Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability Jiaguang Han,1 Akhlesh Lakhtakia,2 and Cheng-Wei Qiu3,* 1

Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore Email Address: [email protected] 2 Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India and Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA (permanent address). Email Address: [email protected] 3 Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore * Corresponding author: [email protected]

Abstract: We studied a metasurface constituted as a periodic array of semiconductor split-ring resonators. The resonance frequencies of the metasurface excited by normally incident light were found to be continuously tunable in the terahertz regime through an external magnetostatic field of suitable orientation. As such metasurfaces can be assembled into 3D metamaterials, the foregoing conclusion also applies to metamaterials comprising semiconductor split-ring resonators. ©2008 Optical Society of America OCIS codes: (160.6000) Semiconductor materials; (160.1190) Anisotropic optical materials; (120.7000) Transmission; (260.5740) Resonance

References 1. A. Lakhtakia, M. W. McCall and W. S. Weiglhofer, “Brief overview of recent developments on negative phase-velocity mediums (alias left-handed materials),” AEÜ Int. J. Electron. Commun. 56, 407–410 (2002).. 2. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005). 3. V. M. Shalaev, “Optical negative-index materials,” Nature Photon. 1, 41-48 (2007). 4. Negative Refraction Metamaterials: Fundamental Principles and Applications, edited by G. V. Eleftheriades and K. G. Balmain (Wiley, Hoboken, NJ, USA, 2005). 5. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, Hoboken, NJ, USA, 2006). 6. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffractionlimited objects,” Science 315, 1686 (2007). 7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006) 8. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103, 066105 (2008). 9. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007). 10. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 579–600 (2006). 11. Y. He, P. He, V. G. Harris, and C. Vittoria, “Role of ferrites in negative index metamaterials,” IEEE Trans. Magn. 42, 2852–2854 (2006). 12. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16, 8825–8834 (2008). 13. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15, 1115–1127 (2007). 14. M. Lapine and S. A. Tretyakov, “Contemporary notes on metamaterials,” IET Microw. Antennas Propag. 1, 3–11 (2007). 15. Polaritons: Proceedings of the First Taormina Research Conference on the Structure of Matter, edited by E. Burstein and F. De Martini (Pergamon, New York, NY, USA, 1974). 16. Semiconductors: Physics of Group IV Elements and III-V Compounds, edited by O. Madelung (Springer, Berlin, Germany, 1982).

#98908 - $15.00 USD

(C) 2008 OSA

Received 16 Jul 2008; revised 20 Aug 2008; accepted 22 Aug 2008; published 29 Aug 2008

15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14390

17. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, and F. Lederer, “The origin of magnetic polarizability in metamaterials at optical frequencies – an electrodynamic approach,” Opt. Express 15, 8871–8883 (2007). 18. N. Miura, Physics of Semiconductors in High Magnetic Fields (Oxford University Press, Oxford, United Kingdom, 2008).

1. Introduction Negatively refracting metamaterials have been a subject of recent enormous interest, in both the physics and the engineering communities, because they possess electromagnetic response characteristics that are not (at least, widely) displayed by natural materials [1-3]. Generally, these metamaterials are composite materials comprising metallic inclusions of specific shapes and sizes immersed in some homogeneous host medium, and convey the promise of a wideranging set of applications. Metamaterial-based devices could come to include filters, modulators, amplifiers, transistors, resonators, sub-diffraction-limited superlenses, and cloaks [4-7]. The usefulness of such a device could be extended tremendously if the metamaterial’s response characteristics can be dynamically tuned. Tunability strategies examined thus far are electrical control [8-10], magnetostatic control [11,12], and optical pumping [13]. In all of cited publications, the inclusions are split-ring resonators (SRRs) made of some metal. Tunability is introduced by ensuring that another component (e.g., the substrate on which the SRRs are printed or another type of inclusions) is made of an electro-optic material, liquid crystal, ferrite, etc. In this letter, we suggest a new type of tunable metamaterials. A metamaterial of this type comprises SRRs that are not metallic but, instead, are made of a material whose electromagnetic response properties can be tuned by an external agent. For the sake of illustration, we chose to focus on a tunable, terahertz, metamaterial that is controllable by an externally applied magnetostatic (or quasi-magnetostatic) field. 2. Analysis and numerical results The essence of the chosen metamaterial is a metasurface [14]: a planar array of semiconductor split-ring resonators (SRRs) periodically printed on an isotropic dielectric substrate. Figure 1(a) shows a single SRR with linear dimensions in the plane ranging from 2 μm to 36 μm, and with a thickness of 200 nm. The SRRs are printed, as shown in Fig. 1(b), on a square lattice of period 60 μm. The SRRs are assumed to be made of a doped semiconductor, such as InAs, whose relative permittivity obeys the Drude model in the absence of an externally applied magnetostatic field [15,16]. As a typical isotropic dielectric substrate would only slightly shift the resonances but not affect other characteristics significantly [17], we set its electromagnetic properties to be that of free space (i.e., vacuum) in our numerical work. Computer simulations of the spectral response of the chosen metasurface were performed using the commercial software CST Microwave Studio TM 2006B, which is a 3D full-wave solver that employs the finite integration technique. The planar SRR array was taken to be entirely surrounded by air and open boundary conditions were employed along the propagation direction. Without the applied magnetostatic field, the doped semiconductor’s relative permittivity scalar ε is given as a function of the angular frequency ω by

ωp2 ε (ω ) = ε ∞ − 2 , (ω + iγω )

(1)

where ε ∞ represents the high-frequency value; the plasma frequency ω p =

Ne 2 / ε 0 m*

*

depends on the carrier density N, the effective mass m , the electronic charge e , and the free-space permittivity ε 0 ; and γ is the damping constant. The following parameters were

#98908 - $15.00 USD

(C) 2008 OSA

Received 16 Jul 2008; revised 20 Aug 2008; accepted 22 Aug 2008; published 29 Aug 2008

15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14391

used in our simulations [15,16]: ε ∞ =16.3, N = 1.04 ×1017 cm-3, m = 0.004 me, and 7.5 × 1011 Hz, where m e is the electronic mass. *

γ / 2π

=

Fig. 1. (a) A single SRR with dimensions L = 36 μm, T = 10 μm, D = 2 μm and W = 6 μ m. (b) The chosen metasurface, which is a square array of SRRs printed on a substrate with a period of 60 μm. (c) Transmittance spectrum of the chosen metasurface illuminated normally by a plane wave with electric field oriented perpendicular to the gaps in the SRR. (d) Map of the magnitude of the electric field in an SRR at 1.59 THz. (e) Map of the current density in an SRR at 1.59 THz. (f) The same as (c) but when both gaps are closed in every SRR.

Let the chosen metasurface be oriented parallel the xy plane with the two gaps of every SRR aligned parallel to the x axis. The SRR gaps would resonate if the incident electric field were to be oriented along the y axis (i.e., perpendicular to the two gaps in each SRR). We calculated the transmittance spectrum of the metasurface when illuminated by a plane wave with its wave vector oriented parallel to the z axis and its electric field oriented parallel to the y axis. The transmittance is the ratio of the power density of the transmitted plane wave to that of the incident plane wave. Figure 1(c) shows that a transmittance dip exists at 1.59 THz frequency. This dip can be attributed to a resonance of the SRRs: as shown in Fig. 1(d),

#98908 - $15.00 USD

(C) 2008 OSA

Received 16 Jul 2008; revised 20 Aug 2008; accepted 22 Aug 2008; published 29 Aug 2008

15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14392

the electric field is concentrated in both gaps of every SRR at this frequency. Figure 1(e) displays the vector plot of the current density at 1.59 THz. If both gaps of every SRR were closed, the transmittance dip at 1.59 THz would disappear, as can be gathered from the transmittance spectrum presented in Fig. 1(f). In order to obtain a tunable response from the chosen metasurface, we considered the application of an external magnetostatic field B0 to affect the resonance in the transmittance spectrum displayed in Fig. 1(c). Generally, without the applied magnetostatic field, the dielectric response of a semiconductor is described by a scalar ε(ω), such as provided in Eq. (1). However, when B0 is applied, the scalar ε(ω) has to be replaced by the tensor εˆ (ω ) . In the Faraday configuration, B0 is aligned parallel to the wave vector of the incident plane wave (i.e., along the z axis). With the assumption that B0 is spatially uniform, the nonvanishing components of εˆ (ω ) are [15]: ε xx = ε yy = ε ∞ −

ε xy = −ε yx = i ε zz = ε ∞ −

ω p 2 (ω 2 + iγω ) (ω 2 + iγω ) 2 − ω 2ω c

,

(2)

2

ωωcω p 2 , 2 (ω 2 + iγω ) 2 − ω 2ωc

(3)

ωp2 , (ω 2 + iγω )

(4)

Transmittance

1.0 0.8 0.6 0.4 0.0

0T 1T 2T 3T

0.5

4T 6T 8T

1.0

(a) 1.5

2.0

2.5

Frequency (THz)

3.0

Resonance Frequency (THz)

where ωc = eB0 / m* is the cyclotron frequency. The off-diagonal components εxy and εyx are induced by the magnetostatic field and depend on its magnitude. Figure 2(a) contains the simulated transmittance spectra of the chosen metasurface for different values of the magnitude B0 of B0. The transmittance dip redshifts gradually from 1.55 to 0.30 THz as B0 is increased from 1.0 to 8.0 T, as also illustrated in Fig. 2(b). Although the minimum transmittance increases as B0 is increased, Figs. 2(a) and 2(b) clearly indicate that planar arrays of semiconductor SRRs are magnetically tunable in the terahertz regime despite the reduction of the quality factor of the transmittance dip. The reduction of the quality factor and the use of very-high-magnitude magnetostatic fields in the presented results suggest the need to find and/or develop semiconductors that respond more easily to magnetostatic fields.

1.6

E

Y X

1.2

Z

H

0.8

B0 // Z

(b)

0.4 0

2

4

6

8

Applied Magnetic Field (T)

Fig. 2. Faraday configuration. (a) Transmittance spectra for various values of B0, when B0 is aligned parallel to the wave vector of the incident plane wave and the electric field of the incident plane wave is aligned perpendicular to the gaps in each SRR. (b) Resonance frequency ω0 as a function of B0, with the solid line showing the exponential fit ω0 =α + β exp(−B0 / χ) , where α = 0.27, β = 2.04, and χ = 2.11.

#98908 - $15.00 USD

(C) 2008 OSA

Received 16 Jul 2008; revised 20 Aug 2008; accepted 22 Aug 2008; published 29 Aug 2008

15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14393

Denoting the resonance angular frequency by ω0, we fitted the data in Fig. 2(b) to the formula ω 0 = 0.27 + 2.04 exp(−B0 /2.11) . This formula indicates that the resonance frequency decays exponentially as the applied magnetostatic field increases in magnitude. One way to understand the foregoing trend is as follows. In the Faraday configuration, plane wave ω p2 propagation in a semiconductor depends on [18], i.e., ε = ε ± iε = ε − . ± ∞ xx xy 2 ω + iγω ∓ ωωc ~ 2 = ε , where n~ and n~ are the complex-valued refractive indexes for right- and leftLet n ±

±

+



circularly polarized plane waves. For the linearly polarized electromagnetic wave in our case, the response of substance can be captured by n~ = 1 (n~ + n~ ) for different values of B0. As 2

+



shown in Fig. 3, the real part of n~ decreases as B0 increases. So the redshift of increase of B0 can be correlated with the concurrent decrease of n~ .

ω0

with

Real Part of ñ

100 1T 2T 3T 4T 6T 8T

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Frequency (THz)

~ as a function of the linear frequency Fig. 3. Real part of n applied magnetostatic field in the Faraday configuration.

ω /2π and the magnitude B0 of the

So far we have considered the Faraday configuration. In the Voigt configuration, the magnetostatic field is aligned perpendicular to the wave vector of the incident plane wave. There are two cases, depending on the direction of the incident electric field relative to B0 . Suppose first that B0 is also aligned perpendicular to the electric field of the incident plane wave (i.e., B0 is oriented along the x axis). The nonvanishing components of εˆ(ω ) now are [15]

ε yy = ε zz = ε ∞ −

ω p 2 (ω 2 + i γω ) , 2 (ω 2 + i γω ) 2 − ω 2ω c

ωω c ω p 2 , 2 ( ω 2 + i γω ) 2 − ω 2 ω c 2 ωp . = ε∞ − (ω 2 + i γω )

(5)

ε yz = − ε zy = i

(6)

ε xx

(7)

Figure 4(a) shows that the transmittance spectra in the first Voigt configuration are qualitatively similar to that for the Faraday configuration in Fig. 2(a). The resonance frequency exponentially redshifts as B0 increases, and can be fitted to

#98908 - $15.00 USD

(C) 2008 OSA

Received 16 Jul 2008; revised 20 Aug 2008; accepted 22 Aug 2008; published 29 Aug 2008

15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14394

1.0 0.8 0.6 0.4 0.0

0T 1T 2T

0.5

3T 4T 6T 8T

(a) 1.0

1.5

2.0

2.5

3.0

Frequency (THz)

Resonance Frequency (THz)

Transmittance

ω 0 = 0.27 + 1.64 exp(−B0 /3.03) ; see Fig. 4(b). Furthermore, in this configuration, the electromagnetic response of the semiconductor is related to n~⊥ = (ε yy + ε yz2 / ε yy )1 / 2 . Figure 5 shows that real part of n~⊥ decreases with increasing B0, which implies the same correlation with the resonance frequency as deduced for the Faraday configuration.

1.6

E

Y

1.2

X Z

H B0 // X

0.8

(b)

0.4 0

2

4

6

8

Applied Magnetic Field (T)

Fig. 4. First Voigt configuration. (a) Transmittance spectra for various values of B0, when B0 is aligned parallel to the gaps in each SRR and the electric field of the incident plane wave is aligned perpendicular to the gaps in each SRR. (b) Resonance frequency ω0 as a function of B0, with the solid line showing the exponential fit ω0 = α + β exp(−B0 / χ ) , where α = 0.27, β =

Real Part of ñ⊥

1.64, and χ = 3.03.

1T 2T 3T 4T 6T 8T

100

1

0.0

0.5

1.0

1.5

2.0

Frequency (THz)

2.5

3.0

~ as a function of the linear frequency ω /2π and the magnitude B0 of the Fig. 5. Real part of n ⊥ applied magnetostatic field in the first Voigt configuration.

In the second Voigt configuration, B0 is aligned parallel to the electric field of the incident plane wave (i.e., B0 is oriented along the y axis), so that the nonvanishing components of εˆ(ω ) now are [15]

#98908 - $15.00 USD

(C) 2008 OSA

Received 16 Jul 2008; revised 20 Aug 2008; accepted 22 Aug 2008; published 29 Aug 2008

15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14395

ε xx = ε zz = ε ∞ −

ω p 2 (ω 2 + iγω ) , 2 (ω 2 + iγω ) 2 − ω 2ωc

ωωcω p 2 , 2 (ω 2 + iγω ) 2 − ω 2ωc 2 ωp . ε yy = ε ∞ − 2 (ω + iγω ) ε zx = −ε xz = i

(8) (9) (10)

We found that there is no remarkable effect of the applied magnetostatic field on the resonance frequency of the chosen metasurface; furthermore, the electromagnetic response of the semiconductor is related to n~// = ε 1yy/ 2 , which does not depend on B0. 3. Conclusion To conclude, our computer simulations have shown that the terahertz resonant response of a metasurface constituted by a planar array of semiconducting split-ring resonators can be tuned by the application of an externally applied magnetostatic field of appropriate orientation and magnitude. As such metasurfaces can be assembled into 3D metamaterials, the foregoing conclusion applies to metamaterials comprising semiconducting SRRs as well. SRRs made of other tunable materials, such as electro-optic materials, could also assist in the realization of tunable terahertz metamaterials. Acknowledgements J.H. acknowledges financial support from the MOE Academic Research Fund of Singapore and fruitful discussions with Z. Tian. A.L. thanks the Department of Physics, IIT Kanpur for its hospitality. C.W.Q. thanks Singapore-France Merlion project for financial support.

#98908 - $15.00 USD

(C) 2008 OSA

Received 16 Jul 2008; revised 20 Aug 2008; accepted 22 Aug 2008; published 29 Aug 2008

15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14396

Terahertz metamaterials with semiconductor split-ring ...

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave .... 7.5 × 1011 Hz, where me is the electronic mass. Fig. 1. .... Denoting the resonance angular frequency by ω0, we fitted the data in Fig. 2(b) to the.

251KB Sizes 1 Downloads 144 Views

Recommend Documents

NanoElectromagnetic Metamaterials Approaching ...
line (ISMI) with Pendry's analytical formula and numer- ical simulations with Ansoft's ... I were created in the software Design CAD. The pattern transfer into the ...

Semiconductor laser with integral spatial mode filter
Oct 15, 1999 - Mittelstein et al., “Broadband tunability of gain—?attened quantum Well .... 21, 1987. Surerte et al., “High—PoWer Ring Laser Using a Broad—Area ...... speed modulation and loWer modulation current require ments are thus ...

NanoElectromagnetic Metamaterials Approaching ...
behavior near telecommunications frequencies, have been produced by nanofabrication. Samples were characterized at the Singapore Synchrotron. Light Source ISMI (Infrared Spectro/MIcroscopy) facility using Bruker Optics' IFS 66v/S Fourier transform in

Fairchild Semiconductor powers business with ... Services
Technology leader trusts Google Apps to handle communication and collaboration around the globe. Organization. &0"(9:"+76b @"9g%7$91g(6",6g% 6g)61: 6=g(+76+ 07 (,6"%67 +"3 ("%B6 % (B;a. 59" %1f6 0,;a1ga$, f630+$ a077 76,g+$1"g%,6)g(6*g= (60%76@gU"+ 6

Chapter 45 Semiconductor and semiconductor devices.pdf ...
Page 3 of 6. Chapter 45 Semiconductor and semiconductor devices.pdf. Chapter 45 Semiconductor and semiconductor devices.pdf. Open. Extract. Open with.

Chapter 45 Semiconductor and semiconductor devices.pdf ...
Page 3 of 297. Kontaktirajte našega komercialista, ki vam bo z veseljem pomagal pri izbiri tega izdelka. Nazadnje posodobljeno: 29. 11. 2017. Whoops! There was a problem loading this page. Retrying... Main menu. Displaying Chapter 45 Semiconductor a

pdf-1893\acoustic-metamaterials-negative-refraction-imaging ...
... the apps below to open or edit this item. pdf-1893\acoustic-metamaterials-negative-refraction-im ... -and-cloaking-springer-series-in-materials-science.pdf.

Electromagnetic Metamaterials — Availability and ...
imaging systems and higher capacity optical data storage systems. The next- ... LIGA† process cycle for micro-/nanomanufacturing in a class 1000 cleanroom.

Metamaterials: electromagnetic enhancement at zero ...
discussions. This research was supported by the. United States Army Research Office (USARO) through grants W911NF-07-1-034 and 50342-PH-. MUR, the National Science Foundation (NSF) through grant DMS-050989, and the Russian. Foundation for Basic Resea

3-2-metamaterials slab.pdf
There was a problem loading this page. Whoops! There was a problem loading this page. 3-2-metamaterials slab.pdf. 3-2-metamaterials slab.pdf. Open. Extract.

Semiconductor memory device with reduced data access time
Aug 29, 2007 - control block for controlling output of data stored in each cell block to the global bit line and restoration of the outputted. 56. References Cited.

Output buffer circuit and integrated semiconductor circuit device with ...
May 16, 2007 - main driver has at least a pair of a ?rst p-channel MOS transistor and a ?rst n-channel MOS transistor for driving a load according to the data, ...

Terahertz Response of a Microfabricated Rod–Split ...
Feb 15, 2005 - signature of the metamaterial most clearly. In Fig. 2 the ratio of the ... above, split rings and rods have to be embedded in a material that features ...

Tight-binding model for semiconductor quantum dots with a wurtzite ...
Tight-binding model for semiconductor quantum dots with a wurtzite crystal structure From.pdf. Tight-binding model for semiconductor quantum dots with a ...

Semiconductor integrated circuit
Dec 29, 2011 - layout design When arranging switches in a poWer lines for preventing ..... becomes high, and automatic design of the layout by the CAD.

Towards 3D Electromagnetic Metamaterials in the THz ...
Plan view of a split ring showing geometric parameter definitions (left). ..... Figure 4 (left) shows the cross section of a resist template that has been exposed at 10 ... T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D.

dienhathe.com-Semiconductor Fuses.pdf
Operational class: gR. • Super quick www.dienhathe.xyz. www.dienhathe.vn. Page 3 of 90. Main menu. Displaying dienhathe.com-Semiconductor Fuses.pdf.

Shape Optimization of Acoustic Metamaterials and ...
AIAA Aviation and Aeronautics Forum and Exposition 2016. Washington, D.C., 2016, AIAA Paper 2016-3216. 2. Lin, W., Anderson, W. K., Newman III, J. C., and Zhang, X. "Shape Optimization of Two-Dimensional Acoustic. Metamaterials and Phononic Crystals