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Submodular functions From discrete to continuous domains Summary • Which functions can be minimized in polynomial time? – Beyond convex functions



Submodular functions From discrete to continuous domains Summary • Which functions can be minimized in polynomial time? – Beyond convex functions • Submodular functions – – – –



Not convex, ... but “equivalent” to convex functions Usually defined on {0, 1}n Extension to continuous domains Application: proximal operator for non-convex regularizers



• Preprint available on ArXiv, second version (Bach, 2015)



Submodularity for combinatorial optimization (see, e.g., Fujishige, 2005; Bach, 2013) • Definition: ∀x, y ∈ {0, 1}n, H(x) + H(y) > H(max{x, y}) + H(min{x, y}) – NB: identification of x ∈ {0, 1}n to {i, xi = 1} ⊆ {1, . . . , n} • Examples: cut functions, entropies, set covers, etc.



Submodularity for combinatorial optimization (see, e.g., Fujishige, 2005; Bach, 2013) • Definition: ∀x, y ∈ {0, 1}n, H(x) + H(y) > H(max{x, y}) + H(min{x, y}) – NB: identification of x ∈ {0, 1}n to {i, xi = 1} ⊆ {1, . . . , n} • Examples: cut functions, entropies, set covers, etc. • Minimization in polynomial time – Reformulation as a convex problem through continuous extension



From discrete to continuous domains • Main insight: {0, 1} is totally ordered!
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From discrete to continuous domains • Main insight: {0, 1} is totally ordered! • Extension to {0, . . . , k − 1}: H : {0, . . . , k − 1}n → R ∀x, y, H(x) + H(y) > H(min{x, y}) + H(max{x, y}) – Equivalent definition: with (ei)i∈{1,...,n} canonical basis of Rn ∀x, i 6= j, H(x + ei) + H(x + ej ) > H(x) + H(x + ei + ej ) – See Lorentz (1953); Topkis (1978) • Generalization to all totally ordered sets: Xi ⊂ R n Y ∂ 2H Xi, intervals + H twice differentiable: ∀x ∈ (x) 6 0 ∂xi∂xj i=1



A “new” class of continuous functions • Assume each Xi ⊂ R is a compact interval, and (for simplicity) H twice differentiable: n Y ∂ 2H Xi, Submodularity : ∀x ∈ (x) 6 0 ∂xi∂xj i=1



A “new” class of continuous functions • Assume each Xi ⊂ R is a compact interval, and (for simplicity) H twice differentiable: n Y ∂ 2H Xi, Submodularity : ∀x ∈ (x) 6 0 ∂xi∂xj i=1 • Invariance by – individual increasing smooth change of variables H(ϕ1(x1), . . . , ϕn(xn)) Pn – adding arbitrary (smooth) separable functions i=1 vi(xi)



A “new” class of continuous functions • Assume each Xi ⊂ R is a compact interval, and (for simplicity) H twice differentiable: n Y ∂ 2H Xi, Submodularity : ∀x ∈ (x) 6 0 ∂xi∂xj i=1 • Invariance by – individual increasing smooth change of variables H(ϕ1(x1), . . . , ϕn(xn)) Pn – adding arbitrary (smooth) separable functions i=1 vi(xi) • Examples – Quadratic functions with Hessians with non-negative off-diagonal entries (Kim and Kojima, 2003) – ψ(xi − xj ), ψ convex; ψ(x1 + · · · + xn), ψ concave; log det, etc... – Monotone of order two (Carlier, 2003), Spence-Mirrlees condition (Milgrom and Shannon, 1994)
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7 • Level sets of the submodular function (x1, x2) 7→ 20 (x1 − x2)2 − 3 −4(x1 + 23 )2 −4(x2 − 32 )2 −4(x2 + 23 )2 −4(x1 − 32 )2 − 5e −e −e , with several local e minima, local maxima and saddle points



Extensions to the space of product measures View 1: thresholding cumulative distrib. functions • Identify xi ∈ Xi with the Dirac δxi (a probability distribution on Xi)
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– For finite sets, can be computed by sorting all values of Fµi (xi) – Equal to the “Lov´asz extension” when ∀i, Xi = {0, 1}
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– For finite sets, can be computed by sorting all values of Fµi (xi) – Equal to H(x1, . . . , xn) when µi = δxi for all i
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– Known value H(x) for any “extreme points” of product measures (i.e., all Diracs δx at any x ∈ X) ˜ = largest convex lower bound – Convex closure h ˜ is equivalent – Minimizing H and its convex closure h • Need to compute the Fenchel-Legendre bi-conjugate of a : µ 7→ H(x) if µ = δx for some x ∈ X, and + ∞ otherwise
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Extensions to the space of product measures View 2: convex closure • Given any function H on X =



Qn



i=1 Xi



– Known value H(x) for any “extreme points” of product measures (i.e., all Diracs δx at any x ∈ X) ˜ = largest convex lower bound – Convex closure h ˜ is equivalent – Minimizing H and its convex closure h Z ˜ 1, . . . , µn) = inf • “Closed-form” formula: h(µ H(x)dγ(x), γ∈P(X)



X



– Optimization with respect to all joint probability measures γ on X such that γi(xi) = µi(xi) (fixed marginals) – Multi-marginal optimal transport
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– Optimal transport map T may not always exists – Discrete case: earth’s mover distance
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– Optimal transport map T may not always exists – Discrete case: earth’s mover distance • Kantorovich formulation (1942) – Convex relaxation on space of probability measures γ ∈ P(X1 ×X2) – Prescribed marginals γ1 = µ1 and γ2 = µ2 R – Minimum cost X1×X2 c(x1, x2)dγ(x1, x2)



Optimal transport: from two to multiple marginals • Kantorovich formulation (1942) – Convex relaxation on space of probability measures γ ∈ P(X1 ×X2) – Prescribed marginals γ1 = µ1 and γ2 = µ2 R – Minimum cost X1×X2 c(x1, x2)dγ(x1, x2)



Optimal transport: from two to multiple marginals • Kantorovich formulation (1942) – Convex relaxation on space of probability measures γ ∈ P(X1 ×X2) – Prescribed marginals γ1 = µ1 and γ2 = µ2 R – Minimum cost X1×X2 c(x1, x2)dγ(x1, x2) • Properties – Monge formulation with distribution of (x1, T (x1)) – Wasserstein distance between measures with c(x1, x2) = |x1 − x2|p – See Villani (2008); Santambrogio (2015)



Optimal transport: from two to multiple marginals • Kantorovich formulation (1942) – Convex relaxation on space of probability measures γ ∈ P(X1 ×X2) – Prescribed marginals γ1 = µ1 and γ2 = µ2 R – Minimum cost X1×X2 c(x1, x2)dγ(x1, x2) • Properties – Monge formulation with distribution of (x1, T (x1)) – Wasserstein distance between measures with c(x1, x2) = |x1 − x2|p – See Villani (2008); Santambrogio (2015) • Extension to multiple marginals R – Minimize X H(x)dγ(x1, . . . , xn) with respect to all prob. measures γ on X such that γi(xi) = µi(xi) for all i ∈ {1, . . . , n}



Extensions to the space of product measures Combining the two views • View 1: thresholding cumulative distribution functions + closed form computation for any H, always an extension − not convex • View 2: convex closure + convex for any H, allows minimization of H − not computable, may not be an extension



Extensions to the space of product measures Combining the two views • View 1: thresholding cumulative distribution functions + closed form computation for any H, always an extension − not convex • View 2: convex closure + convex for any H, allows minimization of H − not computable, may not be an extension • Submodularity – The two views are equivalent – Direct proof through optimal transport – All results from submodular set-functions go through



Kantorovich optimal transport in one dimension • Theorem (Carlier, 2003): If H is submodular, then Z inf H(x)dγ(x) such that ∀i, γi = µi γ∈P(X)
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Optimal transport with one-dimensional distributions and submodular cost is obtained in closed form



– See Villani (2008); Santambrogio (2015)
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H(x) =



h(µ) Qmin n µ∈ i=1 P(Xi )



3. If H is submodular, then a subgradient of h at any µ may be computed by a “greedy algorithm” – Submodular functions may be minimized in polynomial time with similar algorithms than for the binary case – NB: existing (less efficient) reduction to submodular set-functions defined on a ring family (Schrijver, 2000)



Minimization of submodular functions Projected subgradient descent • For simplicity: discretizing all sets Xi, i = 1, . . . , n to k elements • Assume Lispschitz-continuity: ∀x, ei, |H(x + ei) − H(x)| 6 B



Minimization of submodular functions Projected subgradient descent • For simplicity: discretizing all sets Xi, i = 1, . . . , n to k elements • Assume Lispschitz-continuity: ∀x, ei, |H(x + ei) − H(x)| 6 B • Projected subgradient descent √ – Convergence rate of O(nkB/ t) after t iterations – Cost of each iteration O(nk log(nk)) – Reasonable scaling with respect to discretization  n3  e O for continuous domains 3 ε



• Frank-Wolfe / conditional gradient
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- Generalization to other proximal operators for non-convex regularizers
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• Generalization to other proximal operators for non-convex regularizers
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• Pair-wise Frank-Wolfe (Lacoste-Julien and Jaggi, 2015)
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From discrete to continuous domains Extensions to product measures Direct link with one-dimensional multi-marginal optimal transport Application: proximal operator for non-convex regularizers



• On-going work and extensions – – – – –



Optimal transport beyond submodular functions Beyond discretization Beyond minimization Sums of simple submodular functions (Jegelka et al., 2013) Mean-field inference in log-supermodular models (Djolonga and Krause, 2015)



Postdoc opportunities in downtown Paris



• Machine learning group at INRIA - Ecole Normale Sup´ erieure – Two postdoc positions (2 years) – One junior researcher position (4 years)
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