Supplementary Material for the Paper “Estimating the Aspect Layout of Object Categories” Yu Xiang and Silvio Savarese Department of Computer Science and Electrical Engineering University of Michigan at Ann Arbor, Ann Arbor, MI 48109, USA {yuxiang, silvio}@eecs.umich.edu

We present detailed experimental results in this supplementary material for our paper “Estimating the Aspect Layout of Object Categories”.

1. 3DObject Dataset Fig. 1 shows the viewpoint confusion matrices of the eight categories in the 3DObject dataset obtained by our Aspect Layout Model (ALM). The viewpoint accuracy is computed among all the true positive detections. To see how the viewpoint estimation is related to detection, we report viewpoint accuracy as a function of recall. We plot the accuracy-recall curves for the eight categories in the 3DObject dataset in Fig. 2, where we compare our full model with our root model and DPM [1]. The area under the accuracy-recall curve is used as a quantitative measure for viewpoint estimation. Our full model achieves the best overall performance among the three models. Detailed detection results on the 3DObject dataset are presented in Table 1. Some aspect layout estimation results of the eight categories obtained by our full model are show in Fig.7-14. Average Viewpoint Accuracy: 93.4%

Average Viewpoint Accuracy: 84.6%

front

0.86 0.02 0.00 0.00 0.09 0.00 0.02 0.00

front

0.98 0.00 0.00 0.00 0.02 0.00 0.00 0.00

right−front

0.00 0.91 0.00 0.00 0.00 0.09 0.00 0.00

right−front

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

right−front

0.00 0.88 0.07 0.00 0.00 0.05 0.00 0.00

right−front

0.00 0.82 0.05 0.00 0.00 0.10 0.03 0.00

right

0.00 0.00 0.96 0.00 0.00 0.00 0.04 0.00

right

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

right

0.00 0.05 0.95 0.00 0.00 0.00 0.00 0.00

right

0.00 0.02 0.93 0.00 0.00 0.00 0.05 0.00

right−back

0.00 0.00 0.00 0.89 0.02 0.02 0.00 0.07

right−back

0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.03

right−back

0.00 0.02 0.14 0.79 0.00 0.00 0.00 0.05

right−back

0.00 0.00 0.05 0.82 0.00 0.00 0.07 0.05

back

0.35 0.00 0.00 0.00 0.65 0.00 0.00 0.00

back

0.10 0.00 0.00 0.00 0.81 0.03 0.00 0.06

back

0.00 0.03 0.00 0.00 0.97 0.00 0.00 0.00

back

0.00 0.00 0.03 0.03 0.89 0.00 0.00 0.06

left−back

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

left−back

0.00 0.10 0.00 0.00 0.00 0.90 0.00 0.00

left−back

0.00 0.05 0.07 0.10 0.00 0.63 0.12 0.02

left−back

0.00 0.20 0.11 0.00 0.00 0.66 0.02 0.00

left

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

left

0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

left

0.02 0.00 0.05 0.00 0.02 0.00 0.91 0.00

left

0.00 0.00 0.21 0.00 0.00 0.00 0.79 0.00

left−front

0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.93

left−front

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

left−front

0.00 0.00 0.05 0.00 0.00 0.00 0.15 0.80

left−front

0.00 0.00 0.05 0.07 0.00 0.00 0.00 0.88

left−back

Estimated Viewpoint

left

left−front

front right−front right right−back back

left−back

Estimated Viewpoint

Bicyle

left

left−front

front right−front right right−back back

Car

Average Viewpoint Accuracy: 66.5%

left−back

Estimated Viewpoint

left

Ground Truth

0.80 0.00 0.00 0.00 0.20 0.00 0.00 0.00

Ground Truth

front

front right−front right right−back back

left−front

front right−front right right−back back

left−back

Estimated Viewpoint

Cellphone

Average Viewpoint Accuracy: 87.0%

left

left−front

Iron

Average Viewpoint Accuracy: 72.8%

Average Viewpoint Accuracy: 65.2%

front

0.97 0.00 0.00 0.00 0.03 0.00 0.00 0.00

front

0.53 0.00 0.00 0.00 0.47 0.00 0.00 0.00

front

0.57 0.00 0.05 0.00 0.32 0.05 0.00 0.02

0.00 0.86 0.03 0.00 0.00 0.08 0.03 0.00

right−front

0.00 0.98 0.02 0.00 0.00 0.00 0.00 0.00

right−front

0.00 0.53 0.12 0.09 0.00 0.26 0.00 0.00

right−front

0.02 0.45 0.02 0.00 0.00 0.50 0.00 0.00

right

0.00 0.00 0.76 0.03 0.05 0.00 0.13 0.03

right

0.00 0.08 0.92 0.00 0.00 0.00 0.00 0.00

right

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

right

0.00 0.00 0.80 0.00 0.02 0.00 0.18 0.00

right−back

0.00 0.03 0.21 0.32 0.06 0.06 0.24 0.09

right−back

0.00 0.05 0.33 0.59 0.00 0.00 0.00 0.03

right−back

0.00 0.00 0.10 0.76 0.00 0.00 0.00 0.15

right−back

0.00 0.00 0.00 0.64 0.04 0.09 0.00 0.22

back

0.11 0.00 0.07 0.04 0.61 0.04 0.11 0.04

back

0.08 0.00 0.00 0.00 0.92 0.00 0.00 0.00

back

0.17 0.00 0.00 0.00 0.82 0.00 0.00 0.00

back

0.16 0.00 0.07 0.02 0.61 0.00 0.14 0.00

left−back

0.00 0.06 0.12 0.00 0.00 0.48 0.33 0.00

left−back

0.00 0.05 0.00 0.00 0.00 0.69 0.26 0.00

left−back

0.00 0.05 0.00 0.00 0.00 0.76 0.19 0.00

left−back

0.00 0.07 0.00 0.02 0.00 0.82 0.04 0.04

left

0.05 0.00 0.19 0.00 0.00 0.00 0.76 0.00

left

0.00 0.00 0.00 0.02 0.00 0.00 0.95 0.02

left

0.00 0.00 0.05 0.00 0.00 0.00 0.95 0.00

left

0.00 0.00 0.42 0.00 0.00 0.00 0.58 0.00

left−front

0.00 0.03 0.03 0.05 0.00 0.05 0.11 0.74

left−front

0.00 0.00 0.02 0.00 0.00 0.00 0.05 0.93

left−front

0.00 0.00 0.00 0.14 0.00 0.05 0.35 0.47

left−front

0.02 0.00 0.02 0.18 0.00 0.04 0.00 0.73

front right−front right right−back back

left−back

Estimated Viewpoint

left

left−front

front right−front right right−back back

left−back

Estimated Viewpoint

Mouse

left

left−front

front right−front right right−back back

left−back

Estimated Viewpoint

Shoe

left

Ground Truth

0.79 0.00 0.00 0.00 0.12 0.03 0.06 0.00

Ground Truth

front right−front

Ground Truth

Ground Truth

Average Viewpoint Accuracy: 85.0%

0.97 0.00 0.00 0.00 0.03 0.00 0.00 0.00

Ground Truth

Ground Truth

Average Viewpoint Accuracy: 91.4% front

left−front

front right−front right right−back back

left−back

Estimated Viewpoint

Stapler

left

left−front

Toaster

Figure 1. Viewpoint confusion matrices of the eight categories in the 3DObject Dataset. Table 1. Average precision on the 3DObject dataset and the ImageNet dataset. Category DPM [1] ALM Root ALM Full

Bicycle 95.1 93.5 93.0

Car 98.2 99.5 98.4

Cellphone 73.1 77.4 79.2

Iron 83.1 75.8 80.7

Mouse 64.0 48.8 50.7

Shoe 95.7 85.6 84.2

Stapler 65.0 73.4 70.5

1

Toaster 96.7 96.5 97.4

Mean 83.9 81.3 81.8

Bed 94.0 83.5 89.4

Chair 95.4 78.4 89.3

Sofa 97.6 93.7 92.8

Table 95.1 81.2 90.1

Mean 95.5 84.2 90.4

Bicycle

1

Car

1.05

Cellphone

1

0.98

0.9

Full Model (0.95) Root Model (0.97) DPM (0.94)

0.88

0.86

0

0.1

0.2

0.3

0.4

Full Model (0.98) Root Model (0.93) DPM (0.91)

0.85

0.5

Recall

0.6

0.7

0.8

0.9

0.8

1

Mouse

1

0.9

0

0.1

0.2

0.3

0.4

0.8 0.75 0.7

0.5

Recall

0.6

0.7

0.8

0.9

1

0

Viewpoint Accuracy

Viewpoint Accuracy

0.6 0.5 0.4 0.3

Full Model (0.60) Root Model (0.52) DPM (0.48)

0.2 0.1 0

0

0.1

0.2

0.3

0.4

Viewpoint Accuracy

0.95

0.7

0.9

0.85

0.8

Full Model (0.90) Root Model (0.91) DPM (0.84)

0.75

0.5

Recall

0.6

0.7

0.8

0.9

1

0.7

0

0.1

0.2

0.3

0.4

0.4

0.6

0.7

0.8

0.9

1

0.9 0.88

0.5

Recall

0.6

0.7

0.8

0.9

0.82

1

0.8

0.8

0.7 0.6 0.5 0.4 0.3

Full Model (0.75) Root Model (0.71) DPM (0.62) 0

0.1

0.2

0.3

0.4

0

0.1

0.4

0.6

0.7

0.8

0.9

0.5

Recall

0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

1

0.7 0.6 0.5 0.4 0.3

Full Model (0.68) Root Model (0.66) DPM (0.63)

0.1 0.5

0.3

Toaster

0.2

Recall

0.2

1 0.9

0

Full Model (0.84) Root Model (0.83) DPM (0.90)

0.84

Stapler

0.1 0.5

0.3

0.92

0.9

0.2

Recall

0.2

1

0.9 0.8

0.1

0.94

0.86

Full Model (0.86) Root Model (0.84) DPM (0.72)

0.65

Shoe

1

Viewpoint Accuracy

0.92

0.95

0.96

0.9 0.85

Viewpoint Accuracy

0.94

Viewpoint Accuracy

Viewpoint Accuracy

Viewpoint Accuracy

1 0.96

Iron

1 0.98

0.95

0

1

0

0.1

0.2

0.3

0.4

0.5

Recall

Figure 2. Viewpoint accuracy-recall curves for the eight categories in the 3DObject dataset. Average Viewpoint Accuracy: 85.9% Frontal

0.86

0.03

0.11

Average Precision: 48.7%

1 0.9

0.00

0.8

Rear

0.01

0.28

0.95

0.00

0.00

0.72

0.04

0.00

Precision

Ground Truth

0.7 Left

0.6 0.5 0.4 0.3 0.2

Right

0.03 Frontal

0.07

0.00

0.90

Left

Rear

Right

Estimated Viewpoint

(a)

0.1 0

0

0.1

0.2

0.3

Recall

0.4

0.5

0.6

0.7

(b)

Figure 3. (a) Viewpoint confusion matrix of ALM on the VOC2006 Car dataset. (b) Precision-recall curve of ALM on the VOC2006 Car dataset.

2. VOC2006 Car Dataset We show the viewpoint confusion matrix and the precision-recall curve of ALM on the VOC2006 Car Dataset in Fig. 3.

3. EPFL Car Dataset The histograms of azimuth errors in degree of ALM and DPM on the EPFL Car dataset are show in Fig. 4(a), from which we can see clearly that ALM obtains better viewpoint estimation than DPM on the EPFL Car dataset. The viewpoint confusion matrix of ALM on the EPFL Car dataset is show in Fig. 4(b).

4. ImageNet Dataset We show ALM’s viewpoint confusion matrices for 3 views of the four categories in the ImageNet dataset in Fig. 5, and the viewpoint confusion matrices for 7 views in Fig. 6. Detailed detection results on the ImageNet dataset are also presented in Table 1. Some aspect layout estimation results of the four categories are show in Fig.15-18.

Average Viewpoint Accuracy: 64.8%

Histogram of Azimuth Errors

900

ALM DPM

800

2 3 4

700

5 600

Ground Truth

Number of Bounding Boxes

1

500 400 300

6 7 8 9 10 11 12

200

13 14

100

15 16

0 −50

0

50

100

150

200

250

300

Azimuth Error in Degree

350

400

1

2

3

4

5

(a)

6

7

8

9

10

11

Estimated Viewpoint

12

13

14

15

16

(b)

Figure 4. (a) Histograms of azimuth errors in degree of ALM and DPM on the EPFL Car dataset. (b) Viewpoint confusion matrix of 16 views of ALM on the EPFL Car dataset. Average Viewpoint Accuracy: 87.7%

0.06

0.13

right−front

0.00

0.98

0.02

left−front

0.02

0.08

0.91

right−front

left−front

front

Estimated Viewpoint

front

0.95

0.00

0.05

right−front

0.15

0.84

0.01

left−front

0.14

0.01

0.85

right−front

left−front

front

Bed

Estimated Viewpoint

front

0.89

0.05

0.06

right−front

0.07

0.91

0.01

left−front

0.01

0.01

0.97

right−front

left−front

front

Chair

Estimated Viewpoint

Ground Truth

0.81

Average Viewpoint Accuracy: 76.0%

Average Viewpoint Accuracy: 92.4%

Ground Truth

front

Ground Truth

Ground Truth

Average Viewpoint Accuracy: 90.0%

front

0.86

0.05

0.09

right−front

0.15

0.69

0.16

left−front

0.24

0.04

0.72

right−front

left−front

front

Sofa

Estimated Viewpoint

Table

Figure 5. Viewpoint confusion matrices of 3 views of ALM on the four categories in the ImageNet dataset. Average Viewpoint Accuracy: 73.1%

Average Viewpoint Accuracy: 65.0%

Average Viewpoint Accuracy: 52.6%

0.00

0.00

0.00

0.00

0.11

0

0.67

0.21

0.00

0.00

0.02

0.02

0.09

0

0.79

0.05

0.01

0.00

0.00

0.01

0.14

0

0.57

0.18

0.01

0.00

0.00

0.01

0.22

15

0.10

0.70

0.20

0.00

0.00

0.00

0.00

15

0.08

0.92

0.00

0.00

0.00

0.00

0.00

15

0.15

0.45

0.20

0.15

0.00

0.00

0.05

15

0.08

0.50

0.33

0.00

0.00

0.00

0.08

30

0.02

0.12

0.76

0.08

0.00

0.00

0.02

30

0.03

0.13

0.68

0.16

0.00

0.00

0.00

30

0.00

0.23

0.54

0.20

0.00

0.03

0.00

45

0.00

0.00

0.25

0.62

0.12

0.00

0.00

45

0.00

0.00

0.39

0.61

0.00

0.00

0.00

45

0.08

0.04

0.17

0.58

0.04

0.08

0.00

30

0.00

0.00

0.64

0.32

0.00

0.04

0.00

45

0.00

0.00

0.26

0.74

0.00

0.00

0.00

Ground Truth

0.30

Ground Truth

0.59

Ground Truth

Ground Truth

Average Viewpoint Accuracy: 62.7% 0

315

0.00

0.05

0.10

0.00

0.75

0.10

0.00

315

0.00

0.00

0.00

0.00

0.69

0.23

0.08

315

0.00

0.00

0.04

0.00

0.70

0.26

0.00

315

0.00

0.00

0.00

0.10

0.60

0.25

0.05

330

0.00

0.00

0.03

0.00

0.50

0.47

0.00

330

0.01

0.00

0.00

0.00

0.12

0.75

0.12

330

0.02

0.00

0.00

0.00

0.14

0.84

0.00

330

0.05

0.02

0.00

0.02

0.16

0.44

0.31

345

0.07

0.00

0.00

0.07

0.07

0.29

0.50

345

0.15

0.00

0.00

0.00

0.00

0.15

0.69

345

0.13

0.00

0.00

0.00

0.06

0.32

0.48

345

0.06

0.11

0.00

0.00

0.00

0.39

0.44

0

15

30

45

315

330

345

0

15

30

45

315

330

345

0

15

30

45

315

330

345

0

15

30

45

315

330

345

Estimated Viewpoint

Bed

Estimated Viewpoint

Chair

Estimated Viewpoint

Sofa

Estimated Viewpoint

Table

Figure 6. Viewpoint confusion matrices of 7 views of ALM on the four categories in the ImageNet dataset.

References [1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 2010.

Prediction: a=135, e=30 Ground Truth: a=135, e=30

Prediction: a=180, e=0 Ground Truth: a=180, e=0

Prediction: a=90, e=15 Ground Truth: a=90, e=15

Prediction: a=45, e=15 Ground Truth: a=45, e=30

Prediction: a=225, e=30 Ground Truth: a=225, e=30

Prediction: a=270, e=15 Ground Truth: a=270, e=0

Prediction: a=0, e=30 Ground Truth: a=0, e=0

Prediction: a=315, e=30 Ground Truth: a=315, e=30

Figure 7. Aspect layout estimation results on the Bicycle category in the 3DObject dataset. Prediction: a=150, e=15 Ground Truth: a=150, e=15

Prediction: a=180, e=0 Ground Truth: a=180, e=15

Prediction: a=90, e=15 Ground Truth: a=90, e=15

Prediction: a=30, e=0 Ground Truth: a=45, e=15

Prediction: a=210, e=15 Ground Truth: a=210, e=15

Prediction: a=270, e=0 Ground Truth: a=270, e=0

Prediction: a=0, e=0 Ground Truth: a=0, e=0

Prediction: a=330, e=15 Ground Truth: a=330, e=15

Figure 8. Aspect layout estimation results on the Car category in the 3DObject dataset.

Prediction: a=135, e=0 Ground Truth: a=135, e=0

Prediction: a=180, e=45 Ground Truth: a=180, e=45

Prediction: a=90, e=45 Ground Truth: a=90, e=45

Prediction: a=45, e=45 Ground Truth: a=45, e=45

Prediction: a=225, e=90 Ground Truth: a=225, e=90

Prediction: a=270, e=0 Ground Truth: a=270, e=0

Prediction: a=0, e=45 Ground Truth: a=0, e=45

Prediction: a=300, e=90 Ground Truth: a=300, e=45

Figure 9. Aspect layout estimation results on the Cellphone category in the 3DObject dataset. Prediction: a=150, e=60 Ground Truth: a=150, e=60

Prediction: a=180, e=60 Ground Truth: a=180, e=60

Prediction: a=255, e=30 Ground Truth: a=270, e=30

Prediction: a=90, e=60 Ground Truth: a=90, e=60

Prediction: a=60, e=60 Ground Truth: a=60, e=60

Prediction: a=210, e=30 Ground Truth: a=225, e=60

Prediction: a=0, e=60 Ground Truth: a=0, e=60

Prediction: a=330, e=30 Ground Truth: a=315, e=60

Figure 10. Aspect layout estimation results on the Iron category in the 3DObject dataset.

Prediction: a=135, e=15 Ground Truth: a=120, e=45

Prediction: a=180, e=90 Ground Truth: a=180, e=90

Prediction: a=90, e=15 Ground Truth: a=90, e=15

Prediction: a=60, e=45 Ground Truth: a=45, e=15

Prediction: a=225, e=90 Ground Truth: a=225, e=90

Prediction: a=270, e=45 Ground Truth: a=270, e=45

Prediction: a=0, e=45 Ground Truth: a=0, e=90

Prediction: a=300, e=45 Ground Truth: a=300, e=45

Figure 11. Aspect layout estimation results on the Mouse category in the 3DObject dataset. Prediction: a=150, e=45 Ground Truth: a=135, e=90

Prediction: a=180, e=0 Ground Truth: a=180, e=0

Prediction: a=285, e=0 Ground Truth: a=270, e=0

Prediction: a=75, e=0 Ground Truth: a=90, e=0

Prediction: a=45, e=90 Ground Truth: a=45, e=90

Prediction: a=240, e=45 Ground Truth: a=240, e=45

Prediction: a=0, e=90 Ground Truth: a=0, e=90

Prediction: a=300, e=0 Ground Truth: a=315, e=0

Figure 12. Aspect layout estimation results on the Shoe category in the 3DObject dataset.

Prediction: a=120, e=30 Ground Truth: a=135, e=30

Prediction: a=180, e=30 Ground Truth: a=180, e=30

Prediction: a=90, e=30 Ground Truth: a=90, e=0

Prediction: a=30, e=0 Ground Truth: a=45, e=0

Prediction: a=225, e=60 Ground Truth: a=225, e=60

Prediction: a=270, e=60 Ground Truth: a=270, e=60

Prediction: a=0, e=0 Ground Truth: a=0, e=0

Prediction: a=300, e=30 Ground Truth: a=315, e=30

Figure 13. Aspect layout estimation results on the Stapler category in the 3DObject dataset. Prediction: a=150, e=0 prediction: a=150,a=135, e=0, d=7.0 e=0 Ground Truth:

Prediction: a=180, e=45 Ground Truth: a=180, e=45

Prediction: a=90, e=45 Ground Truth: a=90, e=22.5

Prediction: a=45, e=22.5 Ground Truth: a=45, e=22.5

Prediction: a=225, e=45 Ground Truth: a=225, e=45

Prediction: a=270, e=45 Ground Truth: a=270, e=45

Prediction: a=0, e=45 Ground Truth: a=0, e=22.5

Prediction: a=300, e=45 Ground Truth: a=315, e=45

Figure 14. Aspect layout estimation results on the Toaster category in the 3DObject dataset.

Prediction: a=15, e=15 Ground Truth: a=15, e=15

Prediction: a=0, e=15 Ground Truth: a=0, e=30

Prediction: a=300, e=15 Ground Truth: a=300, e=15

Prediction: a=30, e=15 Ground Truth: a=30, e=15

Prediction: a=0, e=15 Ground Truth: a=0, e=15

Prediction: a=315, e=15 Ground Truth: a=315, e=15

Prediction: a=30, e=15 Ground Truth: a=30, e=15

Prediction: a=0, e=30 Ground Truth: a=0, e=30

Prediction: a=315, e=15 Ground Truth: a=315, e=15

Figure 15. Aspect layout estimation results on the Bed category in the ImageNet dataset. Prediction: a=45, e=30 Ground Truth: a=60, e=30

Prediction: a=45, e=30 Ground Truth: a=45, e=15

Prediction: a=330, e=30; a=30, e=30 Ground Truth: a=330, e=30; a=30, e=30

Prediction: a=0, e=30 Ground Truth: a=0, e=30

Prediction: a=0, e=15 Ground Truth: a=0, e=15

Prediction: a=0, e=30; a=15, e=30 Ground Truth: a=0, e=30; a=0, e=50

Prediction: a=330, e=15 Ground Truth: a=330, e=30

Prediction: a=315, e=15 Ground Truth: a=330, e=15

Prediction: a=300, e=15; a=300, e=15 Ground Truth: a=300, e=15; a=300, e=15

Figure 16. Aspect layout estimation results on the Chair category in the ImageNet dataset.

Prediction: a=30, e=15 Ground Truth: a=30, e=15

Prediction: a=0, e=30 Ground Truth: a=0, e=30

Prediction: a=315, e=30 Ground Truth: a=315, e=30

Prediction: a=45, e=15 Ground Truth: a=45, e=15

Prediction: a=0, e=15 Ground Truth: a=0, e=15

Prediction: a=315, e=15 Ground Truth: a=315, e=15

Prediction: a=45, e=15 Ground Truth: a=45, e=15

Prediction: a=345, e=15; a=60, e=30 Ground Truth: a=345, e=15; a=60, e=15

Prediction: a=330, e=15; a=30, e=15 Ground Truth: a=315, e=15; a=30, e=15

Figure 17. Aspect layout estimation results on the Sofa category in the ImageNet dataset. Prediction: a=60, e=15 Ground Truth: a=60, e=15

Prediction: a=0, e=15 Ground Truth: a=0, e=15

Prediction: a=45, e=15 Ground Truth: a=45, e=15

Prediction: a=0, e=30 Ground Truth: a=0, e=30

Prediction: a=60, e=15 Ground Truth: a=60, e=15

Prediction: a=0, e=45 Ground Truth: a=0, e=30

Prediction: a=315, e=15 Ground Truth: a=315, e=15

Prediction: a=315, e=15 Ground Truth: a=330, e=15

Prediction: a=330, e=30 Ground Truth: a=330, e=30

Figure 18. Aspect layout estimation results on the Table category in the ImageNet dataset.

Supplementary Material for the Paper “Estimating the ...

Supplementary Material for the Paper “Estimating the Aspect Layout of Object ... Department of Computer Science and Electrical Engineering ..... The histograms of azimuth errors in degree of ALM and DPM on the EPFL Car dataset are show ...

5MB Sizes 2 Downloads 45 Views

Recommend Documents

Supplementary Material
Jan Heufer ∗. *TU Dortmund University, Department of Economics and Social Science, 44221 Dortmund,. Germany. .... 3 More Details on the Data Analysis.

Supplementary Material for
Fujitsu Research & Development Center Co., Ltd, Beijing, China. {wangzhengxiang,rjliu}@cn.fujitsu.com. Abstract. This supplementary material provides the ...

Supplementary Material for
Aug 3, 2016 - alternatives are “autocracy and risk-sharing” and “democracy and investment.” In other words, the .... whether seizing power. A coup is .... Our main sources are Galasso (1976), Stearns (2001), and Ortu (2005). References.

Supplementary Material for
Sep 25, 2015 - Using archived and field-collected worker bumble bees, we tested for temporal changes in the tongue ... (Niwot Ridge Long Term Ecological Research Site, 40°3.567'N, 105°37.000'W), and by. P. A. Byron (17) ... these transects did not

Supplementary Material
gaze fixation point is detected by an eye tracker. ∗indicates equal contribution. (a) Random ... 1) confirms quanti- tatively our intuition, that the location of the hands are in- deed important for learning about hand-object interactions. Based on

Supplementary Material - Arkivoc
General Papers. ARKIVOC 2015 (vii) S1-S13. Page S3. ©ARKAT-USA, Inc. δ /ppm. 1. H Assignment. 8.60 (brs, 1H). 5.35 (t, J = 7.3 Hz, 1H). 5.08 (t, J = 6.1 Hz, ...

Supplementary Material
By the definition of conjunctive pattern, since S does not satisfy pc, then S ... Then there exists at least one instance of p o in S: {I1,I2,...,Im},. I1 ∈ I(p c. 1 ,S),...,Im ∈ I(p c m,S), such that ∀t1 ∈. I1,..., ∀tm ∈ Im,t1 < t2 < ...

Supplementary Material
and Business Cycles Conference, the Bank of Canada 2014 Fellowship ..... CGH exhibited an upward trend in the frequency of sales that could explain why they find ...... 12Fox and Sayed (2016) use the IRI scanner dataset to document the ...

Supplementary Material
The data are provided a for 10 subsectors, which I aggregate up to three sectors as follows. ... CAN Canada ...... Structural change in an open economy. Journal ...

Supplementary Material
SVK Slovakia. CYP Cyprus. ITA. Italy. SVN Slovenia. CZE Czech Republic JPN Japan. SWE Sweden. DEU Germany. KOR South Korea. TUR Turkey. DNK Denmark. LTU Lithuania. TWN Taiwan. ESP Spain. LUX Luxembourg. USA United States. EST Estonia. LVA Latvia. RoW

Supplementary Material for ``Observations on ...
Nov 19, 2017 - C.2 Steady State in a Perturbed Environment. In this subsection we formally adapt the definitions of a consistent signal profile and of a steady state to perturbed environments. Let f((1−ϵ)·σ+ϵ·λ) : OS → OS be the mapping bet

SUPPLEMENTARY MATERIAL FOR “WEAK MONOTONICITY ...
This representation is convenient for domains with complete orders. 1 .... check dominant-strategy implementability of many classical social choice rules. In.

SUPPLEMENTARY MATERIAL FOR “WEAK MONOTONICITY ...
This representation is convenient for domains with complete orders. 1 ... v = (0,v2,0), v2 > 0, would want to deviate and misreport their type so as to get 3.

Visual Vibrometry: Estimating Material ... - People.csail.mit.edu
where they focus on using vibrations in video to recover sound, we use them to .... from training data; we use this approach to estimate the properties of hanging ...

Efficient Repeated Implementation: Supplementary Material
strategy bi except that at (ht,θt) it reports z + 1. Note from the definition of mechanism g∗ and the transition rules of R∗ that such a deviation at (ht,θt) does not ...

Supplementary Online Material
Branstetter, M.G. (2009) The ant genus Stenamma Westwood (Hymenoptera: Formicidae) redefined, with a description of a new genus Propodilobus. Zootaxa,.

Electronic supplementary material
Jun 22, 2009 - ... of two Hill functions (a-b) with sufficiently distant midpoints is equivalent to the Hill function with the largest midpoint (c). Namely: Hill(x, K 1) · Hill(x, K 2) ≈ Hill(x, K 2) where K 1

Supplementary Material - HEC Montréal
... the ONS website: http://www.ons.gov.uk/ons/datasets-and-tables/index.html. .... sitivity of sales to the unemployment rate for independent stores and chains.

Supplementary Material for ”Production-Based Measures of Risk for ...
Measures of Risk for Asset Pricing”. Frederico Belo. ∗. November 3, 2009. Appendix A Producer's Maximization Problem. Define the vector of state variables as xit-1 = (Kit-1,ϵit-1,Pit-1,Zit-1), where Kit-1 is the current period stock of capital,

Supplementary Material for ”Production-Based Measures of Risk for ...
Nov 3, 2009 - [4] Campbell, John Y., and Robert J. Shiller, 1988, Stock prices, earnings, and expected dividends, Journal of Finance 43,661 − 676. [5] Campbell, J., 2003, Consumption-Based Asset Pricing, in George Constantinides, Milton. Harris, an

Supplementary Material to “The Econometrics of Auctions with ...
−i,j,bj,bi;ϵ, i, j). ... between regions that are not identifiable with anonymous data: f γ. B(.) .... under our theoretical asymptotical criteria and which is a big issue in ...

Supplementary Material to “The Econometrics of ...
sponding distribution of (non-anonymous) bids FB∗ given by the bidding functions βi(.), i = 1,··· ,n .... regions that are not identifiable with anonymous data: f γ. B(.) ...

Supplementary material for “Complementary inputs and ...
Aug 2, 2017 - Figure S1: The network structures produced in the proof of Theorem 3. Undirected ...... without loss of generality that has full support on .

Supplementary Material for Adaptive Relaxed ... - CVF Open Access
1Department of Computer Science, University of Maryland, College Park, MD ... 3Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, ...