Single qubit Deutsch-Jozsa algorithm in a quantum dot P. Bianucci1 , A. Muller,1 C. K. Shih1 , Q. Q. Wang2,3 , Q. K. Xue3 , C. Piermarocchi4 1

Department of Physics, The University of Texas at Austin, Austin, Texas 78712 2

3

Department of Physics, Wuhan University, Wuhan 430072, P. R. China

International Center for Quantum Structures, Institute of Physics, The Chinese Academy of Sciences, Beijing 100080, P. R. China

4

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-2320 Support: NSF-NIRT (DMR-0210383), NSF-FRG (DMR-0306239), NSF-ITR

(DMR-0312491), Texas Advanced Technology program, W. M. Keck Foundation Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 1

Outline •

The Deutsch-Josza algorithm ◦ The 1-bit Deutsch problem and its solution



Experimental setup ◦ Semiconductor Quantum Dots ◦ Wavepacket interferometry



The 1-bit Deutsch-Jozsa algorithm in a Quantum Dot



Conclusions

Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 2

The one-bit Deutsch problem How do we find out if a coin is fair?

fc : {top, bottom} → {head, tail} Fake (Constant) Fair (Balanced) f1 (x) = 0 f3 (x) = x f4 (x) = 1 − x f2 (x) = 1 (Top,Head ≡ 0, Bottom,Tail ≡ 1).

Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 3

Solving the Deutsch-Problem

Coin

Input (Top = 0) (Bottom = 1)



x

fc (x)

Classical Coin−o−meter

Output (Head = 0) (Tail = 1)

Classical algorithm: 2 runs needed.

Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 4

The Deutsch-Jozsa algorithm •

We can do better! (Only 1 run!) not |0> if f is balanced

|0>

H

n

|x>

|x>

H

n

Uf

|1>

|0> if f is constant

|y> |x f(y)>

H

H

Original version of the Deutsch-Jozsa algorithm [Deutsch and Jozsa, Proc. Roy. Soc. London A 439, 553 (1992)] |0>

not |0> if f is balanced H

n

Uf

H

n

|0> if f is constant

ˆ = H

√1 2

h

1

1

1

−1

i

, Uˆf |xi = (−1)f (x) |xi

Streamlined version of the Deutsch-Jozsa algorithm. [Collins et al. Phys. Rev. A 58 , 1633 (1998)] Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 5

Semiconductor Quantum Dots •

Quantum dots are mesoscopic systems in which electrons are confined in 3D.

Conduction Band

Eg2

Eg1

Exciton ground state Valence Band

Schematic level structure for a semiconductor quantum dot.

X-STM image of self-assembled InGaAs/GaAs quantum dots. [Liu et al., Phys. Rev. Lett. 84, 334 (2000)] Exciton excited state Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 6

Wavepacket Interferometry Far−Field PL setup





Spectrometer 



CCD Array Detector Interferometer Pulsed Ti:Sa laser

 

 

 

 

 

Sample

 

PL

LHe cryostat (min 4.2 K)

τf τd = τ c + τ f

tf (fs) 0

|1>

4

|1’>

 

 

 

 

 

τc

Intensity (a.u.)

 

 

Schematic diagram of the experimental setup.

|0>

PL

Experiment schematic [Bonadeo et al.,Science 282, 1473 (1998)] [Kamada et al., Phys. Rev. Lett.87, 246401 (2000)] [Htoon et al.,Phys. Rev. Lett.88, 087401 (2002)]

0

20

40 td (ps)

60

80

Wavefunction autocorrelation Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 7

DJ algorithm in a single Quantum Dot |0>

Rx(π/2)

Rz(τd)

|0> if f is balanced (τd= 2( n+1)π/ω 0)

Rx(π/2)

|1> if f is constant (τd= 2nπ/ω 0)

τd

π/2 pulse

ˆx( π ) = R 2

π/2 pulse

√1 2

Minimum if f balanced Maximum if f constant

Measure PL

h

1

−1

1

1

t

i

ˆ z (τd ) = , R

h

1

0

0

eiω0 τd

i

ˆ Uˆf = −I, ˆ Uˆf = σˆz , Uˆf = −σˆz . Uˆf1 = I, 2 3 4 Quantum dot version of the single qubit DJ algorithm |1>

|1>

|0>

|0>

Bloch vector evolution: Constant f

Bloch vector evolution: Balanced f Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 8

PL (arb.units)

Deutsch-Jozsa algorithm in a single Quantum Dot 200 150 100 50 0 200

(b) 2π





200 150 100 50 0

(c) π





200 150 100 50 0

(d)

200 150 100





50

(e) π







PL (arb. units)

150

100

50

(a)

0

0

10

20

30 Coarse τd (ps)

40

50

Experimental results Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 9

Conclusions •

We used the ability to optically manipulate the excitonic state of a single semiconductor quantum dot to implement a 1-qubit version of the Deutsch-Jozsa algorithm. ◦ We implemented a simple quantum algorithm on a solid state system!

[cond-mat/0401226, to appear in Phys. Rev. B]

Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 10

Single qubit Deutsch-Jozsa algorithm in a quantum dot

Outline. • The Deutsch-Josza algorithm. ◦ The 1-bit Deutsch problem and its solution. • Experimental setup. ◦ Semiconductor Quantum Dots. ◦ Wavepacket interferometry. • The 1-bit Deutsch-Jozsa algorithm in a. Quantum Dot. • Conclusions. Single qubit Deutsch-Jozsa algorithm in a quantum dot – p. 2 ...

138KB Sizes 1 Downloads 295 Views

Recommend Documents

No documents