal algorithm can be designed to identify the optimal privacy-preserving solution. d)Privacy-Preserving Cost Reducing Heuristic Algorithm In this section we design a heuristic algorithm to reduce privacy-preserving cost. In the state-search space for an SIT, a state node SNi in the layer Li herein refers to a vector of partial local solutions, i.e., SNi corresponds to 〈t1_� , … , tF_J 〉, where t_q ∈ Λ , 1 ≤ ‰ ≤ W. Note that the state-search tree generated according to an SIT is different from the SIT itself, but the height is the same. Appropriate heuristic information is quite vital to guide the search path to the goal sate. The goal state in our algorithm is to find a near-optimal solution in a limited search space.Heuristic values are obtained via heuristic functions. A heuristic function, denoted as f(SNi), is defined to compute the heuristic value of SNi.Generally, f(SNi) consists of two parts of heuristic information, i.e., f(SNi)=g(SNi)+ h(SNi), where the information g(SNi) is gained from the start state to the current state node SNi and the information h(SNi) is estimated from the current state node to the goal state, respectively.

S.Malathi ,IJRIT

203

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

Intuitively, the heuristic function is expected to guide the algorithm to select the data sets with small cost but high privacy leakage to encrypt. Based in this, g(SNi) is defined as-8ŠF ≜ #BC‹ /} − }F€� , where Ccur is the privacy-preserving cost that has been incurred so far, ɛ is the initial privacy leakage threshold, and ɛi+1 is the privacy leakage threshold for the layers after Li. Specifically, Ccur is calculated by #BC‹ = ∑I K∪J xL]8_ . G9. H_ a. s

qŽ�

q

The value of h(SNi) is defined as h(SNi)=(ɛi+1.Cdes.BFAVG)/PLAVG. Similar to the meaning of } − }F€� in g(SNi), smaller ɛi+1 in h(SNi) implies more data sets before Li+1 are kept unencrypted. If a data set with smaller depth in an SIT is encrypted, more data sets are possibly unencrypted than with larger depth, because the former possibly has more descendant data sets. For a state node SNi, the data sets in its corresponding EDk are the roots of a variety of subtrees of the SIT. These trees constitute a forest, denoted as �‘J . In h(SNi), Cdes represents the total cost of the data sets in �‘J , and is computed via #I@< = ∑I“ KxLq ∑Is K’LI“]8_ . #9. H_ a . Potentially, the less Cdes is, the fewer data sets in following layers will be encrypted. BFAVG is the average branch factor of the forest �‘J , and can be computed by BFAVG=NE/N1, where NE is the number of edges and NI is the number of internal data sets in �‘J .Smaller BFAVG means the search space for sequent layers will be smaller, so that we can find a near-optimal solution faster. The value of PLAVG indicates the average privacy leakage of data sets in �‘J , calculated by Gƒ”•r = ∑I“ KxLq ∑Is K’LI“ Gƒ< T_ /Š– .Heruistically, the algorithm prefers to encrpt the data sets which incur less cost but disclose more privacy-sensitive information. Thus, higher PLAVG means more data sets in �‘J should be encrypted to preserve privacy from a global perspective. Based on the above analysis, the heuristic value of the search node SNi can be computed by the formula: #BC‹ }F€� . #I@< . —�”•r H8ŠF = + . } − }F€� Gƒ”•r Based on this heuristic, we design a heuristic privacy-preserving cost reduction algorithm, denoted as H_PPCR. The basic idea is that the algorithm iteratively selects a state node with the highest heuristic value and then extends its child state nodes until it reaches a goal state node. The privacy-preserving solution and corresponding cost are derived from the goal state. Extension to SIG Although SITs can suit many applications, SIGs are also common, i.e., an intermediate data set can originate from more than one parent data set Thus, it is possible that PLs(d5) is larger than PLs(d2) or PLs(d3), resulting in the failure of Lemma 1 and RPC property. As a result, our approach cannot be directly applied to an SIG. However, we can adapt it to an SIG with minor modifications. Let dm denote a merging data set that inherits data from more than one predecessor. As only one root data set is assumed to exist in an SIG, all paths from the root data set do to dm must converge at one point beside dm itself. Let ds denote this source data set. The inequality PLs(dm)≤PLs (ds) holds because all privacy information of dm comes from ds. let PDi(ds) be the set of the offspring data sets of ds in the layer Li, then PDi(ds)⊆PD(ds). Data sets in PDi(ds) are split into EDi and UDi when determining which data sets are encrypted. We discus three cases where the graph structure can affect the applicability of our approach on an SIG. The first one is PDi(ds)⊆UDi, i.e., all data sets in PDi(ds) will keep unencrypted. All ancestor data sets of dm after the layer Li will keep unencrypted according to the RPC property. So, the data set dm poses little influence on applying our algorithm to an SIC because dm will not be considered in following steps. The second one is PDi(ds)⊆EDi, i.e., all data sets in PDi(ds) are encrypted. If dm is a child of a data set in PDi(ds), dm is added to CDEi+1 for the next round. Assume the parent data set is dp. Then, we delete the edges pointing to dm from parents except dp, e.g., (d2,d5) is retained while (d3,d5) and (d4,d5) are deleted in Fig.3c. Logically, dm can be deemed as a “compressed” candidate data set of several imaginary data sets in CDEi+1, which is similar to the construction of a compressed tree. The lastone is that Dx⊆UDi and Dy⊆EDi, where Dx∩Dy=ø and Dx∩Dy=PDi(ds), i.e., part of data sets in PDi(ds) are encrypted while the remainder keep unencrypted. According to the RPC property, it is safe to expose part of privacy information in dm, where the part of privacy information is from Dx. The edges which point to dm form data sets in Dx are deleted. Further, the value of its direct parents who are data sets in Dy or the offspring of Dy if PLs(dm) is larger than the maximum. To make the approach for an SIT available to an SIG as well, three minor modifications are required. The first one is to identify all merging data sets. The second one is to adjust the SIG according to the third case discussed S.Malathi ,IJRIT

204

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

above if UDπ ≠ ø after we get a local solution π=(EDπ,UDπ). The third one is to label the data sets that have been processed. In this way, it is unnecessary to explicitly delete edges discussed in the second case. Overall Performance Evaluation First, we evaluate the cost-effectiveness of our local-optimization-based storage strategy. We randomly connect the linear DDG segments into large DDGs with different numbers of data sets and utilize different storage strategies to calculate their cost rates (i.e., average daily cost) of storing the DDGs. For our local-optimization-based strategy, linear segments are also treated as the smallest units of the DDG partition. Fig3 shows the increase of the daily cost of different strategies as the number of data sets grows in the DDG. From Fig. 3, we can see that the “store none data set” and “store all data sets” strategies are very cost effective, because their daily cost rates grow fast as the data sets number grows. The cost rate-based strategy has a better performance than both the generation cost-based strategy and usage based strategy, but it is still much higher than the minimum cost bench mark. Our local-optimization-based strategy is the most cost-effective data sets storage strategy, which has the average cost rate only 1.6 percent higher than the minimum cost benchmark in our random simulations. For a specific example, for the DDG with 200 data sets, the cost rate of our local-optimization-based strategy(i.e., USD 145.7 per day) is only 1.5 percent higher than the minimum cost benchmark(i.e., USD 143.5 per day). In contrast, the cost rate-based strategy (the second most cost effective strategy) has the cost rate (i.e., USD 173.3 per day)17.2 percent higher than the minimum cost bench mark. This results indicates that our local-optimization-based strategy is very close to the minimum cost benchmark. Next , encrypting all data sets for privacy preserving is widely adopted in existing research [8], [9], [10]. This category of approach is denoted as ALL_ENC. The privacy-preserving cost of ALL-ENC is denoted as CALL. To facilitate the comparison, the privacy-preserving cost of H_PPCR is denoted as CHEU.

Fig 4. U-Cloud U-Cloud is a cloud computing environment at the University of Technology Sydney(UTS). The system over-view of U-Cloud is depicted in Fig. 4. The computing facilities of this system are located among several labs at UTS. On top of hardware and Linux operating system, we install KVM virtualization software which virtualizes the infrastructure and provides unified computing and storage resources. To create virtualized data centers, we install OpenStack open-source cloud environment for global management, resource scheduling and interaction with users. Further, Hadoop is installed based on the cloud built via OpenStack to facilitate massive data processing. Our experiments are conducted in this cloud environment. The experimental result on real-world data sets is depicted in Fig. 5, our approach can reduce the privacy-preserving cost significantly in real-world scenarios. Therefore, both the experimental results demonstrate that privacy-preserving cost intermediate data sets can be saved significantly through our approach over existing ones where all data sets are encrypted. IV.CONCLUSION We propose a cloud storage system called FADE, which aims to provide assured deletion for files that are hosted by today’s cloud storage services. We present the design of policy-based file assured deletion, in which files are assuredly deleted and made unrecoverable by anyone when their associated file access policies are revoked. We S.Malathi ,IJRIT

205

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

present the essential operations on cryptographic keys so as to achieve policy-based file assured deletion. We implement a prototype of FADE to demonstrate its practicality, and empirically study its performance overhead

when it works with Amazon S3. Our experimental results provide insights into the performance-security trade-off when FADE is deployed in practice. REFERENCES: [1] Amazon. SmugMug studies/smugmug/, 2006.

Case

Study:

Amazon

Web

Services.

http://aws.amazon.com/solutions/case-

[2] Amazon Simple Storage Service (Amazon S3). http://aws.amazon.com/s3/. [3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. Technical Report UCB/EECS2009-28, EECS Department, University of California, Berkeley, Feb 2009. [4] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and Efficient Provable Data Possession. In Proc. of SecureComm, 2008. [5] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. Vanish: Increasing Data Privacy with Self-Destructing Data. In Proc. of USENIX Security Symposium, Aug 2009. [6] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-Based Encryption for Fine-Grained Access Control of Encrypted Data. In Proc. of ACM CCS, 2006. [7]JungleDisk. http://www.jungledisk.com/. [8] S. Kamara and K. Lauter. Cryptographic Cloud Storage. In Proc. of Financial Cryptography: Workshop on RealLife Cryptographic Protocols and Standardization[2010]. [9] LibAWS++. http://aws.28msec.com/. 10. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, Oct 1996. [11]MyAsiaCloud. http://www.myasiacloud.com/. [12]S. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A Hybrid PKI-IBC Based Ephemerizer System. IFIP International Federation for Information Processing, 232:241–252, 2007. [13] OpenSSL. http://www.openssl.org/. S.Malathi ,IJRIT

206

IJRIT International Journal of Research in Information Technology, Volume 2, Issue 5, May 2014, Pg: 197-207

[14] R. Perlman. File System Design with Assured Delete. In ISOC NDSS, 2007. [15] R. Perlman, C. Kaufman, and R. Perlner. Privacy-Preserving DRM. In IDtrust,2010.ACM Symp. Cloud Computing (SoCC ’10), pp. 181-192, 2010. [16]M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure Attribute-Based Systems. In ACM CCS, 2006. [17] A. Sahai and B. Waters. Fuzzy Identity-Based Encryption. In EUROCRYPT, 2005. [18]A. Shamir. How to Share a Secret. CACM, 22(11):612–613, Nov 1979. [19] Smug Mug. http://www.smugmug.com/. [20]W. Stallings. Cryptography and Network Security. Prentice Hall, 2006. [21] M. Vrable, S.Savage, and G. M.Voelker. Cumulus: File system backup to the cloud. ACM Trans. on Storage(ToS), 5(4), Dec 2009. [22] C. Wang, Q.Wang, K. Ren, and W. Lou. Privacy-preserving public auditing for storage security in cloud computing. In Proc.of IEEE INFOCOM, Mar 2010. [23]W.Wang, Z. Li, R. Owens, and B.Bhargava. Secure and Efficient Access to Outsourced Data. In ACM Cloud Computing Security Workshop (CCSW), Nov 2009.

S.Malathi ,IJRIT

207

[image: Secure and Scalable Access to Cloud Data in ...]
Secure and Scalable Access to Cloud Data in ...

[image: Privacy Preserving Public Auditing for Secure Cloud Storage Using TPA]
Privacy Preserving Public Auditing for Secure Cloud Storage Using TPA

[image: Secure the Cloud Storage and Recovery of Security Risks and ... - IJRIT]
Secure the Cloud Storage and Recovery of Security Risks and ... - IJRIT

[image: Secure the Cloud Storage and Recovery of Security Risks and ... - IJRIT]
Secure the Cloud Storage and Recovery of Security Risks and ... - IJRIT

[image: Identity-Based Secure Distributed Data Storage with Dual ... - IJRIT]
Identity-Based Secure Distributed Data Storage with Dual ... - IJRIT

[image: Identity-Based Secure Distributed Data Storage with Dual ... - IJRIT]
Identity-Based Secure Distributed Data Storage with Dual ... - IJRIT

[image: Wheel of Trust: A Secure Framework for Overlay ...]
Wheel of Trust: A Secure Framework for Overlay ...

[image: Safe-And-Secure-Transport-And-Storage-Of-Radioactive-Materials ...]
Safe-And-Secure-Transport-And-Storage-Of-Radioactive-Materials ...

[image: Wheel of Trust: A Secure Framework for Overlay-based Services]
Wheel of Trust: A Secure Framework for Overlay-based Services

[image: Google Cloud Storage Cloud Platform]
Google Cloud Storage Cloud Platform

[image: Storage Architecture and Challenges Cloud Platform]
Storage Architecture and Challenges Cloud Platform

[image: Secure, Remote Access with a Portable USB Operating System White ...]
Secure, Remote Access with a Portable USB Operating System White ...

[image: Secure, Remote Access with a Portable USB Operating System White ...]
Secure, Remote Access with a Portable USB Operating System White ...

[image: Secure and Scalable Access to Cloud Data in Presence of Dynamic ...]
Secure and Scalable Access to Cloud Data in Presence of Dynamic ...

[image: Yobicash: a cryptocurrency for secure sharing and storage of data]
Yobicash: a cryptocurrency for secure sharing and storage of data

[image: Substrate processing control method and storage medium]
Substrate processing control method and storage medium

[image: Towards a Secure Key Generation and Storage Framework ... - EWSN]
Towards a Secure Key Generation and Storage Framework ... - EWSN

[image: CLOUD STORAGE FORENSICS.pdf]
CLOUD STORAGE FORENSICS.pdf

[image: Microcomputer system with buffer in peripheral storage control]
Microcomputer system with buffer in peripheral storage control

[image: Microcomputer system with buffer in peripheral storage control]
Microcomputer system with buffer in peripheral storage control

[image: Access Control - Ben Laurie]
Access Control - Ben Laurie

[image: using cloud computing to implement a security overlay network pdf ...]
using cloud computing to implement a security overlay network pdf ...

[image: Design and Implement Secure Cloud ComputingSystem Based on ...]
Design and Implement Secure Cloud ComputingSystem Based on ...

Secure overlay cloud storage with access control and ...

We design and implement FADE, a secure overlay cloud storage system that achieves ... a more fine-grained approach called policy based file assured deletion, ...

 Download PDF

 569KB Sizes
 1 Downloads
 272 Views

 Report

Recommend Documents

[image: alt]

Secure and Scalable Access to Cloud Data in ...

IJRIT International Journal of Research in Information Technology, Volume 3, Issue In future, we continue working on storage security and data dynamics with ...

[image: alt]

Privacy Preserving Public Auditing for Secure Cloud Storage Using TPA

the task of allowing a third party auditor (TPA), on behalf of the cloud client, to verify the integrity of the dynamic data stored in the cloud. To securely introduce an ...

[image: alt]

Secure the Cloud Storage and Recovery of Security Risks and ... - IJRIT

of multi-clouds due to its ability to reduce security risks that affect the cloud computing user. ... In order to define cloud computing, it is first necessary to explain what is ... Software as a Service provides software or application which can be

[image: alt]

Secure the Cloud Storage and Recovery of Security Risks and ... - IJRIT

Now a dayâ€Ÿs rapidly increased use of cloud computing in the many organization and IT industries and provides new software with low cost . Ensuring the ...

[image: alt]

Identity-Based Secure Distributed Data Storage with Dual ... - IJRIT

In Cryptographic. File System scheme the reliability of the perceptive file is provided by digital signature methods and the message authentication codes. (MAC).

[image: alt]

Identity-Based Secure Distributed Data Storage with Dual ... - IJRIT

In Cryptographic. File System scheme the reliability of the perceptive file is provided by digital signature methods and the message authentication codes. (MAC).

[image: alt]

Wheel of Trust: A Secure Framework for Overlay ...

agement in email systems [1], IBE allows any arbitrary string. (e.g., email shows the message exchange when a node n leaves the system. When n leaves the ...

[image: alt]

Safe-And-Secure-Transport-And-Storage-Of-Radioactive-Materials ...

Page 1 of 3. Download]]]]]>>>>>(PDF) Safe And Secure Transport And Storage Of Radioactive Materials. [eBooks] Safe And Secure Transport And Storage Of. Radioactive Materials. SAFE AND SECURE TRANSPORT AND STORAGE OF RADIOACTIVE MATERIALS EBOOK AUTHO

[image: alt]

Wheel of Trust: A Secure Framework for Overlay-based Services

not interact with users or hosting any services. These functions id idk, where v is the data the user wishes to store and k is an identifier associated with v.

[image: alt]

Google Cloud Storage Cloud Platform

Store application data Google Cloud Storage provides fast access to application data, such as images for a photo editing app. â€¢ Share data with colleagues and ...

[image: alt]

Storage Architecture and Challenges Cloud Platform

Jul 29, 2010 - A typical warehouse-scale computer: 10,000+ ... 2-10%: disk drive annualized failure rate Roger wants to see data on laptop from phone.

[image: alt]

Secure, Remote Access with a Portable USB Operating System White ...

conditions, especially in regions where bandwidth is poor. The user experience, especially in ... a hassle-free experience. helps monitor and address day-.

[image: alt]

Secure, Remote Access with a Portable USB Operating System White ...

higher levels of security access than these PCs allow, and most of these workers already have their own uploading to the cloud. â€¢ Windows to Go ... computing on a given PC, such as using locally installed applications while accessing Intel ...

[image: alt]

Secure and Scalable Access to Cloud Data in Presence of Dynamic ...

cloud offers services like Infrastructure as a Service (IaaS), Platform as a Service ... The files are divided into file groups and the cryptographic primitives are ...

[image: alt]

Yobicash: a cryptocurrency for secure sharing and storage of data

The World Wide Web is built on top of technologies for sharing, storing and retrieving data. A few decades after its inception, the web has become the backbone of the information economy, and thanks to innovations as the Internet of Things, Virtual R

[image: alt]

Substrate processing control method and storage medium

Oct 21, 2011 - tive reference-spectrum data and acquiring, as the measured pattern-dimension be, e.g., a RAM, an NV-RAM, a ?oppy disk, a hard disk, a.

[image: alt]

Towards a Secure Key Generation and Storage Framework ... - EWSN

International Conference on Embedded Wireless ported on this technology. Most of tional Conference on Advanced Video and Signal-Based Surveillance.

[image: alt]

CLOUD STORAGE FORENSICS.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. CLOUD ...

[image: alt]

Microcomputer system with buffer in peripheral storage control

Mar 10, 1983 - address for a buffer to control transfer of data from the. [51] Int. Cl.' fer direction at a bus driver 222 and the setting of data into a register ...

[image: alt]

Microcomputer system with buffer in peripheral storage control

Mar 10, 1983 - address for a buffer to control transfer of data from the. [51] Int. Cl.' fer direction at a bus driver 222 and the setting of data into a register ...

[image: alt]

Access Control - Ben Laurie

Mar 13, 2009 - be allowed to set the clock and talk to other time-keeping programs on the. Internet, and book, but I give some examples here. 6.1 Allowing ...

[image: alt]

using cloud computing to implement a security overlay network pdf ...

using cloud computing to implement a security overlay network pdf. using cloud computing to implement a security overlay network pdf. Open. Extract. Open with.

[image: alt]

Design and Implement Secure Cloud ComputingSystem Based on ...

There was a problem previewing this document. Retrying. ... Design and Implement Secure Cloud ComputingSystem Based on Hadoop .pdf. Design and ...

×
Report Secure overlay cloud storage with access control and ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

