Symmetry:                  Where  does  it  come  from?              Where  does  it  go?  

Marjorie  Senechal   Smith  College   SUMS,  3.1415  

    "The  mathemaBcal  study  of  symmetry,"  says   MathWorld,  "is  systemaBzed  and  formalized  in   the  extremely  powerful  and  beauBful  area  of   mathemaBcs  called  group  theory."         But  there’s  much  more  to  it.  

  From  flowers  to  crystals  to  bipeds  like  ourselves,   symmetry's  origins  are  mysterious  and  its  behaviour   dynamic,  posing  mathemaBcal  quesBons  beyond   group  theory.    

IntroducBon   Crystals   Growth  and  form   The  icosahedron  returns  

close-­‐ packed   circles:     rotaBon   reflecBon   translaBon  

A  trapdoor  in  the  ceiling  opens  and  hundreds  of  iden3cal  ping-­‐pong  balls  fall   into  a  slightly  slanted  bin  on  the  floor.  There,  as  the  balls  flow  downward,  they   spontaneously  assemble  in  close-­‐packed  arrays  (see  the  previous  slide).  This   symmetry  disappears  as  they  near  the  bin’s  exit,  where  they  tumble  into  a   dumbwaiter  and  are  whooshed  to  the  ceiling.    Then  they  are  let  fall  again.  .  .  .  

CRYSTALS  

A  display  in  the  St.  Petersburg   (Russia)  mining  insitute.  

From  Goldschmidt’s  Atlas  der  Kristallformen,   an  early  20th  century  compila3on  of  crystal     drawings  by  leading  mineralogists.  

Do  the  high  priests  of   symmetry  rule  the   mineral  kingdom?  

Which  is  truth,     which  approximaBon?  

Hauy’s   drama3c   discovery,   about  1810  

These  pentagons   can’t  be  regular  

Each point of the lattice is a center of k-fold rotational symmetry; here k = 2

d

RotaBon  about  a  laYce  point  carries   any  laYce  point  a  to  another    point   b,  where  |a  –  b|  <=  d  

2π/5 π

2π/3

2π/4

2π/6

2π/k, k> 6

Theorem  (The  Crystallographic  RestricBon):     The  order  of  rotaBon  about  any  point  in  a   laYce  in  R2  and  R3  is  2,  3,  4,  or  6.  

banished  from   the  Mineral   Kingdom  

Soon  “symmetry”  was  understood  to  include   paeerns  repeaBng  in  1,  2,  3  (.  .  .  n)  dimensions.  

Chest  of  Drawers,   KrisBna  Madsen  

~  1850:    the    14      laYces    (3D)  

Auguste   Bravais   1811  -­‐  1863  

David  Hilbert,  in     1900,  posed   23  problems  to   guide  mathemaBcs   in    the  20th  century.    

Hilbert's  18th  problem:  Building  up  of   space  from  congruent  polyhedra.     a)  Show  that  there  are  only  finitely  many   types  of  subgroups  of  the  group  E(n)  of   isometries  of  ℝn  with  compact   fundamental  domain.       b)  Does  there  exist  a  Bling  of  space  by  a   single  polyhedron  which  is  not  a   fundamental  domain  as  in  a)?     c)  What  is  the  densest  packing  of  spheres   in  ℝn?    

1970s:  With  Penrose  Bles,  “symmetry”  broadens  yet  again  .  .  .    

No  rotaBon,  reflecBon,  or  translaBon,   but  ……  symmetry  nonetheless!  

And  soon  .  .  .  .    

 

                                                                           

 

 

The    prize  “has  fundamentally  altered  how   chemists  conceive  of  solid  ma4er.”  

GROWTH  AND  FORM  

D'Arcy Thompson (1860 – 1948) with his daughter Barbara

Why look for more than physics and chemistry and mathematics, when these sciences have so much to tell us?

hMp://www.math.smith.edu/phyllo/Research/  

The  Icosahedron  Returns  

The  elements  and  the  Platonic  solids,   drawn  by  Johannes  Kepler  

Plato  associated  the  regular  polyhedra  with  the  shapes  of  the  parBcles  of   the  “elements”  earth,  air,  fire,  and  water  (and  the  cosmos).  His  reasoning   was  not  unreasonable.  For  example,  water  parBcles  should  be  icosahedra   because  they  roll  easily.         It  turns  out  he  was  (more  or  less)  right  about  that!  

Where  does  symmetry  come  from?    Consider  spheres.   The  “Kissing  Problem”:  how  many  spheres  (of  equal   radius)  can  be  packed  around  another  in  Rn?  

n  =  1:    2  (intervals)     n  =  2:  6    (circles)     n  =  3    ????  

six  spheres  surround  a   central  one   In  the  layers  above  and   below,  place  3  spheres   in  the  intersBces.  

Twelve  spheres  surround  a  central   one,  forming  a  cuboctahedron.   NoBce  that  the  the  spheres  do  not   completely  cover  the  central  one’s   surface.    

Twelve  spheres  arranged  around   a  central  one  with  icosahedral   symmetry.    In  this  case  the  outer   spheres  don’t  touch  each  other.    

12   max!  

1642  -­‐  1727  

No,  there’s  room   for  one  more!  

Isaac  Newton  vs  David  Gregory   Who  was  right?  

1659  -­‐  1708  

Surface  area  S  of  sphere  (radius  1)  =  4π.     Surface  area  A  “occupied”  by  an  equal     sphere  touching  it  =  π(2  -­‐  √3).    Therefore    

13  A  <    S    <  14  A       So  there  is  “room  for”  13.       But  you  can’t  fit  13  in!     Newton  was  right.  

most  symmetrical     packing  of  12  spheres   around  a  central  sphere  

densest  packing  of  12   spheres  around  a   central  sphere  

What  is  the  “best”  packing  of  N  equal  spheres   around  another?  

Depends  on  what  you  mean  by  “best”.   •  Minimize  the  sum  of  the  inverse  of  their   mutual  distances  (the  Thomson  problem)?   •  Maximize  the  least  distance  between  any   pair  (the  Tammes  problem)?   •  Maximize  symmetry?   •  Maximize  the  average  number  of  contacts   per  sphere?    

These  are  separate  problems  –  the  “bests”  don’t  always   match  up.  But  for  N=12,  the  icosahedron  wins  the  first  three.  

Where  does  symmetry  come  from?  Where  does  it  go?   Atoms,   disordered  

Icosahedral  cluster  

copper crystals

liquid  

glass  

quasicrystal  

copper   fiveling  twin  

MS  and  J.  Taylor,  “Quasicrystals:  the  view  from  Stockholm,”  MI  vl.  35,  no.  2,  2013,  1  –  9.      

The Mathematics of the Brain The Dynamics of Networks Capture and Harness Stochasticity in Nature 21st Century Fluids Biological Quantum Field Theory Computational Duality Occam’s Razor in Many Dimensions Beyond Convex Optimization What are the Physical Consequences of Perelman’s Proof? Algorithmic Origami and Biology

In  the  21st   century,  100  years   awer  Hilbert,   packing  and   symmetry   problems  sBll  very   much  maeer.  

11. Optimal Nanostructures The Mathematics of Quantum Computing and Entanglement Creating a Game Theory that Scales An Information Theory for Virus Evolution The Geometry of Genome Space What are the Symmetries and Action Principles for Biology? Geometric Langlands and Quantum Physics Arithmetic Langlands, Topology, and Geometry Settle the Riemann Hypothesis Computation at Scale Settle the Hodge Conjecture Settle the Smooth Poincare Conjecture in Dimension 4 What are the Fundamental Laws of Biology?

11. OPTIMAL NANOSTRUCTURES Develop new mathematics for constructing optimal globally symmetric structures by following simple local rules via the process of self-assembly.

Symmetry: Where does it come from? Where does it go?

"The mathemaacal study of symmetry," says. MathWorld, "is systemaazed and formalized in the extremely powerful and beauaful area of mathemaacs called group theory." But there's much more to it. From flowers to crystals to bipeds like ourselves, symmetry's origins are mysterious and its behaviour dynamic, posing ...

3MB Sizes 1 Downloads 331 Views

Recommend Documents

Where does humanity go.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Main menu.

Where Do Projects Come From?
traditional universities, and attended traditional high schools where school looked very much the same; ... preservation efforts in California. It seemed that every ...

Gains from International Monetary Policy Coordination: Does It Pay to ...
Does It Pay to Be Different?∗. Zheng Liu†. Emory University. CIRPÉE. Evi Pappa. Universitat Autonoma de Barcelona. CEPR. June 20, 2007. Abstract. In a two ...

FIX IT WHERE IT FAILS: PRONUNCIATION ... - Research at Google
a grapheme-to-phoneme (G2P) engine to generate pronunciations for words not in the list. ... their corrections from voice search logs. We learn previously un-.

mayer hawthorne where does this door go.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item.

Where does model-driven engineering help ... - Springer Link
Oct 26, 2011 - pean research project with the objective of developing tech- niques and tools for ... scenarios of complex software systems' development. The.

Download Where Does All the Money Go?: Taking Control of ... - Sites
Taking Control of Your Personal Expenses Android, Download Where Does All the Money Go?: Taking ... tracking daily and monthly expenses. All Mayer s ...