Supplementary material for "Real-time GARCH: Does Current Information Matter?" Ekaterina Smetanina University of Cambridge January 30, 2017 Abstract

In this supplement, we present derivations for extended model with leverage and feedback eect as well as further empirical evidence on the performance of the basic and extended models.

1 Real-time GARCH model with leverage eect. We use the same numeration of the theorems as in the main paper and show how the proofs should be modied for the extended vesions of the model.

Proof of Theorem 1.

Now consider the model with leverage given by: rt = λt t 2 λ2t = α + βλ2t−1 + γrt−1 + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0)

where {t } is i.i.d. random variables such that E (t ) = 0, E (2t ) = 1 with the density f . 1

To compute the probability of P (rt ≤ c) note that the rst equation can be rewritten as q 2 + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0) t rt = α + βλ2t−1 + γrt−1

such that q 2 + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0) t ≤ c) P (rt ≤ c) = P ( α + βλ2t−1 + γrt−1

Since the scaling factor of t is positive there is one unique value of d such that q

2 α + βλ2t−1 + γrt−1 + ϕ1 e2 1(e>0) + ϕ2 e2 1(e≤0) e ≤ c

for all e ≤ d. To obtain d let's rst square the above equation such that 2 (α + βλ2t−1 + γrt−1 + ϕ1 d2 1(d>0) + ϕ2 d2 1(d≤0) )d2 = c2 2 (α + βλ2t−1 + γrt−1 )d2 + ϕ1 d4 1(d>0) + ϕ2 d4 1(d≤0) = c2

This quadratic equation has four solutions which are given by: x1,2

x3,4

sp b2t−1 + 4c2 (ϕ1 1(d>0) + ϕ2 1(d≤0) ) − bt−1 =± 2(ϕ1 1(d>0) + ϕ2 1(d≤0) )

s p b2t−1 + 4c2 (ϕ1 1(d>0) + ϕ2 1(d≤0) ) + bt−1 =± − 2(ϕ1 1(d>0) + ϕ2 1(d≤0) )

2 with bt−1 = α + βλ2t−1 + γrt−1 . We disregard x3,4 since we are only interested in the real

valued solutions, such that we have: sp b2t−1 + 4c2 (ϕ1 1(d>0) + ϕ2 1(d≤0) ) − bt−1 d(c) = sign(c) 2(ϕ1 1(d>0) + ϕ2 1(d≤0) )

Since the sign of d(c) is determined by the sign of "c" then corresponding conditions d > 0

2

and d < 0 can be substituted with c > 0 and c < 0. Then eq. 1 becomes sp b2t−1 + 4c2 (ϕ1 1(c>0) + ϕ2 1(c≤0) ) − bt−1 d(c) = sign(c) 2(ϕ1 1(c>0) + ϕ2 1(c≤0) )

Recall that the CDF of rt is given by ˆ

d(c)

P (rt ≤ c) =

f (x)dx −∞

To obtain the density we use Leibniz integral rule with variable limits such that:

∂P (rt ≤ c) ∂d(c) = |c=r f (d(r)) = ∂c ∂c s 2(ϕ1 1(r>0) + ϕ2 1(r≤0) ) p = sign(r)r × 2 2 (bt−1 + 4r (ϕ1 1(r>0) + ϕ2 1(r≤0) ))( b2t−1 + 4r2 (ϕ1 1(r>0) + ϕ2 1(r≤0) ) − bt−1 ) s p −bt−1 + b2t−1 + 4r2 (ϕ1 1(r>0) + ϕ2 1(r≤0) ) )= f (sign(r) 2(ϕ1 1(r>0) + ϕ2 1(r≤0) ) r p 2 = f (d(r)) 2 d(r) bt−1 + 4r (ϕ1 1(r>0) + ϕ2 1(r≤0) ) fr (r) =

Remark: Note that

∂sign(c) ∂c

= 2δ(c), where δ(·) is a Dirac delta function which is zero

everywhere except at 0, where δ(0) = ∞. Recall that we solve the problem of zero values by setting those values to a very small (but not zero) value, thus in our case δ(c) = 0 ∀c .

Proof of Theorem 2. The general model is given by: rt = λt t

(1)

2 + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0) λ2t = α + βλ2t−1 + γrt−1

(2)

3

Since the error term t is i.i.d, it is then obvious that the error process (t )t∈Z is always strictly stationary and ergodic. Thus, (rt )t∈Z is a strictly stationary process if and only if (λt )t∈Z is strictly stationary. Therefore, the task of deriving the strict stationarity conditions

for the whole process (rt , λt )t∈Z can be reduced to deriving strict stationarity conditions for (λ2t )t∈Z , given by eq.(2).

Let's now express (λ2t )t∈Z solely in terms of the error process (t )t∈Z . Repeatedly subsituting for λ2t−1 in eq.(2) , we have: ! t t i−1 Y X Y λ2t = λ0 (β + γ2t−i ) + (β + γ2t−j−1 ) (α + ϕ1 2t−i 1(t >0) + ϕ2 2t−i 1(t ≤0) ), t ≥ 2 (3) i=1

i=0

j=0

In order for eq.(3) to be well dened we need either to assume the trivial σ -algebra F0 (and a probability measure µ0 ) for the starting value λ20 or to assume that the system extends innitely far into the past. We proceed by implementing the former approach, dening:

P[λ20 ∈ Γ] = µ0(Γ)

∀Γ ∈ B

and

(4)

µ0 ((0, ∞)) = 1,

where B denotes the Borel sets on [0, ∞). In order to nd strict stationarity conditions of σt2 we next rewrite eq.2 in the form of the stochastic dierence equation Yt+1 = At Yt + Bt , where Yt , At and Bt are given by: At = β + γ2t ,

Bt = α + ϕ1 2t+1 1(t >0) + ϕ2 2t+1 1(t ≤0)

and

Yt = λ2t

(5)

Since sequences (At )t∈N and (Bt )t∈N are measurable transformations of the stictly stationary and ergodic process ()t∈N we can make use of the Theorem 3.5.8 of Stout (1974) to claim that these sequences are strictly stationary and ergodic as well as the sequence Ψ = (At , Bt )t∈N . If we rewrite eq.3 in terms of eq.5, it follows that (Yt )t∈N = (λ2t )t∈N is the

solution of the stochastic dierence equation Yt+1 = At Yt + Bt . Every such solution then

4

should satisfy the following representation: Yt+1 = At Yt +Bt = At At−1 Yt−1 +At Bt−1 +Bt = At At−1 At−2 Yt−2 +At At−1 Bt−2 +At Bt−1 +Bt = ! ! t t i−1 Y X Y = ··· = At−i Y0 + At−j Bt−i , (6) i=0

with the usual convention that

i=0

Q−1

j=0

j=0

At−j = 1 for the product over an empty index set.

Let's denote by Y an arbitrary R-valued random variable, which is dened on the same probability space as Ψ. The solution yt (Y, Ψ) of eq.(6) is then given by: 1

yt (Y, Ψ) =

t−1 Y

! Ai

Y0 +

i=0

t−1 X

t−1 Y

i=0

j=t−i

! Aj

Bt−i−1

We have shown earliethat the sequence Ψ = (At , Bt ) is strictly stationary and ergodic, we can now apply Theorem 1 of Brandt (1986) to deduce that yt (Ψ) =

P∞ Qt−1 i=0

j=n−i



Aj Bt−i−1 ,

t ∈ N is strictly stationary solution if and only if the following conditions are satised:

P(A0 = 0) > 0 or −∞ 5 E log |A0 | < 0

E ( log |B0 |)+ < ∞,

where x+ = max(0, x) for x ∈ R. Plugging in the expressions for A0 and B0 , given by eq.(5) we get the following strict stationarity conditions:

−∞ 5 E log β + γ20 < 0

 + E log α + ϕ1 20 1(0 >0) + ϕ2 20 1(0 ≤0) < ∞,

This completes the proof.

1 Note

that

Y

and

Ψ

should not necessarily be independent.

5

Proof of Theorem 3. Consider the general model: rt = λt t

(7)

2 λ2t = α + βλ2t−1 + γrt−1 + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0)

(8)

Substituting eq.(8) into the squared eq.(7) yields: 2 rt2 = α2t + βλ2t−1 2t + γrt−1 2t + ϕ1 4t 1(t >0) + ϕ2 4t 1(t ≤0)

(9)

The rst moments of rt2 and λ2t are given by:

    2 E[rt2 ] = α + βE[λ2t−1 ] + γE[rt−1 ] + ϕ1 E 4t |t > 0 + ϕ2 E 4t |t ≤ 0 =     2 = α + βE[λ2t−1 ] + γE[rt−1 ] + E ε4t |εt > 0 ϕ1 + E ε4t |εt ≤ 0 ϕ2

(10)

    2 E[λ2t ] = α + βE[λ2t−1 ] + γE[rt−1 ] + ϕ1 E 2t |t > 0 + ϕ2 E 2t |t ≤ 0 = 2 ] + ϕ1 + ϕ2 = α + βE[λ2t−1 ] + γE[rt−1

(11)

Combining eq.(10)-(11) then yields:   E[rt2 ] = E[λ2t ] + (E ε4t − 1)(ϕ1 + ϕ2 )

Recursively subsituting eq.(12) into eq.(11) we get:

6

(12)

2 E[λ2t ] = α + βE[λ2t−1 ] + γE[rt−1 ] + ϕ1 + ϕ2 = α + βE[λ2t−1 ]+    + γ E[λ2t−1 ] + (E ε4t − 1)(ϕ1 + ϕ2 ) + ϕ1 + ϕ2

(13)

Rearranging the above equation and denoting by η = E [ε4t ] − 1 we get: E[λ2t ] = α + (ϕ1 + ϕ2 )(ηγ + 1) + (β + γ)E[λ2t−1 ] =  = (α + (ϕ1 + ϕ2 )(ηγ + 1)) + (β + γ) α + (ϕ1 + ϕ2 )(ηγ + 1) + (β + γ)E[λ2t−2 ] = · · · t−2 X = · · · = (α + (ϕ1 + ϕ2 )(ηγ + 1)) (β + γ)i + (β + γ)t−1 E[λ21 ] i=0

Assuming weak stationarity, the E[λ21 ] is then given by:   4 α + (ϕ1 + ϕ2 ) (E [εt ] − 1)γ + 1 E[λ21 ] =

1 − (β + γ)

In order for E[λ21 ] to be positive and nite the following conditions of one of these two cases must be satised:   β+γ <1  α + (ϕ + ϕ )((E [ε4 ] − 1)γ + 1) > 0 1 2 t

  β+γ >1  α + (ϕ + ϕ )((E [ε4 ] − 1)γ + 1) < 0 1 2 t

Proof of Theorem 4. Recall that E[rt2 ] = E[λ2t ] + η(ϕ1 + ϕ2 ), where η = E [ε4t ] − 1. Then the conditions for weak

7

stationarity of E[r12 ] become   β+γ <1  α + (ϕ + ϕ )(1 + η − βη) > 0 1 2

or

  β+γ >1  α + (ϕ + ϕ )(1 + η − βη) < 0 1 2

and the unconditional variance of rt2 , E[r12 ], is given by E[r12 ] =

Proof of Theorem 5.

α + (ϕ1 + ϕ2 )(1 + η − βη) 1 − (β + γ)

The proof is very similar to the one for the baseline model, we

therefore omit it.

Proof of Theorem 6. 2 λ4t = α2 + 2αβλ2t−1 + 2αγrt−1 + 2α2t (ϕ1 1(t >0) + ϕ2 1(t ≤0) ) + β 2 λ4t−1 + 2 4 + 2βγλ2t−1 rt−1 + +γ 2 rt−1 + 2βλ2t−1 2t (ϕ1 1(t >0) + ϕ2 1(t ≤0) )+ 2 + 2γrt−1 2t (ϕ1 1(t >0) + ϕ2 1(t ≤0) ) + +4t (ϕ21 1(t >0) + ϕ22 1(t ≤0) )

(14)

Let's make use of the following notation, µj := E[jt (ϕ1 1(t >0) + ϕ2 1(t ≤0) )] (moments of t (ϕ1 1(t >0) +ϕ2 1(t <0) ) are derived in Appendix 2) and k := ϕ1 1(t >0) +ϕ2 1(t ≤0) . Multiplying

eq. (14) by 4t from both sides and taking expectations we get E[rt4 ] = E[λ4t 4t ] which is then given by  E[rt4 ] = E[λ4t rt4 ] = α2 µ4 + 2αβµ4 E[λ4t−1 ] + 2αγ E[λt−1 ]2 + 2(ϕ1 + ϕ2 )) + β 2 µ4 E[λ2t−1 ]+  4 + γ 2 µ4 E[rt−1 ] + 2βγµ4 E[λ2t−1 ] E[λ2t−1 ] + 2(ϕ1 + ϕ2 )) + 2αµ6 k + 2βµ6 kE[λ2t−1 ]+  + 2γµ6 E[λ2t−1 ] + 2(ϕ1 + ϕ2 ) + µ8 k 2

8

Rearranging the above equation and assuming that rt is fourth order stationary we get  E[r14 ] 1 − γ 2 µ4 = α2 µ4 + µ8 k 2 + 2αµ6 k + 4(ϕ1 + ϕ2 )αγµ4 + 4βγµ4 (ϕ1 + ϕ2 )+   2 + 4γµ6 (ϕ1 + ϕ2 ) + E[λ2t−1 ] 2αβµ4 + β 2 µ4 + 2βµ6 k + 2αγµ4 + 2γµ6 + 2βγµ4 E[λ2t−1 ]

which can be compactly written in the following form 2

E[r14 ] =

ξ1 + E[λ21 ]ξ2 + 2βγµ4 [E[λ21 ]] 1 − γ 2 µ4

where ξ1 = (α2 µ4 + µ8 k2 + 2αµ6 k + 4(ϕ1 + ϕ2 )αγµ4 + 4βγµ4 (ϕ1 + ϕ2 ) + 4γµ6 (ϕ1 + ϕ2 )) > 0 and ξ2 = (2αβµ4 + β 2 µ4 + 2βµ6 k + 2αγµ4 + 2γµ6 ) > 0. Since E[r4 ] must be positive, γ 2

must also satisfy: 1 − γ 2 E[4t ] > 0



γ2 <

1 E[4t ]

2 Real-time GARCH model with leverage and feedback.

Proof of Theorem 1. Now consider the model with leverage and feedback eects which is given by: rt = λt t 2 2 1(rt >0) + γ2 rt−1 1(rt ≤0) + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0) λ2t = α + βλ2t−1 + γ1 rt−1

where {t } is i.i.d. random variables such that E (t ) = 0, E (2t ) = 1 with the density f . To compute the probability of P (rt ≤ c) note that the rst equation can be rewritten as rt =

q 2 2 α + βλ2t−1 + γ1 rt−1 1(rt >0) + γ2 rt−1 1(rt ≤0) + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0) t

such that

9

q 2 2 1(rt ≤0) + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0) t ≤ c) 1(rt >0) + γ2 rt−1 P (rt ≤ c) = P ( α + βλ2t−1 + γ1 rt−1

Since the scaling factor of t is positive there is one unique value of d such that q

2 2 1(rt ≤0) + ϕ1 e2 1(e>0) + ϕ2 e2 1(e≤0) e ≤ c 1(rt >0) + γ2 rt−1 α + βλ2t−1 + γ1 rt−1

for all e ≤ d. To obtain d let's rst square the above equation such that 2 2 (α + βλ2t−1 + γ1 rt−1 1(rt >0) + γ2 rt−1 1(rt ≤0) + ϕ1 d2 1(d>0) + ϕ2 d2 1(d≤0) )d2 = c2 2 2 (α + βλ2t−1 + γ1 rt−1 1(rt >0) + γ2 rt−1 1(rt ≤0) )d2 + ϕ1 d4 1(d>0) + ϕ2 d4 1(d≤0) = c2

This quadratic equation has four solutions which are given by: x1,2

x3,4

sp b2t−1 + 4c2 (ϕ1 1(d>0) + ϕ2 1(d≤0) ) − bt−1 =± 2(ϕ1 1(d>0) + ϕ2 1(d≤0) )

s p b2t−1 + 4c2 (ϕ1 1(d>0) + ϕ2 1(d≤0) ) + bt−1 =± − 2(ϕ1 1(d>0) + ϕ2 1(d≤0) )

2 2 with bt−1 = α + βλ2t−1 + γ1 rt−1 1(rt >0) + γ2 rt−1 1(rt ≤0) . We disregard x3,4 since we are only

interested in the real valued solutions, such that we have: sp b2t−1 + 4c2 (ϕ1 1(d>0) + ϕ2 1(d≤0) ) − bt−1 d(c) = sign(c) 2(ϕ1 1(d>0) + ϕ2 1(d≤0) )

Since the sign of d(c) is determined by the sign of "c" then corresponding conditions d > 0 and d < 0 can be substituted with c > 0 and c ≤ 0. Then eq. 2 becomes sp b2t−1 + 4c2 (ϕ1 1(c>0) + ϕ2 1(c≤0) ) − bt−1 d(c) = sign(c) 2(ϕ1 1(c>0) + ϕ2 1(c≤0) )

10

Recall that the CDF of rt is given by ˆ

d(c)

P (rt ≤ c) =

f (x)dx −∞

To obtain the density we use Leibniz integral rule with variable limits such that:

∂P (rt ≤ c) ∂d(c) = |c=r f (d(r)) = ∂c s∂c 2(ϕ1 1(r>0) + ϕ2 1(r≤0) ) p = sign(r)r × 2 (bt−1 + 4r2 (ϕ1 1(r>0) + ϕ2 1(r≤0) ))( b2t−1 + 4r2 (ϕ1 1(r>0) + ϕ2 1(r≤0) ) − bt−1 ) s p −bt−1 + b2t−1 + 4r2 (ϕ1 1(r>0) + ϕ2 1(r≤0) ) )= f (sign(r) 2(ϕ1 1(r>0) + ϕ2 1(r≤0) ) r p 2 = f (d(r)) d(r) bt−1 + 4r2 (ϕ1 1(r>0) + ϕ2 1(r≤0) ) fr (r) =

Remark: Note that

∂sign(c) ∂c

= 2δ(c), where δ(·) is a Dirac delta function which is zero

everywhere except at 0, where δ(0) = ∞. Recall that we solve the problem of zero values by setting those values to a very small (but not zero) value, thus in our case δ(c) = 0 ∀c .

Proof of Theorem 2. The general model is given by: rt = λt t

(15)

2 2 1(rt >0) + γ2 rt−1 1(rt ≤0) + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0) λ2t = α + βλ2t−1 + γ1 rt−1

(16)

Since the error term t is i.i.d, it is then obvious that the error process (t )t∈Z is always strictly stationary and ergodic. Thus, (rt )t∈Z is a strictly stationary process if and only if (λt )t∈Z is strictly stationary. Therefore, the task of deriving the strict stationarity conditions 11

for the whole process (rt , λt )t∈Z can be reduced to deriving strict stationarity conditions for (λ2t )t∈Z , given by eq.(16).

Let's now express (λ2t )t∈Z solely in terms of the error process (t )t∈Z . Repeatedly subsituting for λ2t−1 in eq.(16) , we have: ! t t i−1 Y X Y λ2t = λ0 (β+(γ1 +γ2 )2t−i )+ (β + (γ1 + γ2 )2t−j−1 ) (α+ϕ1 2t−i 1(t >0) +ϕ2 2t−i 1(t ≤0) ), t ≥ 2 i=1

i=0

j=0

(17)

In order for eq.(17) to be well dened we need either to assume the trivial σ -algebra F0 (and a probability measure µ0 ) for the starting value λ20 or to assume that the system extends innitely far into the past. We proceed by implementing the former approach, dening:

P[λ20 ∈ Γ] = µ0(Γ)

∀Γ ∈ B

and

(18)

µ0 ((0, ∞)) = 1,

where B denotes the Borel sets on [0, ∞). In order to nd strict stationarity conditions of σt2 we next rewrite eq.(16) in the form of the stochastic dierence equation Yt+1 = At Yt + Bt ,

where Yt , At and Bt are given by:

At = β + (γ1 + γ2 )2t ,

Bt = α + ϕ1 2t+1 1(t >0) + ϕ2 2t+1 1(t ≤0)

and

Yt = λ2t

(19)

Since sequences (At )t∈N and (Bt )t∈N are measurable transformations of the stictly stationary and ergodic process ()t∈N we can make use of the Theorem 3.5.8 of Stout (1974) to claim that these sequences are strictly stationary and ergodic as well as the sequence Ψ = (At , Bt )t∈N . If we rewrite eq.17 in terms of eq.(19), it follows that (Yt )t∈N = (λ2t )t∈N is

the solution of the stochastic dierence equation Yt+1 = At Yt + Bt . Every such solution then

12

should satisfy the following representation: Yt+1 = At Yt +Bt = At At−1 Yt−1 +At Bt−1 +Bt = At At−1 At−2 Yt−2 +At At−1 Bt−2 +At Bt−1 +Bt = ! ! t t i−1 Y X Y = ··· = At−i Y0 + At−j Bt−i , (20) i=0

with the usual convention that

i=0

Q−1

j=0

j=0

At−j = 1 for the product over an empty index set.

Let's denote by Y an arbitrary R-valued random variable, which is dened on the same probability space as Ψ. The solution yt (Y, Ψ) of eq.(20) is then given by: 2

yt (Y, Ψ) =

t−1 Y

! Ai

Y0 +

i=0

t−1 X

t−1 Y

i=0

j=t−i

! Aj

(21)

Bt−i−1

We have shown earlier that the sequence Ψ = (At , Bt ) is strictly stationary and ergodic, we can now apply Theorem 1 of Brandt (1986) to deduce that yt (Ψ) =

P∞ Qt−1 i=0

j=n−i



Aj Bt−i−1 ,

t ∈ N is strictly stationary solution if and only if the following conditions are satised:

P(A0 = 0) > 0 or −∞ 5 E log |A0 | < 0

E ( log |B0 |)+ < ∞,

where x+ = max(0, x) for x ∈ R. Plugging in the expressions for A0 and B0 , given by eq.19 we get the following strict stationarity conditions:

−∞ 5 E log β + (γ1 + γ2 )20 < 0

+ E log α + ϕ1 20 1(0 >0) + ϕ2 20 1(0 ≤0) < ∞,

This completes the proof.

2 Note

that

Y

and

Ψ

should not necessarily be independent.

13

Proof of Theorem 3. Consider the general model: rt = λt t

(22)

2 2 λ2t = α + βλ2t−1 + γ1 rt−1 1(rt >0) + γ2 rt−1 1(rt ≤0) + ϕ1 2t 1(t >0) + ϕ2 2t 1(t ≤0)

(23)

Substituting eq.(23) into the squared eq.(22) yields:

2 2 rt2 = α2t + βλ2t−1 2t + (γ1 rt−1 1(rt >0) + γ2 rt−1 1(rt ≤0) )2t + ϕ1 4t 1(t >0) + ϕ2 4t 1(t ≤0)

(24)

The rst moments of rt2 and λ2t are given by:

    2 2 E[rt2 ] = α + βE[λ2t−1 ] + γ1 E[rt−1 |rt > 0] + γ2 E[rt−1 |rt ≤ 0] + ϕ1 E 4t |t > 0 + ϕ2 E 4t |t ≤ 0

(25) and     2 2 E[λ2t ] = α + βE[λ2t−1 ] + γ1 E[rt−1 |rt > 0] + γ2 E[rt−1 |rt ≤ 0] + ϕ1 E 2t |t > 0 + ϕ2 E 2t |t ≤ 0

(26) Combining eq.(25)-(26) then yields: E[rt2 ]

=

E[λ2t ]

   4 + (ϕ1 + ϕ2 ) E εt − 1

14

(27)

Denoting by η = E [ε4t ] − 1 and recursively subsituting eq.(27) into eq.(26) we get: 2 2 E[λ2t ] = α+βE[λ2t−1 ]+γ1 E[rt−1 |rt > 0]+γ2 E[rt−1 |rt ≤ 0]]+ϕ1 +ϕ2 = α+βE[λ2t−1 ]+  + (γ1 + γ2 ) E[λ2t−1 ] + η(ϕ1 + ϕ2 ) + ϕ1 + ϕ2 (28)

Rearranging the the above equation we get E[λ2t ] = α + (ϕ1 + ϕ2 )(η(γ1 + γ2 ) + 1) + (β + (γ1 + γ2 ))E[λ2t−1 ] =  = (α+(ϕ1 +ϕ2 )(η(γ1 +γ2 )+1))+(β+(γ1 +γ2 )) α + (ϕ1 + ϕ2 )(η(γ1 + γ2 ) + 1) + (β + (γ1 + γ2 ))E[λ2t−2 ] = · = · · · = (α + (ϕ1 + ϕ2 )(η(γ1 + γ2 ) + 1))

t−2 X

(β + (γ1 + γ2 ))i + (β + (γ1 + γ2 ))t−1 E[λ21 ]

i=0

Assuming weak stationarity, the E[λ21 ] is then given by: E[λ21 ] =

α + (ϕ1 + ϕ2 ) [η(γ1 + γ2 ) + 1] 1 − (β + γ1 + γ2 )

In order for E[λ21 ] to be positive and nite the following conditions of one of these two cases must be satised:   β + γ1 + γ2 < 1  α + (ϕ + ϕ ) [η(γ + γ ) + 1] > 0 1 2 1 2

  β + γ1 + γ2 > 1  α + (ϕ + ϕ ) [η(γ + γ ) + 1] < 0 1 2 1 2

Proof of Theorem 4. Recall that E[rt2 ] = E[λ2t ] + η(ϕ1 + ϕ2 ), thus the conditions for weak stationarity of E[r12 ]

15

become

  β + γ1 + γ2 < 1  α + (ϕ + ϕ )(1 + η − βη) > 0 1

or

2

  β + γ1 + γ2 > 1  α + (ϕ + ϕ )(1 + η − βη) < 0 1

2

and the unconditional variance of rt2 , E[r12 ], is given by E[r12 ] =

Proof of Theorem 5.

α + (ϕ1 + ϕ2 )(1 + η − βη) 1 − (β + γ1 + γ2 )

The proof is very similar to the one for the baseline model, we

therefore omit it.

Proof of Theorem 6. 2 2 λ4t = α2 +2αβλ2t−1 +2α(γ1 rt−1 1(rt >0) +γ2 rt−1 1(rt ≤0) )+2α2t (ϕ1 1(t >0) +ϕ2 1(t ≤0) )+β 2 λ4t−1 +

2 2 4 4 +2βλ2t−1 (γ1 rt−1 1(rt >0) +γ2 rt−1 1(rt ≤0) )++γ12 rt−1 1(rt >0) +γ22 rt−1 1(rt ≤0) +2βλ2t−1 2t (ϕ1 1(t >0) +ϕ2 1(t ≤0) )+ 2 2 +2(γ1 rt−1 1(rt >0) +γ2 rt−1 1(rt ≤0) )2t (ϕ1 1(t >0) +ϕ2 1(t ≤0) )+4t (ϕ21 1(t >0) +ϕ22 1(t ≤0) )

(29) Let's make use of the following notation, µj := E[jt (ϕ1 1(t >0) + ϕ2 1(t ≤0) )] (moments of t (ϕ1 1(t >0) + ϕ2 1(t <0) ) are derived in Appendix 2), k1 := γ1 1(rt >0) + γ2 1(rt <0) and k2 := ϕ1 1(t >0) + ϕ2 1(t <0) . Multiplying eq. (29) by 4t from both sides and taking expectations we

get E[rt4 ] = E[λ4t 4t ] which is then given by  E[rt4 ] = E[λ4t rt4 ] = α2 µ4 +2αβµ4 E[λ4t−1 ]+2α(γ1 +γ2 ) E[λt−1 ]2 + 2(ϕ1 + ϕ2 )) +β 2 µ4 E[λ2t−1 ]+  4 + k12 µ4 E[rt−1 ] + 2β(γ1 + γ2 )µ4 E[λ2t−1 ] E[λ2t−1 ] + 2(ϕ1 + ϕ2 )) + 2αµ6 k2 + 2βµ6 k2 E[λ2t−1 ]+  + 2(γ1 + γ2 )µ6 E[λ2t−1 ] + 2(ϕ1 + ϕ2 ) + µ8 k22

16

Rearranging the above equation and assuming that rt is fourth order stationary we get  E[r14 ] 1 − k12 µ4 = α2 µ4 +µ8 k22 +2αµ6 k2 +4(ϕ1 +ϕ2 )α(γ1 +γ2 )µ4 +4β(γ1 +γ2 )µ4 (ϕ1 +ϕ2 )+  +4(γ1 +γ2 )µ6 (ϕ1 +ϕ2 )+E[λ2t−1 ] 2αβµ4 + β 2 µ4 + 2βµ6 k2 + 2α(γ1 + γ2 )µ4 + 2(γ1 + γ2 )µ6 + 2  + 2β(γ1 + γ2 )µ4 E[λ2t−1 ]

which can be compactly written in the following form E[r14 ]

ξ1 + E[λ21 ]ξ2 + 2β(γ1 + γ2 )µ4 [E[λ21 ]] = 1 − k12 µ4

2

where ξ1 = α2 µ4 + µ8 k22 + 2αµ6 k + 4(ϕ1 + ϕ2 )α(γ1 + γ2 )µ4 + 4β(γ1 + γ2 )µ4 (ϕ1 + ϕ2 ) + 4(γ1 + γ2 )µ6 (ϕ1 + ϕ2 ) > 0 and ξ2 = (2αβµ4 + β 2 µ4 + 2βµ6 k + 2α(γ1 + γ2 )µ4 + 2(γ1 + γ2 )µ6 ) > 0.

Since E[r4 ] must be positive, k12 = (γ12 + γ22 ) must also satisfy: 1 − k12 E[4t ] > 0



(γ12 + γ22 ) <

1 E[4t ]

3 Further empirical results

3.1 Data The original data for application was bought from Kibot and constitutes DJ30 1-minute high-frequency return data, of which we picked IBM and GE for our empirical application. The data was then aggregated to 5-minutes for calculating the 5-minute realized volatility to serve as a proxy of the end-of-the day volatility. We also use the S&P500 index historical returns which is freely available from the realized library at Oxford-Man Institute of Quantitative Finance. This data includes the open-to-close daily returns and the 5-minute realized volatility.

17

3.2 Empirical results We start by providing the descriptive statistics of all the stocks in the applications. We then present additional results for the forecast evaluations for a dierent (from the main paper) splitting point. In particular, for IBM and GE stocks we use 3500 and 1000 observations for estimation and evaluation respectively. For S&P500 index we use 2500 and 500 observations for estimation and evaluation respectively. In addition, we also present the results of Hansen's (2005) Test for Superior Predictive Ability (SPA) for all stocks and all forecasting horizons.

18

19

3477

4772

4762

Sample size

Min

Max

0.0146 -0.0874 0.1291

St.dev.

2.7 ∗ 10−4

0.0112 -0.0935 0.1022

−4.11 ∗ 10−4 0.0167 -0.1367 0.1322

2.14 ∗ 10−4

Mean

-0.2780

0.0619

0.1623

13.7925

11.9920

7.5856

16919

16080

4192

Skewness Kurtosis Normality Test

The sample period is January 2, 2002 through August 29, 2008. The Normality Test is the Jarque-Bera test which has χ2 distribution with 2 degrees of

S&P 500 28/01/2003-1/12/2016

2/01/1998-1/12/2016

2/01/1998 - 1/12/2016

Dates (DD/MM/YY)

freedom under the null hypothesis of normally distributed errors. The 5% critical value is, therefore, 5.99.

Note:

3

GE

IBM

1

2

Returns

Dataset #

Table 1: Descriptive statistics of the datasets.

20

MSE 7.7463 7.5221 7.6131 7.6200 7.5321 7.5321 7.4786 7.4709 10.6315 10.6642 0.0180 0.0180

pM CS 0.0860? 0.9800? 0.6450? 0.2310? 0.7930? 0.7930? 0.9800? 1?

MSE 8.1501 7.9944 7.7985 7.8180 8.2112 8.2112 8.2394 8.5474 12.0087 12.3391 0 0

pM CS 0.2260? 0.4950? 1? 0.9220? 0.0407 0.0407 0.0020 0.0020

GE MSE 3.0635 2.3407 2.3647 3.2466 3.0900 3.0900 3.5230 2.9446 3.3888 3.6002 0.0040 0.0030

pM CS 0.0200 0.7410? 1? 0.0076 0.0250 0.0250 0.0050 0.1410?

S&P 500

MSE 7.2190 7.1344 8.2480 7.3727 6.9187 6.9187 6.7465 6.7475 10.6647 10.7480 pM CS 0.3350? 0.3350? 0.0030 0.0190 0.3350? 0.3350? 1? 0.9000?

IBM

MSE 7.6631 7.4285 7.4972 7.5034 7.4990 7.4990 7.5338 7.1448 12.5353 12.8422

GE

5-step ahead volatility forecasts

S&P 500

pM CS MSE pM CS 0.0010 2.4406 0.8980? 0.4250? 2.2203 1? ? 0.4250 2.9394 0.0030 0.0020 2.6726 0.0840? 0.0650? 2.5065 0.0840? 0.0650? 2.5065 0.0840? 0.0005 3.0442 0.0010 ? 1 2.5014 0.4510? 0.0030 0 3.6407 0.0010 0.0030 0 3.8242 0.0010 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

1-step ahead volatility forecasts

Table 2: Forecasts evaluation based on MSE loss (full sample)

21

MSE 7.7152 8.1210 9.6969 7.3950 7.3143 7.3143 7.1370 6.7755 10.8180 10.8315

pM CS 0.0600? 0.0220 0.0040 0.1200? 0.2100? 0.2100? 0.4400? 1?

MSE 8.1713 7.8414 8.1607 7.7765 7.9002 7.9002 7.9059 7.7423 13.0564 13.1357

pM CS 0.0020 0.3370? 0 0.8810? 0.0330 0.0330 0.0070 1?

GE

MSE 2.3666 2.7384 3.2950 2.6656 2.8557 2.8557 3.0443 2.6921 4.9484 4.9833

S&P 500

pM CS 0.2280? 0 0.0010 0.0540? 0.0230 0.0230 0.0210 1?

IBM

MSE 7.2884 8.8373 8.4532 6.6619 7.5387 7.5387 7.5980 6.4964 9.5910 9.5793

MSE 8.7735 8.4173 1.8763 8.1922 8.5938 8.5938 8.5702 8.5495 13.4800 13.4706

pM CS 0 0.4340? 0 1? 0.2320? 0.2320? 0 0.4340?

GE

S&P 500

MSE 2.3117 3.0292 4.2312 2.6328 3.1654 3.1654 3.1615 2.7804 4.3769 4.0984

pM CS 1? 0.0500? 0 0.0860? 0.0220 0.0220 0.0280 0.0580? 0 0 0 0 0 0 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

15-step ahead volatility forecasts

pM CS 1? 0.0080 0.0080 0.2370? 0.0080 0.0080 0.0080 0.0080 0.0030 0 0 0.0030 0 0 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

10-step ahead volatility forecasts

Table 3: Forecasts evaluation based on MSE loss (full sample)

22

QLIKE 1.6699 1.6346 1.6463 1.7975 1.7491 1.7491 1.7680 1.7675 4.4698 4.5641 0 0

pM CS 0.2070? 1? 0.4190? 0 0.0300 0.0300 0.0110 0.0110

QLIKE 1.8956 1.8712 1.8469 1.9312 1.9110 1.9110 1.9126 1.9303 3.6475 3.5951 0.0020 0 0 0

pM CS 0.0050 0.0590? 1? 0.0050 0.0050 0.0050

GE QLIKE 1.1945 1.1731 1.2018 1.1964 1.1992 1.1992 1.2121 1.2190 1.7107 1.8226 0 0

0.0020 0.0010

0.0030 0.0030

pM CS 0.3730? 1? 0.1870? 0.2120?

S&P 500

QLIKE 1.5883 1.6342 1.7512 1.6917 1.5965 1.5965 1.5925 1.5892 4.8455 4.7744 0 0

pM CS 1? 0.0020 0 0.0020 0.0240 0.0240 0.0640? 0.9980?

IBM

QLIKE 1.8344 1.8209 1.8626 1.8733 1.8233 1.8233 1.8242 1.8214 3.8940 3.8821

0.0080 0.0080 0.0080

pM CS 0.0080 1? 0.0030 0.0030

0 0

0.9240?

GE

5-step ahead volatility forecasts

0.0020 0.0020

pM CS 1? 0.0040 0.0040 0.0130 0.0130 0.0130 0.0040 0.0960?

S&P 500 QLIKE 1.1494 1.2149 1.3692 1.1588 1.1586 1.1586 1.1885 1.1503 1.9021 2.0884

Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

1-step ahead volatility forecasts

Table 4: Forecasts evaluation based on QLIKE loss (full sample)

23

QLIKE 1.6380 1.7283 1.9339 1.6631 1.6477 1.6477 1.6564 1.6534 5.1174 5.2332 0 0

pM CS 1? 0.0170 0.0170 0.5300? 0.8600? 0.8600? 0.7000? 0.7500?

QLIKE 1.8422 1.8413 1.9578 1.8657 1.8539 1.8539 1.8523 1.8270 4.2593 3.9802 0 0

0.1380? 1?

0.0310 0.0310

pM CS 0.2140? 0.2140? 0.0050 0.0010

GE QLIKE 1.1708 1.3044 1.5653 1.1779 1.2177 1.2177 1.2309 1.2051 2.2480 2.4818 0 0

pM CS 1? 0.0020 0.0010 0.1420? 0.0020 0.0020 0.0020 0.0030

S&P 500

QLIKE 1.5951 1.7442 1.9423 1.5507 1.6301 1.6301 1.6765 1.5594 4.9485 4.9358 0 0

pM CS 0.1780? 0.0160 0.0010 1? 0.0300 0.0300 0.0170 0.7960?

IBM

QLIKE 1.8787 1.8815 2.0533 1.8766 1.9022 1.9022 1.8994 1.8750 4.3935 4.0953

0 0

pM CS 0.9800? 0.9730? 0.0005 0.9800? 0.0415 0.0415 0.4490? 1?

GE

15-step ahead volatility forecasts

0 0

pM CS 1? 0.0030 0 0.9760? 0.0320 0.0320 0.0320 0.0410

S&P 500 QLIKE 1.1889 1.3582 1.7091 1.1957 1.2735 1.2735 1.2662 1.2475 2.6542 2.8627

Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

10-step ahead volatility forecasts

Table 5: Forecasts evaluation based on QLIKE loss (full sample)

24

MSE 6.7167 6.3892 6.5041 6.7018 6.7627 6.7627 6.8142 6.9739 9.7043 9.8900 0.0010 0.0010

pM CS 0.2030? 1? 0.3580? 0.2610? 0.0710? 0.0710? 0.0480 0.0300

MSE 8.5147 8.2735 7.8039 8.9624 8.8659 8.8659 9.0494 9.1617 11.7697 11.8497

GE

0 0

pM CS 0.0010 0.0090 1? 0.0010 0.0010 0.0010 0.0010 0.0010

MSE 0.9792 0.9170 0.7468 0.8677 0.9356 0.9356 0.9556 1.0148 1.2867 1.2867 pM CS 0.0050 0.0080 1? 0.0080 0.0080 0.0080 0.0080 0.0050

0.0050 0.0050

S&P 500

MSE 5.5722 5.3574 6.9006 5.9271 5.4976 5.4976 5.6150 5.4914 9.3924 9.5864 pM CS 0.7020? 1? 0.0330 0.0910? 0.7410? 0.7410? 0.0910? 0.7410?

IBM

MSE 8.0393 7.7015 7.5956 8.7449 8.0786 8.0786 8.4446 8.1116 12.2431 12.3219

GE

5-step ahead volatility forecasts

S&P 500

pM CS MSE pM CS 0.0470 0.7123 0.0050 ? 0.7470 0.6629 0.1980? ? 1 0.6963 0.1570? 0.0010 0.7232 0.0050 0.0220 0.7242 0.0050 0.0220 0.7242 0.0050 0.0030 0.7215 0.0050 0.0030 0.5777 1? 0.0010 0 1.4434 0 0.0010 0 1.4242 0 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

1-step ahead volatility forecasts

Table 6: Forecasts evaluation based on MSE loss (pre-crisis period)

25

MSE 6.0329 6.3490 7.4060 6.1188 5.7626 5.7626 5.8161 5.8161 9.7543 9.8677

pM CS 0.5740? 0.1010? 0.0030 0.1010? 1? 1? 0.8670? 0.8670?

MSE 8.1277 7.7152 9.2257 8.7023 7.9221 7.9121 8.2775 8.0458 12.5970 12.6200

GE

pM CS 0.0150 1? 0.0010 0.0030 0.0200 0.0200 0.0150 0.0160

MSE 0.6861 0.6749 0.8790 0.7219 0.8677 0.8677 0.7932 0.7206 1.5362 1.4465

S&P 500

pM CS 0.3230? 0 0 0.8000? 0.8000? 0.8000? 0.8000? 1?

IBM

MSE 6.3493 7.3264 7.3221 6.2503 6.2536 6.2536 6.1988 6.1269 9.9399 9.9348

MSE 8.2510 7.8282 9.7927 8.6674 8.0534 8.0534 8.3260 8.1217 12.7783 12.7865

pM CS 0.0670? 1? 0.0010 0.0100 0.0670? 0.0670? 0.0670? 0.0670?

GE

S&P 500

MSE 0.7336 0.7507 1.1247 0.7722 1.0698 1.0698 0.9628 0.9649 1.5680 1.4721

pM CS 1? 0.3330? 0.0060 0.3330? 0.0430 0.0430 0.0970? 0.0510? 0 0.0010 0.0060 0 0.0010 0.0060 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

15-step ahead volatility forecasts

pM CS 0.4630? 1? 0.0200 0.4630? 0.0460 0.0460 0.2720? 0.4630? 0 0 0.0020 0 0 0.0020 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

10-step ahead volatility forecasts

Table 7: Forecasts evaluation based on MSE loss (pre-crisis period)

26

QLIKE 1.8275 1.7611 1.7647 1.8899 1.8626 1.8626 1.8591 1.8782 4.4555 4.5577 0 0

pM CS 0.0470 1? 0.8270? 0.0470 0.0470 0.0470 0.0470 0.0470

QLIKE 1.8366 1.7946 1.7524 1.9925 1.9136 1.9136 1.9427 1.9661 4.3848 4.2149 0.0005 0.0005 0 0

pM CS 0.0440 0.0900? 1? 0.0010 0.0010 0.0010

GE QLIKE 1.1107 1.0841 1.0343 1.0823 1.1038 1.1038 1.1110 1.1251 1.7249 1.7753 pM CS 0.0070 0.0070 1? 0.0110

0 0

0.0010 0.0010

0.0070 0.0070

S&P 500

QLIKE 1.6874 1.7003 1.8277 1.7682 1.6994 1.6994 1.6925 1.6949 4.7130 4.8067 0 0

pM CS 1? 0.0360 0.0100 0.0100 0.5180? 0.5180? 0.9420? 0.9420?

IBM

QLIKE 1.7618 1.7257 1.7840 1.9373 1.7534 1.7534 1.7892 1.8197 4.6344 4.6010

GE

5-step ahead volatility forecasts

0.0400 0.0160 0.0050 0.0050 0 0.0030

pM CS 0.0400 1? 0.0050 0.0400

0 0

pM CS 0.0130 0.2000? 0.0130 0.0130 0.0130 0.0130 0.0130 1?

S&P 500 QLIKE 1.0443 1.0250 1.0417 1.0424 1.0444 1.0444 1.0468 1.0061 2.0014 1.9824

Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

1-step ahead volatility forecasts

Table 8: Forecasts evaluation based on QLIKE loss (pre-crisis period)

27

QLIKE 1.7187 1.7784 1.9869 1.7761 1.7214 1.7214 1.7203 1.7063 5.1874 5.2865 0 0

pM CS 0.3460? 0.0120 0.0500? 0.0120 0.2200? 0.2200? 0.2200? 1?

QLIKE 1.7532 1.7281 1.8860 1.9117 1.7382 1.7382 1.7548 1.7705 5.0168 4.9003 0 0

pM CS 0.1470? 1? 0 0 0.1470? 0.1470? 0.1470? 0.1220?

GE QLIKE 1.0285 1.0240 1.1043 1.0370 1.0837 1.0837 1.0551 1.0279 2.1537 2.0969 pM CS 0.5910? 1? 0.0330 0.2250? 0.0040 0.0040 0.1620? 0.7240?

0 0

S&P 500

QLIKE 1.7429 1.8350 1.9367 1.7804 1.7607 1.7607 1.7525 1.7298 5.4927 5.0503 0 0.0030

pM CS 0.1970? 0.0050 0.0010 0.0650? 0.0650? 0.0650? 0.1970? 1?

IBM

QLIKE 1.7497 1.7416 1.9780 1.8851 1.7514 1.7514 1.7532 1.7512 5.2806 5.0949

0 0

pM CS 0.8630? 1? 0.0030 0.0030 0.2020? 0.2020? 0.2020? 0.8630?

GE

15-step ahead volatility forecasts

0.0020 0.0020

pM CS 1? 0.2750? 0.0040 0.0570? 0.0040 0.0040 0.0130 0.0380

S&P 500 QLIKE 1.0369 1.0438 1.1648 1.0489 1.1760 1.1760 1.1139 1.0965 2.3087 2.2251

Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

10-step ahead volatility forecasts

Table 9: Forecasts evaluation based on QLIKE loss (pre-crisis period)

28

MSE 6.2327 5.9920 5.9683 6.0514 6.1056 6.1056 6.1244 6.3716 7.5156 7.5863 0 0

pM CS 0.0120 0.1290? 1? 0.1290? 0.0485 0.0485 0.0300 0.0100

MSE 18.7194 18.4969 18.9934 18.8168 18.9128 18.9128 18.9858 18.9847 21.0603 21.1826 0 0

pM CS 0.2430? 1? 0 0.0530? 0.0010 0.0010 0 0

GE MSE 2.9334 2.5160 2.0691 3.7069 2.7454 2.7454 3.1765 3.9746 3.0103 3.1124 0.0020 0.0020

pM CS 0.0030 0.2220? 1? 0 0.0450 0.0450 0.0020 0

S&P 500

MSE 5.6666 5.4313 5.5147 5.3890 5.7514 5.7514 5.5878 5.5871 7.7353 7.7649 pM CS 0.0860? 0.5590? 0.5590? 1? 0 0 0.3490? 0.3490?

IBM

MSE 17.0593 16.7183 18.4381 17.5382 17.5499 17.5499 17.5415 17.5423 21.5986 21.6292

GE

5-step ahead volatility forecasts

S&P 500

pM CS MSE pM CS ? 0.5030 1.4610 1? 1? 1.5339 0.3320? 0 2.1450 0.0010 0.0410 2.5506 0.0010 0.0010 2.4824 0.0010 0.0010 2.4824 0.0010 0.0010 2.4313 0.0010 0.0010 2.3337 0.0010 0 0 3.4718 0 0 0 3.4438 0 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

1-step ahead volatility forecasts

Table 10: Forecasts evaluation based on MSE loss (crisis and post-crisis period)

29

MSE 6.2682 6.1328 7.1830 6.0047 6.3446 6.3446 6.3124 6.3195 7.9433 7.9682

pM CS 0.3810? 0.4890? 0 1? 0.0200 0.0200 0.1340? 0.1340?

MSE 18.0992 18.0221 18.2768 18.4066 18.5479 18.5479 18.5323 18.5323 22.0640 22.0184

pM CS 0.7830? 1? 0.5500? 0.4100? 0.0040 0.0040 0.0040 0.0040

GE

MSE 1.5839 1.8795 3.2326 2.5872 2.0659 2.0659 3.3424 3.8959 3.8312 3.7899

S&P 500

pM CS 0.0375 0.8260? 0 1? 0.0420 0.0420 0.0400 0.0400

IBM

MSE 6.4385 6.4249 8.9399 6.2829 6.4109 6.4109 6.4271 6.4271 7.8991 7.8436

MSE 18.9034 19.0633 18.9831 19.0384 19.2771 19.2771 19.3308 19.4422 22.3056 22.3674

pM CS 1? 0.6960? 0.8150? 0.4860? 0.0010 0.0010 0.0010 0.0010

GE

S&P 500

MSE 2.7712 3.0348 5.1513 4.6473 3.4050 3.4050 5.9951 6.4489 3.3435 3.3017

pM CS 1? 0.2970? 0 0.0010 0.0240 0.0240 0 0 0 0 0.0190 0 0 0.0190 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

15-step ahead volatility forecasts

pM CS 1? 0.0920? 0.0005 0.0030 0.0030 0.0030 0.0005 0.0005 0 0 0 0 0 0 Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

10-step ahead volatility forecasts

Table 11: Forecasts evaluation based on MSE loss (crisis and post-crisis period)

30

QLIKE 1.6420 1.5585 1.5547 1.6014 1.6324 1.6324 1.6385 1.7007 3.6716 3.7560 0 0

pM CS 0.0010 0.0170 1? 0.0020 0.0010 0.0010 0.0010 0

QLIKE 1.7096 1.6412 1.7169 1.7256 1.7634 1.7634 1.7388 1.7861 6.1544 6.3239 0.0070 0.0070 0 0

pM CS 0.1100? 1? 0.2430? 0.1010? 0.0070 0.0070

GE QLIKE 0.8979 0.8974 0.9357 0.8839 0.8989 0.8989 0.9002 0.9118 1.5393 1.5286 0 0

pM CS 0.7740? 0.7740? 0.1460? 1? 0.6520? 0.6520? 0.1590? 0.1460?

S&P 500

QLIKE 1.4865 1.4819 1.5107 1.4573 1.5021 1.5021 1.4982 1.4982 4.2910 4.2648 0 0

pM CS 0.0280 0.3680? 0.0130 1? 0.0280 0.0280 0.0320 0.0320

IBM

QLIKE 1.4975 1.4834 1.5652 1.5516 1.5094 1.5094 1.5960 1.5960 6.7186 7.0263

0.0370 0.0370 0 0 0 0

pM CS 0.3950? 1? 0.0020 0.0020

GE

5-step ahead volatility forecasts

0 0

pM CS 1? 0.0130 0.0010 0.3430? 0.0140 0.0140 0.0010 0.02200

S&P 500 QLIKE 0.8930 0.9429 1.0983 0.8710 0.9117 0.9117 0.9870 0.8838 1.8969 2.0189

Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

1-step ahead volatility forecasts

Table 12: Forecasts evaluation based on QLIKE loss (crisis and post-crisis period)

31

QLIKE 1.5782 1.5455 1.6307 1.5081 1.5930 1.5930 1.5592 1.5696 4.3180 4.3838 0 0

pM CS 0.0790? 0.2720? 0.0110 1? 0.0390 0.0390 0.1210? 0.1210?

QLIKE 1.5290 1.5483 1.5562 1.5757 1.5592 1.5592 1.5625 1.5566 8.3275 6.9157 0 0

0.0960?

0.0450

pM CS 1? 0.4230? 0.4230? 0.0450 0.1000? 0.1000?

GE QLIKE 0.7839 0.9516 1.2066 0.8058 0.9034 0.9034 1.0620 0.9089 1.9029 1.9891 0 0

pM CS 1? 0.0030 0.0030 0.1770? 0.0040 0.0040 0.0010 0.0040

S&P 500

QLIKE 1.6010 1.5656 1.7161 1.5384 1.5854 1.5854 1.5755 1.5750 3.9585 3.3071 0 0

pM CS 0.0270 0.5610? 0.0100 1? 0.0330 0.0330 0.5610? 0.5610?

IBM

QLIKE 1.5587 1.6058 1.5732 1.5944 1.6096 1.6096 1.6089 1.6014 6.7221 7.0731

0 0

pM CS 1? 0.2000? 0.4700? 0.2890? 0.0400 0.0400 0.0400 0.2000?

GE

15-step ahead volatility forecasts

0 0

pM CS 1? 0.0220 0.0100 0.2700? 0.0220 0.0220 0.0100 0.0220

S&P 500 QLIKE 0.9650 1.1436 1.4201 0.9916 1.1129 1.1129 1.2943 1.1286 2.4365 2.4325

Note: pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

Note:

pM CS are the p-values from Model Condence Set test of Hansen et al.(2011). The p-values that are c? . marked with a ? are those in the model condence set M 95%

Model RT-GARCH RT-GARCH-L RT-GARCH-LF A-PARCH(2,2)-St.t distr. GARCH(1,1)-N (0, 1) GARCH(1,2)-N (0, 1) GARCH(1,1)-St.t distr. GARCH(1,2)-St.t distr. Simple NoVaS Exponential NoVaS

IBM

10-step ahead volatility forecasts

Table 13: Forecasts evaluation based on QLIKE loss (crisis and post-crisis period)

32

0.0450 0.0580 0.0650 0.0300 0.0300 0.0550 0.1170 0.2570 0.3940 0.0260 0.0390 0.1150 0.0260 0.0390 0.1150 0.1180 0.1260 0.1450 1 1 1 0 0 0 0 0 0

SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au

Real-time GARCH

Real-time GARCH-L

Real-time GARCH-LF

A-PARCH(2,2) St.t distr.

GARCH(1,1)-N (0, 1)

GARCH(1,2)-N (0, 1)

GARCH(1,1)-St.t distr.

GARCH(1,2)-St.t distr.

Simple NoVaS

Exponential NoVaS

0 0 0

0 0 0

0.0020 0.0020 0.0020

0.0060 0.0060 0.0060

0.0050 0.0130 0.0270

0.0200 0.0200 0.0200

0.5450 0.6710 0.7860

0.0250 0.0250 0.0670

1 1 1

QLIKE 0.5390 0.5990 0.9470

p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0

0 0 0

1 1 1

0.1010 0.1010 0.1580

0.0010 0.0010 0.0010

0.0010 0.0010 0.0010

0.0010 0.0020 0.0030

0.0005 0.0005 0.0005

0.0010 0.0010 0.0050

MSE 0.1760 0.1760 0.5210

h=5

0 0 0

0 0 0

0.0070 0.0070 0.0070

0 0 0

0.0010 0.0010 0.0010

0.0010 0.0010 0.0010

0.0160 0.0160 0.0160

0.0010 0.0010 0.0010

0.0010 0.0010 0.0010

QLIKE 1 1 1

p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0

0 0 0

0.0950 0.0950 0.1130

0.0950 0.0950 0.1130

0.0020 0.0200 0.0840

0.0010 0.0200 0.0840

1 1 1

0 0 0

0.0020 0.0020 0.0020

MSE 0.1000 0.3000 0.5040

0 0 0

0 0 0

0.0110 0.0200 0.0220

0.0110 0.0200 0.0200

0.0050 0.0050 0.0060

0.0050 0.0050 0.0060

1 1 1

0.0015 0.0015 0.0050

0.0020 0.0020 0.0040

QLIKE 0.1100 0.1140 0.2000

h=10 p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0

0 0 0

0.0010 0.0020 0.0140

0.0020 0.0020 0.0030

0.0020 0.0020 0.0040

0.0020 0.0020 0.0040

1 1 1

0.0010 0.0010 0.0040

0.0410 0.0410 0.0580

MSE 0.2090 0.3830 0.5910

h=15

0 0 0

0 0 0

0.0020 0.0030 0.0180

0.0020 0.0020 0.0020

0.0020 0.0020 0.0040

0.0020 0.0020 0.0040

1 1 1

0.0010 0.0010 0.0050

0.0380 0.0380 0.0660

QLIKE 0.1500 0.1500 0.3050

Note: Table reports the p-value of Hansen's (2005) Superior Predictive Ability test statistics (SP Ac ), described by eq. (??),as well as its lower (SP Al ) and upper (SP Au ) bounds for dierent forecast horizons.

MSE 0.0290 0.0290 0.0440

p

h=1

SP Al SP Ac SP Au

Benchmark

Forecast horizon h

Table 14: Test for Superior Predictive ability (SPA) for IBM data.

33

0.7030 0.9080 0.9080 1 1 1 0.4610 0.6860 0.7230 0.0770 0.0770 0.0800 0.0770 0.0770 0.0800 0.0530 0.0530 0.1000 0.0670 0.0670 0.0690 0.0010 0.0010 0.0010 0 0 0

SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au

Real-time GARCH

Real-time GARCH-L

Real-time GARCH-LF

A-PARCH(2,2) St.t distr.

GARCH(1,1)-N (0, 1)

GARCH(1,2)-N (0, 1)

GARCH(1,1)-St.t distr.

GARCH(1,2)-St.t distr.

Simple NoVaS

Exponential NoVaS

0 0 0

0 0 0

0.0070 0.0070 0.0090

0.0070 0.0080 0.0090

0.0050 0.0050 0.0060

0.0050 0.0050 0.0060

0.0170 0.0170 0.0180

0.4010 0.4080 0.6070

1 1 1

QLIKE 0.0030 0.0420 0.0800

p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0

0 0 0

1 1 1

0.0890 0.0890 0.0970

0.0150 0.0150 0.0390

0.0150 0.0150 0.0390

0.0470 0.0500 0.0500

0 0 0

0.0820 0.1280 0.1360

MSE 0.0740 0.0980 0.1090

h=5

0 0 0

0 0 0

0.0120 0.0120 0.0420

0.0020 0.0020 0.0020

0.0040 0.0040 0.0040

0.0040 0.0040 0.0040

0.0340 0.0610 0.0660

0 0 0

0.0400 0.0540 0.0580

QLIKE 1 1 1

p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0.0010 0.0010

0 0 0.0030

1 1 1

0.0020 0.0020 0.0090

0 0 0

0 0 0

0.4450 0.6060 0.8920

0 0 0

0.0010 0.0520 0.0600

MSE 0.1320 0.1470 0.2090

0 0 0

0 0 0

0.2060 0.2600 0.5530

0.0010 0.0020 0.0030

0 0 0

0 0 0

0.2560 0.2560 0.5500

0 0 0

0.0400 0.0510 0.0510

QLIKE 1 1 1

h=10 p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0.0020

0 0 0.0010

0.0020 0.0020 0.0190

0 0 0.0020

0.0010 0.0010 0.0060

0.0010 0.0010 0.0060

1 1 1

0.0010 0.0010 0.0040

0.0010 0.0010 0.0050

MSE 0.0760 0.1130 0.1610

h=15

0 0 0

0 0 0

0.0010 0.0010 0.0030

0 0.0010 0.0020

0.0010 0.0010 0.0060

0.0010 0.0010 0.0060

1 1 1

0.0010 0.0010 0.0040

0.0010 0.0010 0.0050

QLIKE 0.1080 0.1080 0.3750

Note: Table reports the p-value of Hansen's (2005) Superior Predictive Ability test statistics (SP Ac ), described by eq. (??),as well as its lower (SP Al ) and upper (SP Au ) bounds for dierent forecast horizons.

MSE 0.1290 0.1340 0.1340

p

h=1

SP Al SP Ac SP Au

Benchmark

Forecast horizon h

Table 22: Test for Superior Predictive ability (SPA) for GE data.

34

0.2100 0.2410 0.2450 1 1 1 0.0050 0.0450 0.0170 0.0300 0.0450 0.0450 0.0300 0.0450 0.0450 0.0430 0.0460 0.1170 0.0710 0.0860 0.0890 0 0 0 0 0 0

SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au SP Al SP Ac SP Au

Real-time GARCH

Real-time GARCH-L

Real-time GARCH-LF

A-PARCH(2,2) St.t distr.

GARCH(1,1)-N (0, 1)

GARCH(1,2)-N (0, 1)

GARCH(1,1)-St.t distr.

GARCH(1,2)-St.t distr.

Simple NoVaS

Exponential NoVaS

0 0 0

0 0 0

0.7870 0.9750 0.9940

0.0600 0.0650 0.1460

0.0300 0.0450 0.0700

0.0300 0.0450 0.0700

1 1 1

0.0020 0.0020 0.0150

0.1040 0.1230 0.1260

QLIKE 0.1050 0.1150 0.1740

p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0

0 0 0

0.2100 0.3500 0.4360

0.2100 0.2740 0.2750

0.0410 0.0440 0.0490

0.0410 0.0440 0.0490

0.4330 0.7500 0.8590

0.0400 0.0550 0.0628

1 1 1

MSE 0.1050 0.1260 0.3800

h=5

0 0 0

0 0 0

0.0010 0.0010 0.0040

0.0020 0.0020 0.0050

0.0380 0.0390 0.0470

0.0380 0.0390 0.0470

1 1 1

0.0020 0.0040 0.0050

0.0050 0.0050 0.0200

QLIKE 0.0910 0.1090 0.3000

p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0

0 0 0

0.0110 0.0320 0.0380

0.0110 0.0350 0.0380

0.0120 0.0120 0.0150

0.0120 0.0120 0.0150

0.1420 0.2030 0.4380

0.0200 0.0220 0.0350

0.0020 0.0020 0.0020

MSE 1 1 1

0 0 0

0 0 0

0.0020 0.0090 0.0120

0.0010 0.0090 0.0120

0.0130 0.0170 0.0250

0.0130 0.0170 0.0250

1 1 1

0.0010 0.0010 0.0010

0.0050 0.0090 0.0100

QLIKE 0.2500 0.5500 0.6900

h=10 p

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

SP Al SP Ac SP Au

0 0 0

0 0 0

0.0200 0.0220 0.0220

0.0180 0.0220 0.0310

0.0020 0.0220 0.0220

0.0020 0.0220 0.0220

0.1950 0.1950 0.4100

0.0010 0.0050 0.0100

0.0070 0.0070 0.0080

MSE 1 1 1

h=15

0 0 0

0 0 0

0.0450 0.0550 0.0850

0.0450 0.0550 0.0870

0.0300 0.0350 0.0850

0.0300 0.0350 0.0850

1 1 1

0.0156 0.0164 0.0323

0.0010 0.0010 0.0040

QLIKE 0.6380 0.8800 0.9770

Note: Table reports the p-value of Hansen's (2005) Superior Predictive Ability test statistics (SP Ac ), described by eq. (??),as well as its lower (SP Al ) and upper (SP Au ) bounds for dierent forecast horizons.

MSE 0.0010 0.0100 0.0200

p

h=1

SP Al SP Ac SP Au

Benchmark

Forecast horizon h

Table 23: Test for Superior Predictive ability (SPA) for S&P 500 data.

In order to show that the Real-time GARCH model is a better approximation to the data than the GARCH(1,1)-N model, we plot the error density forecasts. The errors fot ˆ γˆ , ϕˆ can the RT-GARCH, similarly to the standard GARCH case, given the estimates αˆ , β,

be obtained recursively as follows: set the initial value for λˆ 1= 1, then calculate ˆb1 = q ˆ 1 + γˆ r2 , use this expression to get ˆ2 = ˆb2 + 4r2 ϕˆ − ˆb1 /2ϕˆ, which in turn can be α ˆ + βˆλ 2 1 1 used to further update λˆ 2 = ˆb1 + ϕˆ ˆ2 and then get the next error term ˆ3 .

Figure 1:

Plot of the error density forecasts for IBM stock.

. The gure displays the error density forecasts. p The histogram corresponds to t+l = rt+l / K(Xσ )t+l , where K(Xσ ) is the realized kernel. The dashed line represents ˆ t+l for the the kernel density estimator of the t+l = rt+l /ˆ σt+l for the standard GARCH(1,1) model and t+l = rt+l /λ Real-time GARCH models.

35

Figure 2:

Plot of the error density forecasts for GE stock.

. The gure displays the error density forecasts. The p histogram corresponds to t+l = rt+l / K(Xσ )t+l , where K(Xσ ) is the realized kernel. The dashed line represents ˆ t+l for the the kernel density estimator of the t+l = rt+l /ˆ σt+l for the standard GARCH(1,1) model and t+l = rt+l /λ Real-time GARCH models.

36

Plot of the error density forecasts for S&P 500 Index.

Figure 3: . The gure displays the error density p forecasts. The histogram corresponds to t+l = rt+l / K(Xσ )t+l , where K(Xσ ) is the realized kernel. The dashed line represents the kernel density estimator of the t+l = rt+l /ˆ σt+l for the standard GARCH(1,1) model and t+l = ˆ t+l for the Real-time GARCH models. rt+l /λ

References [1] Brandt, A., 1986, The stochastic equation Yn+1 = An Yn +Bn with stationary coecients,

Advances in Applied Probability , 18, pp. 211-220. [2] Hansen, P. R., 2005, A test for superior predictive ability, Journal of Business&Economic

statistics,23(4), 365-380.

[3] Stout, W.F., 1974, Almost sure convergence, probability and mathematical statistics, New York: Academic press.

37

Supplementary material for "Real-time GARCH: Does ...

Jul 22, 2016 - Below we present the summary statistics for all datasets as well as results of applying Hansen's. (2005) Test for Superior Predictive Ability ...

541KB Sizes 0 Downloads 234 Views

Recommend Documents

Supplementary Material
Jan Heufer ∗. *TU Dortmund University, Department of Economics and Social Science, 44221 Dortmund,. Germany. .... 3 More Details on the Data Analysis.

Supplementary Material for
Fujitsu Research & Development Center Co., Ltd, Beijing, China. {wangzhengxiang,rjliu}@cn.fujitsu.com. Abstract. This supplementary material provides the ...

Supplementary Material for
Aug 3, 2016 - alternatives are “autocracy and risk-sharing” and “democracy and investment.” In other words, the .... whether seizing power. A coup is .... Our main sources are Galasso (1976), Stearns (2001), and Ortu (2005). References.

Supplementary Material for
Sep 25, 2015 - Using archived and field-collected worker bumble bees, we tested for temporal changes in the tongue ... (Niwot Ridge Long Term Ecological Research Site, 40°3.567'N, 105°37.000'W), and by. P. A. Byron (17) ... these transects did not

Supplementary Material
gaze fixation point is detected by an eye tracker. ∗indicates equal contribution. (a) Random ... 1) confirms quanti- tatively our intuition, that the location of the hands are in- deed important for learning about hand-object interactions. Based on

Supplementary Material - Arkivoc
General Papers. ARKIVOC 2015 (vii) S1-S13. Page S3. ©ARKAT-USA, Inc. δ /ppm. 1. H Assignment. 8.60 (brs, 1H). 5.35 (t, J = 7.3 Hz, 1H). 5.08 (t, J = 6.1 Hz, ...

Supplementary Material
By the definition of conjunctive pattern, since S does not satisfy pc, then S ... Then there exists at least one instance of p o in S: {I1,I2,...,Im},. I1 ∈ I(p c. 1 ,S),...,Im ∈ I(p c m,S), such that ∀t1 ∈. I1,..., ∀tm ∈ Im,t1 < t2 < ...

Supplementary Material
and Business Cycles Conference, the Bank of Canada 2014 Fellowship ..... CGH exhibited an upward trend in the frequency of sales that could explain why they find ...... 12Fox and Sayed (2016) use the IRI scanner dataset to document the ...

Supplementary Material
The data are provided a for 10 subsectors, which I aggregate up to three sectors as follows. ... CAN Canada ...... Structural change in an open economy. Journal ...

Supplementary Material
SVK Slovakia. CYP Cyprus. ITA. Italy. SVN Slovenia. CZE Czech Republic JPN Japan. SWE Sweden. DEU Germany. KOR South Korea. TUR Turkey. DNK Denmark. LTU Lithuania. TWN Taiwan. ESP Spain. LUX Luxembourg. USA United States. EST Estonia. LVA Latvia. RoW

Supplementary Material for ``Observations on ...
Nov 19, 2017 - C.2 Steady State in a Perturbed Environment. In this subsection we formally adapt the definitions of a consistent signal profile and of a steady state to perturbed environments. Let f((1−ϵ)·σ+ϵ·λ) : OS → OS be the mapping bet

SUPPLEMENTARY MATERIAL FOR “WEAK MONOTONICITY ...
This representation is convenient for domains with complete orders. 1 .... check dominant-strategy implementability of many classical social choice rules. In.

SUPPLEMENTARY MATERIAL FOR “WEAK MONOTONICITY ...
This representation is convenient for domains with complete orders. 1 ... v = (0,v2,0), v2 > 0, would want to deviate and misreport their type so as to get 3.

Efficient Repeated Implementation: Supplementary Material
strategy bi except that at (ht,θt) it reports z + 1. Note from the definition of mechanism g∗ and the transition rules of R∗ that such a deviation at (ht,θt) does not ...

Supplementary Online Material
Branstetter, M.G. (2009) The ant genus Stenamma Westwood (Hymenoptera: Formicidae) redefined, with a description of a new genus Propodilobus. Zootaxa,.

Electronic supplementary material
Jun 22, 2009 - ... of two Hill functions (a-b) with sufficiently distant midpoints is equivalent to the Hill function with the largest midpoint (c). Namely: Hill(x, K 1) · Hill(x, K 2) ≈ Hill(x, K 2) where K 1

Supplementary Material - HEC Montréal
... the ONS website: http://www.ons.gov.uk/ons/datasets-and-tables/index.html. .... sitivity of sales to the unemployment rate for independent stores and chains.

Supplementary Material for ”Production-Based Measures of Risk for ...
Measures of Risk for Asset Pricing”. Frederico Belo. ∗. November 3, 2009. Appendix A Producer's Maximization Problem. Define the vector of state variables as xit-1 = (Kit-1,ϵit-1,Pit-1,Zit-1), where Kit-1 is the current period stock of capital,

Supplementary Material for ”Production-Based Measures of Risk for ...
Nov 3, 2009 - [4] Campbell, John Y., and Robert J. Shiller, 1988, Stock prices, earnings, and expected dividends, Journal of Finance 43,661 − 676. [5] Campbell, J., 2003, Consumption-Based Asset Pricing, in George Constantinides, Milton. Harris, an

Supplementary material for “Complementary inputs and ...
Aug 2, 2017 - Figure S1: The network structures produced in the proof of Theorem 3. Undirected ...... without loss of generality that has full support on .

Supplementary Material for Adaptive Relaxed ... - CVF Open Access
1Department of Computer Science, University of Maryland, College Park, MD ... 3Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, ...

Supplementary material for “Complementary inputs and ...
Aug 2, 2017 - statement of Theorem 2, and then complete the proof. ...... Jones, 1984), spaces of square-integrable functions (Harrison and Kreps, 1979; ...

Supplementary Material Methods Tables
αF was added (25nM final) to exponentially growing MATa bar1Δ cells in YPD (OD600 ≈ 0.3) and the culture incubated for two hours at. 30oC. >95% G1 arrest, as indicated by cells with small buds (schmoo formation), was confirmed by microscopy. Cell

Supplementary Material: Adaptive Consensus ADMM ...
inequalities together. We conclude. (Bvk+1 − Bvk)T (λk+1 − λk) ≥ 0. (S3). 1.2. Proof of ..... matrix Di ∈ Rni×d with ni samples and d features using a standard ...