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Introduction



This chapter analyzes the optimal use of social networks by firms that wish to diffuse new products, rely on word-of-mouth communication for advertising or exploit consumption externalities among consumers. Viral marketing – the exploitation of social networks to enhance firms’ profits – has been discussed for the past 30 years and the advent of the internet has tremendously increased the ease and scope of the use of social networks. The market capitalization of companies running digital social networks like Facebook, MySpace or LinkedIn reflects the potential value of networking sites to firms targeting products to consumers. The evolution of the academic literature on viral marketing has followed the expansion of social networking in the internet. At the crossroads between different disciplines (marketing, computer science and economics), the literature has grown so rapidly that it is impossible to survey all the relevant work in the space of one chapter of the Handbook. In addition, in some areas, like the use of recommendations and reviews, the literature is still growing fast and the current state-of-the-art may very well be superseded in the next few months, making a literature survey rapidly obsolete. In this chapter, I have chosen to be very selective, focussing attention on two topics: the targeting of individuals to diffuse information or opinions in a social network, and the pricing at different nodes of the social network when agents experience consumption externalities. In both cases, firms take the network of social interaction as given and consider how to optimally leverage social effects to introduce new products or maximize profits. In her chapter on marketing and social networks, Chapter 36, Dina Mayzlin considers the ∗
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complementary problem, where firms take actions to stimulate social interactions and increase the effectiveness of social effects. Chapter 15 by Yves Zenou considers a class of targeting problems where the objective is not to seed the network to start a diffusion process but to remove a node in order to reduce or increase activity. Optimal targeting and pricing strategies are also examples of interventions which modify the outcome of actions chosen by consumers in a social network – relating this chapter to Chapter 9 by Yann Bramoull ´e and Rachel Kranton on general network games Both topics covered in this chapter require an explicit modeling of the social network and emphasize how an existing social network shapes the firms’s decisions and performances.1 The difficulty of obtaining analytical results on general networks has led to a multiplicity of methods and techniques to study targeting and pricing in social networks. Some papers rely on analytical mathematical results and others on numerical simulations. This chapter surveys both rigorous mathematical models and agent-based simulations. For a firm acting in an environment where consumers are related by social links, the social network is either a vector of information or a vector of consumption externalities. In the first case, agents use their social connections to speak about new products or to convey their opinions on existing products. In the latter case, agents directly experience value from the fact that their neighbors consume a given product. Whether the social network is a vector of information or consumption externalities affects the way in which consumers interact in the social network, and the targeting and pricing decisions of the firm. We will discuss the two models separately. Another important dividing line to organize the current literature on targeting and pricing in social networks is the degree of competition between firms. Some papers focus on the optimal choice of a monopolist while others consider a competitive environment, either in the form of perfect competition or in the form of oligopolistic competition. The outcome of the analysis is very different in the monopoly and competitive cases. Finally, the existing papers differ in the information structure of agents and firms on the social network. Some papers assume perfect knowledge of the network by consumers and firms. Other papers only consider limited information – consumers and firms only observe local neighborhoods and the degree distribution of the network. Differences in information structure typically result in large differences in the analysis of the optimal behavior of firms. 1



By contrast, a large part of the literature on word-of-mouth communication considers global interaction among consumers, without describing the exact network structure. The early literature on network externalities in consumption also considered only global interactions.
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Information externalities



We study how a firm uses social interactions to diffuse information about a new product. The firm’s problem is to select a target in the social network in order to maximize diffusion of profits.2 We first describe models of diffusion to explain how information travels in the social network. We then turn to the literature in computer science to analyze efficient targeting algorithms either in order to maximize diffusion of the new product (the influence maximization problem) or the revenue of the firm (the revenue maximization problem). In the next subsection, we review the literature on agent-based modeling whose objective is to uncover relations between the characteristics of the social network and/or of the nodes used as seeds and the speed and spread of diffusion of new products. Finally, we discuss the small literature in economics looking at analytical models of targeting and diffusion in social networks.



2.1



Information and diffusion



We first analyze the diffusion of information in the social network. In the simplest model, information as a binary signal , equal to 0 or 1, that can be interpreted as the awareness of a new product or the recommendation for an existing product. An agent is in state 0 if he is uninformed or has not received a positive recommendation, and in state 1 otherwise. As in models of contagion in epidemiology, agents’ states evolve over time according to their interactions with other agents. The social network g is fixed, and at any time t, a consumer may receive a message from one of her neighbors. Once an agent is informed, she remains informed forever. Diffusion of information is mechanical: a consumer does not control whether she sends information to her neighbors or not.3 There are two main diffusion models: • The linear threshold model Agent i acquires information about the product if and only if the number of neighbors who are informed is greater than a number k or if the fraction of informed neighbors is 2



Optimal targeting problems arise in a number of areas in economics. For example, a recent literature considers the optimal targeting of heterogeneous agents to induce coordination (Bernstein and Winter (2012) and Sakovics and Steiner (2012)). 3 For models of information transmission where consumers control whether or not to pass on information in a network, see Chatterjee and Dutta (2010) or Bloch, Demange and Kranton (2014).



3



greater than a fraction κ. If neighbors are heterogeneous, the numbers k and κ may be replaced by weighted averages of the status of the agents’ neighbor reflecting the fact that some agents are more influential than others, independently of their location in the social network. • The independent cascade model Each of agent i’s neighbor sends information with an independent probability pj . Agent i is informed if and only if at least one of his neighbors has sent the information. Targeting (or ”seeding”) the network amounts to choosing, given a network structure g, the agent or set of agents to whom the product should be given first in order to diffuse information to the entire network as fast as possible. As the problem of targeting is mathematically intractable – there is no general analytical solution to the identification of the targets in arbitrary networks – the literature has focused either on approximation methods and algorithms or numerical solutions to evaluate targeting policies. When firms have limited information on the network, the class of targeting strategies to choose from is reduced, and analytical results can be obtained.



2.2 2.2.1



Targeting algorithms Influence maximization



Domingos and Richardson (2001) is the first paper raising the issue of targeting algorithms to maximize the probability of sales in a social network. They adopt a model where consumers can be of two types, 0 and 1 reflecting whether they buy the product or not. A consumers’ probability of buying a product depends on two factors: marketing expenditures and the probability that her direct neighbors have bought the product. The paper describes how a firm optimally targets consumers by directing marketing expenditures to specific agents in the network. It contrasts the performance of three algorithms: a single-pass algorithm which only looks at one iteration, a greedy algorithm which increases marketing expenditures wherever they increase payoffs and a hill-climbing algorithm which increase expenditures where it matters most. Using data on an experimental program of movie recommendations, EachMovie, from 1996-1997, Domingos and Richardson (2001) compute the ”multiplier affect” of marketing expenditures on a targeted agent and show that agent’s market values may be as high as 20, meaning that one dollar spent on that consumer affects 20 other consumers. The distribution of network values appears to be very
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skewed so that targeted marketing strategies are very profitable. The paper compares three marketing strategies: mass marketing, where all agents receive uniform expenditures, directed marketing where agents are targeted according to their individual characteristics but ignoring their influence on others and targeted marketing taking into account agents’ market values. Domingos and Richardson (2001) quantify the profit increase due to the use of targeted strategies with respect to directed and mass strategies and show that it is very important. In a follow-up paper, Richardson and Domingos (2002) consider the same model, assuming that the influence is measured linearly, through a matrix of weights [wij ] representing i’s influence on j’s choice and that marketing decisions are continuous. Using data from the knowledge-sharing site Epinions, the authors again quantify agents’s network values, and simulate the effect of different marketing policies. They also test the robustness of their results with respect to removal of nodes from the network. Kempe, Kleinberg and Tardos (2003) revisit the optimal targeting problem, casting it in the framework of standard diffusion processes. In their analysis, the objective of the firm is to select an initial set A of k nodes in the social network in order to maximize the total number of informed nodes when information is diffused according to a linear threshold or independent cascade model. Their first result shows that the optimal targeting problem is NP-hard. It is in general impossible to find a polynomial algorithm to compute the optimal target set A except in special cases – like Richardson and Domingos (2002)’s linear model where the optimal target is a solution of a system of linear equations. The second result of the paper is an approximation bound on the efficiency of the hill-climbing algorithm, which selects agents to place in the set A by looking sequentially at those agents which result in the highest influence, where influence is measured by the number of additional ”live” connections that would arise in the network if that agent was informed. The approximation bound derives from the analysis of sub modular functions in integer programming. A function f defined over subsets S of N is called submodular, if for any S ⊆ T and any vertex v ∈ / T, f (S ∪ v) − f (S) ≥ f (T ∪ v) − f (T ). A result in integer programming due to Nemhauser, Wolsey and Fisher (1978) shows the following: Let the function f is monotone, positive and submodular. Let S be the set of k elements obtained by adding one by one elements which maximize 5



the increase in the function’s value and S ∗ the set of k elements which maximizes the functions’s value. Then f (S) ≥ (1 − 1e )f (S ∗ ), where e is the base of natural logarithms. Hence if the objective function f is submodular, the hill climbing algorithm produces an outcome which results in at least 63 % of the efficient value. Kempe, Kleinberg and Tardos (2003) prove that the influence function in the linear threshold and independent cascade models are sub modular, thereby establishing the approximation bound for the hill-climbing algorithm.4 The performance of the hill-climbing algorithm is tested using data on collaboration between high energy physicists. In the linear threshold model, the hill-climbing algorithm on average increases efficiency by 18 % with respect to a targeting based on the nodes’ degree centrality and by 40 % with respect to a targeting based on closeness centrality. Interestingly, the first node in the set A0 already accounts for 25 % of the total number of nodes eventually informed. 2.2.2



Revenue maximization



Hartline, Mirrokni and Sundarajan (2008) introduce the revenue maximization problem. A monopolistic seller of a new product chooses the sequence in which buyers are approached and the prices charged to the buyers. In the revenue maximization problem, buyers choose whether to purchase the good or not, thereby indirectly controlling the spread of information. The value of a consumer i is drawn at random from a distribution Fi (V ) which depends on the set V of consumers influencing i. Hartline, Mirrokni and Sundarajan (2008) assume that consumers are myopic and choose to purchase the good based on the current set of agents who have bought the good and not the final set of consumers purchasing the product. The revenue maximization problem adds an additional layer of complexity to the influence maximization problem: the seller has to compute optimal prices at each node taking into account the effect of prices on the diffusion of the good through the purchasing decisions of the buyers. One case is particularly simple: if the network of interactions is the complete network and all agents are symmetric, the optimal pricing strategy only depends on the set of agents who have already bought the good and the 4 The proof of submodularity of the influence function is hard because the influence function is difficult to compute. Kempe, Kleinberg and Tardos (2003) construct diffusion processes which are equivalent to the independent cascade and linear threshold models to compute the influence function, and show that their construction extends to more general diffusion models.
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set of agents who have not yet been approached, and can be computed in polynomial time as the solution to a linear programming problem. Beyond this simple case, the solution to the problem is NP hard. Hartline, Mirrokni and Sundarajan (2008) assume that the revenue generated by consumer i is a monotone, submodular function of the set of agents V who influence agent i, and proceed to derive lower bounds on the efficiency of a two-step ”exploit and influence” (EI) algorithm. This algorithm first searches for a set of initial agents A to whom the good is given for free using a hillclimbing strategy. The seller then visits agents in N \ A in a random order and the algorithm selects for each buyer the optimal revenue maximizing price. In the linear threshold model, the approximation bound is equal to 2 1 3 and for general diffusion models, this algorithm achieves at least 3 of the total value. The marketing strategy proposed by the algorithm is rather simple, as it does not specify a fixed order of visiting buyers, and can be implemented with a small number of easily computed prices. It is adaptive, as the optimal prices chosen in the second part of the algorithm depend on the history of purchases by other buyers. Arthur, Motwani, Sharma and Xu (2009) propose a nonadaptive EI algorithm to solve the revenue maximization problem. The algorithm first computes a minimum cost spanning tree of the graph with maximal number of leaves (this is an NP hard problem) and the set A is formed by the internal nodes, who receive a fixed cashback for each consumer they refer, while leaves are charged a fixed price. Arthur, Motwani, Sharma and Xu (2009) show that this algorithm achieves a fraction of the total value which depends on the complexity parameters of the problem – but the fraction is typically lower than the fraction computed by Hartline, Mirrokni and Sundarajan (2008) for their adaptive algorithm. 2.2.3



Influence maximization with competition



The influence maximization problem becomes much more complex if one assumes that instead of one firm, there are two firms competing to seed the network. The firms are now players in a noncooperative game, and coordination problems may result in inefficiencies with respect to the policy adopted by a single firm maximizing influence. Hence in addition to inefficiencies due to the approximation algorithm, new inefficiencies arise because firms play a game, and the ”price of anarchy” measuring the worst ratio between the optimal value and the values obtained in the equilibrium of the noncooperative game, becomes a relevant indicator. The influence model is now generalized by assuming that consumers can have three values: 0 (uninformed), A (buy 7



product A) and B (buy product B). Faced with two competing diffusion models, the difficulty is to decide how a consumer exposed to both products A and B chooses the product she buys. Bharathi, Kempe and Salek (2007) and Carnes, Nagarajan, Wild and Zuylen (2007) propose extensions of the independent cascade model to deal with a competitive environment. In Bharathi, Kempe and Salek (2007), the consumer adopts the first product she becomes aware of. If she becomes aware of the two products at the same time, an exogenous tie-breaking rule decides which of the two products is chosen. Consider first the behavior of the follower – the reaction function of player A when player B has already chosen the set SB of seeds. The influence function, given the set SB is a monotone submodular function of the set SA . Hence the hill climbing algorithm provides an approximation of the efficient policy – with the same approximation bound of 1 − 1e as in the monopoly influence maximization problem. Carnes, Nagarajan, Wild and Zuylen (2007) prove a similar result on the optimal policy of the follower, under two different variants of the independent cascade model. In the first variant – the distance based model – edges become activated according to a random process, and a consumer learns about the product with the minimal distance to a seed.5 In the second variant – the wave propagation model – consumers become informed sequentially, and a consumer at period t picks at random one of his informed neighbors and adopts his product. Bharathi, Kempe and Salek (2007) also compute a price of anarchy equal to 2 – meaning that the number of nodes informed at any noncooperative equilibrium is at least equal to 12 of the total number of nodes informed at the optimum. The linear threshold model cannot as easily be extended to competitive diffusion in the network. Borodin Filmus and Oren (2010) analyze the follower’s choice when firm B has already chosen the set of seeds SB and note that the influence function of firms A is not necessarily monotone nor submodular. The hill climbing algorithm does not necessarily provide a good approximation of the optimal targeting policy. Goyal and Kearns (2012) study the optimal allocation of a fixed budget over nodes under a general threshold diffusion process characterized by two functions: the function f specifies, as a function of the proportion of informed neighbors, what is the probability that an agent is informed, and the function g specifies, as a function of the share of neighbors buying A and B the probability that the agent 5



If multiple seeds at are a minimal distance, the probability that the consumer consumes one of the two goods say good A is proportional to the number of seeds of good A at minimal distance.
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adopts one of the two products given that he is informed. Goyal and Kearns (2012) compute a price of anarchy of 4 when the function f is concave and the function g linear.6 Dubey, Garg and de Meyer (2006) extend the linear model of Richardson and Domingos (2002) to multiple firms. Firms simultaneously choose marketing expenditures at every node. The proclivity of a consumer to buy from a given firm is a linear function of the number of neighbors buying from the firm and the relative marketing expenditures of the firm. Because the model is linear, the best response functions can be computed in polynomial time by solving systems of linear equations. The Nash equilibrium is unique, can be computed analytically and involves firms either spending zero resources on a consumer, or spending an amount which depends on the effective cost of marketing expenditures of the different firms.



2.3



Simulations on targeting



Because optimal targeting has no analytical situation in general, numerical simulations can be used to assess the importance of different parameters on the diffusion of new products. Goldenberg, Libai and Muller (2001) pioneered the use of agent based modeling to study new product diffusion. They employ a cellular automata model, where each consumer forms a cell which is activated according to a fixed automaton, a set of rules relating the cell to its immediate environment. Since then, as reported by Rand and Rust (2011) agent based modeling has proven particularly fruitful to study new product diffusion in complex social networks. Watts (2002) studies conditions under which global cascades occur in random networks where diffusion follows a threshold rule. In addition to analytical derivations of the critical values of connectivity under which global cascades arise, Watts (2002) runs simulations to clarify the relation between the average connectivity in the network – measured by the fixed probability that a link is formed in a random Erd¨os Renyi network – and the percentage of nodes informed in the long run. He finds that the percentage of node informed is low when the graph has low connectivity – and agents are likely not to receive information from neighbors, and high when agents have so many neighbors that the threshold condition becomes very difficult to satisfy. Hence global cascades – or full spread of new products across the social network – arise for intermediate values of the connectivity parameter. Dodds and Watts (2007) enrich the model by distinguishing between two 6



If the function f ceases to be concave, the price of anarchy jumps to infinity.
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types of agents: influentials and imitators. Influentials are agents who belong to the top 10 % of the degree distribution, namely agents who are more connected than others. Dodds and Watts (2007) first study the likelihood that a global cascade arises, depending on the identity of the initial seed. As global cascades only arise in the ”cascade window” when the connectivity is intermediate, the identity of the initial seed does not matter much in the likelihood of a global cascade and is clearly of lesser importance than the global network connectivity. However, interestingly, the size of the global cascade does depend on the identity of the seed: influentials trigger larger cascades even if the difference is not deemed to be very significant. The simulation results depend highly on the diffusion process. If instead of a threshold diffusion process, the new product disseminates according to an independent cascade model, consumers with higher degree are more likely and not less likely to hear about the product. Higher connectivity in the network then favors diffusion rather than hampers it, and influentials are significantly more likely to trigger global cascades. Recently, a flurry of papers have been using agent-based models to analyze the role of different characteristics of the seeds on diffusion in random and actual networks. Goldenberg, Han, Lehmann and Hong (2009) argue, contrary to Dodds and Watts (2009), that nodes with high connectivity (the ”hubs”) play an essential role in information diffusion. They use an independent cascade model, and their simulations are based on an actual network from a Korean social networking site. Stephen, Dover and Goldenberg (2010) consider a model where transmission takes time, and emphasize the role played by two characteristics of the seed: her connectivity measured by the degree and activity measured by the number of times at which she is active. They show that both characteristics play a role in the diffusion process. Libai, Muller and Peres (2013) consider competing firms, and study seeding strategies based on random targeting, targeting influential nodes and targeting influential experts who are more likely to be believed by other consumers. They run simulations on 12 real world networks. Haenlein and Libai (2013) add a demographic characteristic to the model, identifying consumers with high revenue value to the firm. Assuming homophily in the network – consumers with high value are more likely to be connected to other high value consumers – they show that a revenue targeting strategy performs better than a targeting strategy based on connectivity. They use a preferential attachment network generation model in order to generate networks with a given homophily structure. In order to identify the best targeting policy, Stonedahl, Rand and Wilensky (2010) run a genetic algortihm to select an optimal seeding strategy 10



based on nodal characteristics like degree, two-step reach, clustering, etc.. They consider four stylized networks: random, lattice, small world and preferential attachment, and one real network (a sample of Twitter users). Their analysis shows that a seeding strategy based on degree performs rather well with respect to the strategy generated by the genetic algorithm in all four stylized networks, but not in the actual network of Twitter users.



2.4



Analytical models of targeting



As the problem of targeting in a known fixed network is NP-hard, there is no hope to characterize analytically the optimal targeting policy when the firm has complete information on the network.7 However, when information about the network is limited, analytical solutions of the influence maximization problem exist. Galeotti and Goyal (2009) assume that the firm only knows the degree distribution of consumers in the social network, and the degree of each consumer. A targeted marketing strategy thus assigns a different advertising expenditure on each consumer on the basis of her degree. In their model, social links are directed, and consumers are characterized both by the number of agents who influence them (the out-degree) and the number of agents they influence (the in-degree). Assuming that local neighborhoods do not overlap, and that information is only transmitted at one step, the profit of reaching a consumer with (out)degree k and spending marketing expenditures x can be represented by a general function φk (x). The function φk (x) exhibits increasing (decreasing) marginal returns in degree if, for any x > x0 , φk+1 (x) − φk+1 (x0 ) > ( 1 is a parameter affecting the probability that the good is adopted as a function of the degree. Galeotti and Goyal (2009) focus attention on the monotonicity of the optimal targeting policy: should consumers with a low degree (who are not influenced by many agents) receive higher advertising than consumers with a high degree (who are influenced by many other agents)? The answer to this 7



Recall however that analytical solutions can be found in the linear model of Richardson and Domingos (2002) and Dubey, Garg and de Meyer (2006).
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question depends on the property of the profit function. If the profit function exhibits increasing marginal returns to degree (as in the threshold model), nodes with higher degree receive more advertising expenditures. If the profit function exhibits decreasing marginal returns to degree (as in the cascade model), nodes with lower degree receive more advertising. The intuition underlying the result is clear: in the first case, nodes with higher degree are less likely to receive the information from their neighbors whereas in the second case nodes with low degrees are less likely to be informed through the social network. As word of mouth communication and advertising are substitutes, the firm compensates the poor information transmission through the network with more direct advertising. Galeotti and Goyal (2009) also show that an increase in the dispersion of the degree distribution increases the value of targeting when the cost of expenditures is sufficiently low. They also obtain the intuitive result that consumers with higher in-degree (i.e. who influence more other agents) receive more advertising expenditures. Campbell (2013) uses the techniques developed for large random graphs to study monopoly pricing and targeting in the presence of word of mouth communication. A monopoly sets a price, and consumers decide whether to purchase or not, according to a random valuation. When a consumer buys the product, information flows to other consumers but when a consumer does not buy, information stops.8 The initial network thus becomes broken into smaller components as time goes, as in percolation diffusion processes.9 The basic question asked by Campbell (2013) is then to identify under which conditions, given an initial random graph, a giant component emerges. The emergence of a giant component depends on the price charged by the monopolist, and there exists a critical price P crit such that a giant component emerges when price is below the critical price, P < P crit , but not when the price is higher, P > P crit . In this framework, Campbell (2013) considers targeted advertising. The monopolist knows the degree distribution and chooses the consumer to whom the product is offered first, as a function of the consumer’s degree. The revenue gained from the consumer depends on the size of the component the consumer belongs to. If she belongs tot he giant component, advertising will be useless as word of mouth communication will eventually reach all other 8



The fact that the diffusion process depends on prices controlled by the firm is reminiscent of the analysis of the revenue maximization problem by Hartline, Mirrokni and Sundarajan (2008). 9 See Callaway, Newman, Strogatz and Watts (2000) on percolation processes on random graphs.
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agents in the component, but if she does not belong to the giant component, targeted advertising is useful and its effectiveness is higher if the component is bigger. This observation translates into a simple targeting strategy given a fixed price P . If P > P crit , the firm should target the consumer with the highest degree, and if P < P crit , it should instead target the consumer with the smallest number of connections.
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Consumption externalities



Katz and Shapiro (1985) and Farrell and Saloner (1985) introduced the concept of network externalities – agents’ consumption of a good is affected by the number of agents consuming the same good. Network externalities arise in telecommunications, when agents benefit from other agents using the same communication device, in the software industry where the development of application is driven by the number of users, etc.. (See Shy (2001) for a thorough description of industries with network externalities). Early models of consumption externalities modeled the externality as global rather than network based: the valuation of consumers was a function of the total number of users in the good. More recent models, starting with Jullien (2011) and Sundarajan (2007), analyze consumption externalities based on a given social network. In this section, we first study optimal pricing strategies of a monopolist, and then analyze equilibria of models of competitive pricing.



3.1



Monopoly pricing with consumption externalities



Candogan, Bimpitis and Ozdaglar (2012) and Bloch and Querou (2013) independently analyze the same model of linear consumption externalities.10 Agent’s utilities are given by the quadratic expression X 1 Ui (q1 , .., qn ) = ai qi − bi qi2 + qi gij qj − pi qi , 2 j



where gij ∈ [0, 1] measures the influence of agent j on i’s consumption. The utility of agent i is quadratic in own consumption and includes an interaction term such that it increases with the consumption of direct neighbors. This positive externality in consumption implies that, given any vector of 10



This model can be viewed as a foundation for the linear probability model of Richardson and Domingos (2002) and Dubey, Garg and de Meyer (2006).
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discriminatory prices (p1 , ..., pn ), the consumption levels are computed as the equilibrium of a non-cooperative games played among consumers. Suppose now thatP a monopolist sets the prices (p1 , .., pn ) in order to maximize profits Π = i (pi − c)qi .. The optimal price vector is given by G + GT −1 a − c1 ) , 2 2 where Λ is a diagonal matrix with terms bi on the diagonal, G = [gij ] is the matrix of consumption externalities and a the vector of ai s. Interestingly, when the matrix G is symmetric (influence is undirected), the monopoly sets a uniform price across the network. To understand this result notice that when charging a price on a node, the monopolist balances two effects: if the node is more central, its overall value of the product is higher and the price should be higher to exploit this higher value, but consumption at that node also increases consumption at more neighboring nodes, so that prices should be lowered to increase consumption. In the linear model, the two effects exactly balance and the optimal price is uniform.11 The equilibrium consumptions vary over nodes, and in fact are proportional to Katz-Bonacich centrality.12 Bloch and Querou (2013) extend the model to allow different nodes to be served by different firms. In this oligopolistic setting, equilibrium prices are no longer uniform. Prices are increasing in degree and decreasing in the number of adjacent nodes served by the same firm. Candogan, Bimpitis and Ozdaglar (2012) compute the gain of a discriminatory pricing strategy with respect to uniform prices and provide an algorithm to compute the optimal uniform price. As in Hartline, Mirrokni and Sundarajan (2008), they consider a two-price strategy where the good is given at a discount to some consumers and at a full price to others, and show that the problem of targeting is NP complete, but that an approximation algorithm returns at least 88 % of the optimal profit. Corbo and Lin (2010) extend the analysis to k-pricing strategies for arbitrary values of k, and provide algorithms which achieve at least 90 % of the optimal profit. Saaskhilati (2007) studies uniform monopoly pricing for specific network structures. He computes the optimal uniform price price for regular networks and stars. p = a − (Λ − G)(Λ −



11



Bloch and Querou (2013) show that this is a knife-edge result. For example, if costs are quadratic, the result disappears and more central nodes are charged higher prices as production at these nodes becomes more expensive. 12 Katz-Bonacich centrality is defined as the vector (I − αG)−1 1 for some α such that αρ(G) < 1 where ρ(G) is the largest eigenvalue of G.
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Fainmesser and Galeotti (2013) analyze discriminatory pricing in the quadratic utility model when the monopoly only knows the degree distribution and observes the degree of each node. Consumers are assumed to have different in- and out-degrees. The in-degree of consumer i measures the number of agents influenced by i and the out-degree the number of agents that influence i. Fainmesser and Galeotti (2013) compute the optimal price of a monopoly which discriminates according to out-degrees or in-degrees. They show that prices are monotonic: a consumer with higher out-degree pays more, and a consumer with higher in-degree pays less.13 Equilibrium consumption increases in out-degrees when the monopolist discriminates on out-degrees and increases both in the in- and out-degrees when the monopolist discriminates on in-degrees. The main result of the analysis in Fainmesser and Galeotti (2013) compares equilibrium profit and consumer surplus under uniform pricing, and discrimination based on in- and out-degrees. Discriminatory profits are increasing and convex in the variance of the out- (respectively in-) degree distributions. Consumers with low out-degrees benefit from discrimination based on out-degrees whereas consumers with high out-degrees are harmed by discrimination. Consumers with high in-degrees are better off with a move from uniform pricing to discrimination based on in-degree, and total consumer surplus increases with the move. These welfare effects provide a full picture of the benefits and costs from discriminatory pricing in social networks.



3.2



Competitive pricing in social networks



Suppose now that instead of monopoly pricing, we consider price competition with local network externalities. In an early paper, Jullien (2011) considers a model where consumers are divided into groups, with a fixed matrix of external effects across groups. Even though the interpretation offered by Jullien (2011) as competition among platforms on two-sided markets is somewhat different, the model can be viewed as a model of local network externalities where the matrix of external effects describes the social network. Two firms compete by setting prices for each group of consumers. The firms choose their prices sequentially, with firm A moving as the leader and firm B as the follower. Focussing on the behavior of firm B, Jullien (2011) shows that the follower can use a ”divide and conquer” strategy by targeting some consumer 13



As noted by Bloch and Querou (2013), the same result is obtained with complete information about the network, when externalities are sufficiently small.
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group to which it offers a low price, while raising the price of another consumer group which benefits highly from cross-group externalities with the first group. By choosing optimally its target group for cross-subsidy, the follower can in fact conquer the market even when it is less efficient than the leader. This advantage given to the follower translates into a lower bound on the follower’s profit and an upper bound on the leader’s profit in Stackelberg price competition with local network effects. Banerji and Dutta (2009) also assume that consumers are divided into groups, and explicitly specify a network of interaction measuring the externalities across groups. As opposed to Jullien (2011), prices are uniform across nodes and the two competing firms set prices simultaneously. Given Bertrand competition and network effects, a simple conjecture is to assume that in equilibrium, a single firm dominates the market. Banerji and Dutta (2009)’s main objective is to characterize network structures under which a single firm operates and network structures under which market segmentation may arise in equilibrium. When the social network is complete and network externalities are global, price competition and network effects unambiguously lead to a single firm capturing the market. If two firms were active, they would have to charge the same price at any node and any firm would have an incentive to undercut his rival to capture the entire market. For other special networks, the circle and the star, Banerji and Dutta (2009) exhibit equilibria with market segmentation. Duopoly pricing with social interactions is also discussed by Galeotti (2010) in a model where the social network plays a different role. Instead of capturing consumption externalities, the social network describes how consumers learn information about prices collected by other consumers. Galeotti (2010)’s model incorporates social interactions into a standard model of consumer search. He shows that the presence of word-of-mouth communication affects the pricing strategies of the two firms. It implies that some consumers will always learn the prices of the two products, eliminating the possibility of an equilibrium where no consumer searches and all firms quote the monopoly price (the Diamond paradox). He also shows that prices and profits are not necessarily monotonic in the level of connectivity of the social network. If consumers sample more neighbors, they acquire more information but their incentive to search goes down. The two effects work in opposite direction. For high values of the search cost, the first effect dominates and the market becomes more competitive, reducing equilibrium prices and profits ; for low values of the search cost, the second effect dominates and the market becomes less competitive, raising equilibrium prices 16



and profits.
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Open questions



The literature in economics, computer science and marketing on targeting and pricing has been very active in the past decade and is still growing very fast. As new data set become available, theoretical models are increasingly being confronted to the data. Clearly, the empirical analysis of models of seeding and discriminatory pricing in social networks is a field of investigation which will grow in the near future. Other questions remain open and may be ripe for new theoretical investigations in the next few years. If privacy regulations prevent social networking sites from selling their data to third parties, advertisers will have to infer network data from consumers directly. Mechanisms to elicit information form consumers about their local neighborhoods – through referral discounts or rewards – still need to be studied. A closer look at consumers’ incentives to propagate information in the network is also needed. If the new product is only available to a small select set of consumers, competition may give agents an incentive to keep silent about the product. Similarly, incentives to lie in recommendations about existing products need to be better understood. Finally, the analysis of competition among firms seeding the network remains sketchy. The revenue maximization problem with competing firms remains an open area of research, as are models of oligopolistic competition and product differentiation with local network externalities.
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