The Human Brain Encodes Event Frequencies While Forming Subjective Beliefs Supplementary Information The Journal of Neuroscience, 2013, 33 (26) Mathieu d’Acremont, Wolfram Schultz, and Peter Bossaerts

Contents 1

Bayesian Solution

2

1.1

Ball Betting Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

1.2

Bin Betting Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

2

Optimal Bet

4

3

Multiple Comparison Correction

5

4

Results

5

4.1

Participant Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4.2

Brain Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4.2.1

Prior Information Epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4.2.2

Sampling Epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

4.2.3

Betting, Auction, and Final Outcome Epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

5

Tables

7

1

1 1.1

Bayesian Solution Ball Betting Task

Here we show all the steps leading to the Bayesian formulas. The random variables for the ball betting task are the following. θ indicates the proportion of red balls in the bin, an outcome of the random variable Θ. k is the outcome of a binomial random variable and denotes the number of red balls observed in n drawings. At the beginning of each trial, Θ follows a uniform distribution between ]a, b[, where a and b denote the positions of the triangles on the screen (0 < a < b < 1). The probability that Θ takes the value θ equals the probability density function of the uniform distribution (we use the symbol P for both probability density and mass functions): { P(Θ = θ ) =

1 b−a

0

a<θ
The probability of observing k red balls in n drawings given a certain proportion of red balls θ is given by the density function of the binomial distribution (0 ≤ k ≤ n):

P(‘k in n’|Θ = θ ) =

( ) n (1 − θ )n−k θ k k

The probability that the bin contains a proportion θ of red balls and that k red balls are observed in n drawings is given by: P(‘k in n’ ∩ Θ = θ ) = P(Θ = θ )P(‘k in n’|Θ = θ ) To get the probability of observing k red balls in n drawings (not knowing Θ), one integrates over Θ: ∫ b

P(‘k in n’) = a

P(Θ = θ )P(‘k in n’|Θ = θ ) dθ

The result of the integration gives: (n) (Beta(a, k + 1, n − k + 1) − Beta(b, k + 1, n − k + 1)) P(‘k in n’) = k a−b where Beta denotes the incomplete Beta function. To calculate the posterior distribution of Θ, given the observed data, we apply Bayes’ rule:

P(Θ|‘k in n’) =

P(‘k in n’ ∩ Θ = θ ) P(‘k in n’)

which gives:

P(Θ|‘k in n’) = −

(1 − θ )n−k θ k Beta(a, k + 1, n − k + 1) − Beta(b, k + 1, n − k + 1)

2

The probability of observing another red ball after recording k red balls in n previous draws is given by the expected value of the posterior distribution: ∫ b

P(‘red ball’|‘k in n’) = a

θ P(Θ|‘k in n’) dθ

which gives:

P(‘red ball’|‘k in n’) =

1.2

Beta(a, k + 2, n − k + 1) − Beta(b, k + 2, n − k + 1) Beta(a, k + 1, n − k + 1) − Beta(b, k + 1, n − k + 1)

Bin Betting Task

For the bin betting task, the relevant random variables are the following. Let U denote a variable following a Bernoulli distribution with parameter θ indicating if the left (U = 0) or right (U = 1) bin was selected to draw balls. θ is the outcome of a random variable Θ defined on the unit interval. k is a random variable following a Binomial distribution indicating 3 the number of green balls observed in n drawings. The parameter of this Binomial distribution equaled 10 if the left bin 7 was selected (U = 0) and 10 if the right bin was selected (U = 1). At the beginning of each trial, Θ follows a uniform distribution between ]a, b[, with a and b given by the position of the triangles on the screen (0 < a < b < 1). The probability that Θ takes the value θ equals the probability density function of the uniform distribution: { P(Θ = θ ) =

1 b−a

0

a<θ
The probability that the bin u (= 0, 1) is selected given θ equals the probability mass function of the Bernoulli distribution: { P(U = u|Θ = θ ) =

1−θ θ

u=0 u=1

The probability of observing k green balls in n drawings given u (right or left bin) equals the probability density function of the binomial distribution (0 ≤ k ≤ n):

P(‘k in n’|U = u) =

{ (n) n−k k (nk)(1 − L) n−kL k R k (1 − R)

u=0 u=1

where R and L denote the probability of drawing a green ball when the right or left bin is selected, respectively. The probability that the bin u was selected and that k greens balls were observed in n drawings, not knowing the value of θ , is given by the integral:

P(‘k in n’ ∩U = u) =

∫ 1 0

P(Θ = θ )P(U = u|Θ = θ )P(‘k in n’|U = u) dθ

The integration results in: { P(‘k in n’ ∩U = u) =

() −(12 )nk (a + b − 2)(1 − L)n−k Lk 1 n n−k Rk 2 k (a + b)(1 − R) 3

u=0 u=1

To calculate the probability that the right bin was selected, given the observed data, we apply Bayes’ rule:

P(U = 1|‘k in n’) =

P(‘k in n’ ∩U = 1) P(‘k in n’ ∩U = 1) + P(‘k in n’ ∩U = 0)

P(U = 1|‘k in n’) =

a+b n−k Rk 2 (1 − R) a+b n−k Rk + (1 − a+b )(1 − L)n−k Lk 2 (1 − R) 2

Which produces:

The probability to observe a green ball after sampling is given by:

P(‘green ball’|‘k in n’) = P(U = 1|‘k in n’)R + P(U = 0|‘k in n’)L

2

Optimal Bet

To find the optimal betting strategy in the second price auction, we define p as the probability to draw the ball associated with the one dollar payoff in the ball betting task or the probability that the bin associated with the one dollar payoff was used to draw balls in the bin betting task. Thus p is the probability to receive the fixed (one dollar) payoff. Conditional on winning the auction, the expected value of the random payoff X is:

E(X|‘win auction’) = p The participant places a bet b. The computer draws a price Y between 0 and 1 from a uniform distribution. The participant wins the auction if the price falls below the bet. This probability is equal to the bet:

P(‘win action’) = b The expected value of the price Y conditional on winning the auction is half the bet:

E(Y |‘win auction’) =

b 2

The net payoff Z is the payoff X minus the price Y. So the expected net payoff conditional on winning the auction is:

E(Z|‘win auction’) = E(X|(‘win auction’) − E(Y |‘win auction’) = p −

b 2

To calculate the unconditional expected net payoff, one multiples the conditional expected net payoff with the probability of winning the auction:

E(Z) = P(‘win auction’) · E(Z|‘win auction’) = The derivative of this function with respect to the bet is:

4

b b2 − p 2

E(Z)′ = p − b The maximum expected net payoff is reached when this derivative equals 0. This obtains when the bet equals the probability of receiving the payoff in the gamble (b = p). Thus, it is optimal for participants to place a bet equal to the probability of winning the gamble. For instance, if the one dollar payoff is associated to the blue ball, the optimal bet is the probability of drawing a blue ball in the ball betting task. In the bin betting task, if the one dollar payoff is associated with the right bin, the optimal bet is the probability that the right bin is used by the computer to draw balls. In case the bet is optimal, the expected net payoff is a quadratic function of the probability p:

E(Z|‘optimal bet’) =

3

p2 2

(1)

Multiple Comparison Correction

Results for the voxel-based GLMs are reported both at the cluster and peak-activation levels in the tables. The False Discover Rate (FDR) computed by SPM8 for each level is reported as well (cluster-wise and peak-wise corrections; Chumbley and Friston, 2009; Chumbley et al., 2010). The principal results discussed in the article were significant after correction for multiple comparisons at the cluster level (FDR < .05).

4 4.1

Results Participant Choices

Participant bets was first regressed on the Bayesian probabilities. Bets and probabilities were centered at 0 by removing 0.5 to their values (p − 0.5). The condition was centered at 0 as well (Condition = -1 when the blue ball/left bin was rewarded; Condition = 1 when the red ball/right bin was rewarded). Results for the ball betting task are shown in Table S1. Results for the bin betting task are shown in Table S2. Then frequencies were entered as an additional independent variable in the regressions. Results for the ball betting task are shown in Table S3. Results for the bin betting task are shown in Table S4. Tables also show the effect of the condition (whether the reward was associated to the red ball/right bin). The t-values of tables S3 and S4 are displayed in Figure 3 of the article. Data of the two tasks were merged to assess the overall effect of Frequentist and Bayesian probabilities. A factor taking the value of 0 for the ball betting task and 1 for the bin betting task was defined to distinguish between the two tasks. Results showed a larger effect of Bayesian probabilities, but the effect of frequencies was significant as well. The interaction revealed that the effect of Bayesian probabilities was smaller in the bin betting task compared to the ball betting task. No significant difference between the tasks was found for frequencies. Results are shown in Table S5.

4.2

Brain Activation

4.2.1 Prior Information Epoch A voxel-based analysis was conducted to test the effect of the left-right position of the triangles on the screen in the prior information period. Results for the triangles moving to the right are shown in Table S6. Results for the triangles moving to the left are shown in Table S7. Significantly activated voxels are shown in Figure 4a of the article. Results for the effect of the expected net payoff calculated based on the prior information can be found in Table S8. This table corresponds to Figure 5a in the article.

5

4.2.2 Sampling Epoch The effect of stimulus probabilities was first assessed by computing two GLMs. One with the frequency as covariate of the stimulus presentation (GLM1). The other with Bayesian probability as covariate of the same event (GLM2). The positive and negative effects of frequencies are shown in Table S9 and S10 respectively (GLM1). These results are shown in Figure 6a+b of the article. The negative and positive effects of Bayesian probabilities are shown in Table S11 and S12 respectively. These results are displayed in Figure 7a+b of the article. Frequentist and Bayesian probabilities were entered in the same regression to explain BOLD activity in each ROI. The regression was computed in R. All independent variables were scaled, but not the dependent variable (the beta estimated for each event in SPM8). Results for the Frequentist ROIs are found in Table S13 for the left angular gyrus, S14 for the right angular gyrus, S15 for the posterior cingulate, S16 for the left middle frontal gyrus, and S17 for the medial prefrontal cortex. Barplots presenting t-values are found in Figure 6c. Results for the Bayesian ROIs are found in Table S18 for the left inferior frontal gyrus, S19 for the right inferior frontal gyrus, S20 for the right supramarginal gyrus, and S21 for the supplementary motor cortex. Barplots presenting t-values of are found in Figure 7c of the article. To test if the effect of frequentist and Bayesian probabilities was significantly stronger in the frequentist vs Bayesian ROIs, an additional mixed-linear regression was computed in R. A factor was defined to indicate if a ROI was frequentist or Bayesian. The complementary of the Bayesian probability was used as a dependent variable (1-p). Frequencies were entered in the regression without transformation. In the first regression, this factor was set to Frequentist ROIs = 0 and Bayesian ROIs = 1. Thus the betas for the frequentist and Bayesian probabilities indicate their effects in the frequentist ROIs. Results are shown in Table S22. The row labeled “Stimulus (in Freq ROI)” is the intercept. “Stimulus x Bay ROI” indicates the quantity which needs to be added to the intercept in order to get the effect of the stimulus in the Bayesian ROIs. Then the ROI location factor was set to Frequentist ROIs = 1 and Bayesian ROIs = 0. Thus the betas for the frequentist and Bayesian probabilities indicate their effects in the Bayesian ROIs. Results are shown in Table S23. The row labeled “Freq Prob x Freq ROI” indicates the quantity which needs to be added to the main effect of the frequencies – in the Bayesian ROIs – to get their effect in the frequentist ROIs (this quantity is positive). The row labeled “Bay Prob x Freq ROI” indicates the quantity which needs to be added to the main effect of the Bayesian probabilities – in the Bayesian ROIs – to get their effect in the frequentist ROIs (this quantity is negative). Two connectivity analyzes (PPI) were performed in SPM8. The first with the bilateral angular gyrus ROIs as seed regions. The second with the bilateral inferior frontal gyrus as seed regions. Results of the contrast Angular minus Inferior frontal gyrus are shown in Table S24. Voxels identified as significant are thus more connected to the angular gyrus than to the inferior frontal gyrus. Results of the contrast Inferior frontal minus Angular gyrus are shown in Table S25. Voxels identified as significant are thus more connected to the inferior frontal gyrus than to the angular gyrus. Results of the two contrasts are shown in Figure 8b+c of the article. 4.2.3 Betting, Auction, and Final Outcome Epoch For the betting period, the position of the prior information triangles was defined as a covariate in the GLM. The effect of the triangles moving to the right can be found in Table S26. The effect of the triangles moving to the left can be found in Table S27. The two contrasts are displayed in Figure 4b of the article. The hand used to place the bet was defined as a covariate at the group level of analysis. The effect of using the right hand is shown in Table S28. The effect of using the left hand is shown in Table S29. The two contrasts are displayed in Figure 4c of the article. The computer price and the net payoff were defined as covariates in the GLM. Table S30 shows the effect of the price and Table S31 the effect of the net payoff. Voxels significantly activated are displayed in Figure 5b and Figure 5c of the article.

6

5

Tables Table S1: Bet regressed on Bayesian probabilities (ball betting task) Variable Fixed effect Intercept Condition Bay Prob Random effect (SD) Intercept Condition Bay Prob Error

Estimate

Lower

−0.004 −0.001 1.150∗∗∗

−0.017 −0.018 1.059 − − − −

0.011 0.032 0.188 0.123

Upper

SE

0.009 0.016 1.242

0.007 0.009 0.047

− − − −

− − − −

Df

t

388 388 388

−0.63 −0.10 24.60

p 0.529 0.919 0.000

− − − −

− − − −

− − − −

Df

t

p

388 388 388

0.73 0.18 22.64

0.463 0.855 0.000

− − − −

− − − −

Df

t

p

387 387 387 387

−0.31 −0.10 14.16 5.14

*0 not included in the 95% Confidence Interval; Obs = 416.

Table S2: Bet regressed on Bayesian probabilities (bin betting task) Variable Fixed effect Intercept Condition Bay Prob Random effect (SD) Intercept Condition Bay Prob Error

Estimate

Lower

0.005 0.002 0.816∗∗∗

−0.009 −0.018 0.745 − − − −

0.000 0.037 0.155 0.146

Upper

SE

0.020 0.022 0.886

0.007 0.010 0.036

− − − −

− − − −

− − − −

*0 not included in the 95% Confidence Interval; Obs = 416.

Table S3: Bet regressed on Bayesian and frequentist probabilities (ball betting task) Variable Fixed effect Intercept Condition Bay Prob Freq Prob Random effect (SD) Intercept Condition Bay Prob Freq Prob Error

Estimate

Lower

−0.002 −0.001 0.855∗∗∗ 0.224∗∗∗

−0.015 −0.018 0.737 0.138 − − − − −

0.014 0.033 0.113 0.117 0.115

*0 not included in the 95% Confidence Interval; Obs = 416.

7

Upper

SE

0.011 0.016 0.974 0.310

0.006 0.009 0.060 0.044

− − − − −

− − − − −

− − − − −

− − − − −

0.756 0.920 0.000 0.000 − − − − −

Table S4: Bet regressed on Bayesian and frequentist probabilities (bin betting task) Variable Fixed effect Intercept Condition Bay Prob Freq Prob Random effect (SD) Intercept Condition Bay Prob Freq Prob Error

Estimate

Lower

0.006 0.002 0.619∗∗∗ 0.222∗∗

Upper

−0.008 −0.017 0.511 0.088 − − − − −

0.000 0.035 0.041 0.186 0.140

SE

0.020 0.021 0.726 0.356

0.007 0.010 0.055 0.068

− − − − −

− − − − −

Df

t

387 387 387 387

0.87 0.20 11.33 3.26

0.386 0.839 0.000 0.001

− − − − −

− − − − −

Df

t

p

799 799 799 799 799 799 799 799

−0.30 0.88 −0.13 14.05 4.60 0.23 −2.92 −0.16

− − − − −

p

*0 not included in the 95% Confidence Interval; Obs = 416.

Table S5: Bet regressed on Bayesian and frequentist probabilities (both tasks) Variable Fixed effect Intercept Task Condition Bay Prob Freq Prob Task x Condition Task x Bay Prob Task x Freq Prob Random effect (SD) Intercept Task Condition Bay Prob Freq Prob Task x Condition Task x Bay Prob Task x Freq Prob Error

Estimate

Lower

−0.002 0.008 −0.001 0.859∗∗∗ 0.225∗∗∗ 0.002 −0.234∗∗ −0.011

−0.014 −0.010 −0.018 0.739 0.129 −0.018 −0.392 −0.150

Upper 0.011 0.026 0.016 0.979 0.321 0.022 −0.077 0.127

− − − − − − − − −

0.000 0.000 0.031 0.000 0.140 0.023 0.075 0.115 0.128

SE 0.006 0.009 0.009 0.061 0.049 0.010 0.080 0.070

− − − − − − − − −

− − − − − − − − −

− − − − − − − − −

0.763 0.377 0.899 0.000 0.000 0.820 0.004 0.871

− − − − − − − − −

− − − − − − − − −

*0 not included in the 95% Confidence Interval; Obs = 832.

Table S6: Voxel-based analysis: BOLD regressed on prior position (left to right) Cluster Local Max R Occipital R Calcarine R Lingual

pFDR

kE

punc pFDR

0.000

464

t

z

6.40 5.05

4.84 4.13

punc

x

y

z

12 16

−80 −68

4 −6

x

y

z

−8 −12 −14

−68 −78 −82

−4 6 28

0.000 0.015 0.071

0.000 0.000

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.018.

Table S7: Voxel-based analysis: BOLD regressed on prior position (right to left) Cluster Local Max L Occipital L Lingual L Calcarine L Occipital Superior

pFDR

kE

punc pFDR

0.000

1030

t

z

7.71 6.38 5.38

5.42 4.83 4.32

punc

0.000 0.005 0.034 0.165

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.018.

8

0.000 0.000 0.000

Table S8: Voxel-based analysis: BOLD regressed on Bayesian expected net payoff Cluster Local Max L Caudate L Caudate L Caudate L Caudate

pFDR

kE

punc pFDR

0.029

192

t

z

5.70 4.97 4.50

4.49 4.08 3.80

punc

x

y

z

−8 −10 −18

22 22 28

2 −6 −8

0.004 0.110 0.231 0.461

0.000 0.000 0.000

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.026.

Table S9: Voxel-based analysis: BOLD regressed on frequentist probabilities Cluster Local Max L Mid Frontal L Mid Frontal Post Cingulate Post Cingulate Post Cingulate Post Cingulate L Angular L Angular L Angular L Angular Medial Prefrontal Sup Medial Prefrontal Sup Medial Prefrontal Sup Medial Prefontal R Angular R Angular R Angular R Angular R Occipital R Fusiform R Fusiform R Fusiform L Orbito Frontal L Orbito Frontal L Orbito Frontal L Orbito Frontal

pFDR

kE

punc pFDR

0.001

358

0.000

0.000

2181

0.000

0.000

0.000

0.000

0.077

0.077

1212

2042

614

115

115

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.019.

9

t

z

0.015

8.11

5.58

0.016 0.016 0.016

7.34 7.28 7.20

0.016 0.067 0.078

punc

x

y

z

0.000

−40

18

50

5.27 5.24 5.21

0.000 0.000 0.000

−2 −14 6

−28 −54 −46

42 28 28

7.19 5.96 5.83

5.20 4.63 4.56

0.000 0.000 0.000

−48 −58 −46

−66 −60 −60

26 30 34

0.016 0.059 0.061

7.15 6.25 6.05

5.18 4.77 4.67

0.000 0.000 0.000

−8 −14 4

42 46 50

50 40 30

0.171 0.249 0.269

5.36 4.97 4.86

4.31 4.08 4.01

0.000 0.000 0.000

44 62 46

−66 −52 −64

24 34 36

0.392 0.432 0.686

4.52 4.35 3.87

3.81 3.70 3.38

0.000 0.000 0.000

34 30 32

−48 −64 −56

−12 −6 −8

0.405 0.427 0.432

4.45 4.40 4.35

3.76 3.73 3.70

0.000 0.000 0.000

−42 −42 −34

38 56 42

−16 4 −10

0.000

0.000

0.000

0.013

0.013

Table S10: Voxel-based analysis: BOLD regressed on frequentist improbabilities Cluster Local Max Suppl Motor Suppl Motor R Supramarginal R Supramarginal

pFDR

kE

punc pFDR

0.075

121

0.011

0.075

115

0.013

t

z

0.216

5.35

4.30

0.216

5.29

4.26

punc

x

y

z

0.000

−10

6

60

0.000

44

−34

46

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.019.

Table S11: Voxel-based analysis: BOLD regressed on Bayesian improbabilities Cluster Local Max L Inf Frontal L Inf Precentral L Inf Precentral L Inf Precentral R Supramarginal R Supramarginal R Supramarginal R Supramarginal R Inf Frontal R Pars Opercularis R Pars Opercularis R Inf Precentral Suppl Motor Cortex Suppl Motor Suppl Motor

pFDR

kE

punc pFDR

0.000

0.003

0.000

0.063

592

244

381

111

t

z

0.066 0.356 0.498

6.62 5.06 4.68

4.95 4.13 3.90

0.191 0.500 0.555

5.79 4.63 4.31

0.191 0.243 0.289 0.555 0.647

punc

x

y

z

0.000 0.000 0.000

−46 −40 −54

4 0 4

22 38 40

4.54 3.88 3.67

0.000 0.000 0.000

42 50 46

−34 −34 −28

46 44 38

5.72 5.40 5.23

4.50 4.32 4.23

0.000 0.000 0.000

50 54 40

8 10 2

28 16 36

4.44 4.07

3.76 3.51

0.000 0.000

−6 −12

10 4

52 62

x

y

z

0.000

0.000

0.000

0.010

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.014.

Table S12: Voxel-based analysis: BOLD regressed on Bayesian probabilities Cluster Local Max L Mid Frontal L Mid Frontal L Mid Prefrontal Sup Medial Prefrontal Sup Medial Prefrontal Sup Medial Prefrontal Sup Medial Prefrontal Post Cingulate/Precuneus Precuneus Post Cingulate Post Cingulate L Angular L Angular L Angular L Angular

pFDR

kE

punc pFDR

0.001

0.000

0.006

0.000

288

376

175

569

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.014.

10

t

z

punc

0.050 0.050

6.83 6.28

5.04 4.79

0.000 0.000

−40 −42

18 22

52 42

0.050 0.234 0.250

6.26 4.87 4.79

4.77 4.02 3.97

0.000 0.000 0.000

−8 −6 −14

48 40 38

48 54 48

0.118 0.724 0.889

5.57 3.94 3.58

4.42 3.42 3.17

0.000 0.000 0.001

−10 −6 6

−54 −44 −46

30 28 28

0.141 0.234 0.283

5.31 4.91 4.64

4.28 4.04 3.88

0.000 0.000 0.000

−46 −50 −48

−60 −66 −54

26 38 34

0.000

0.000

0.002

0.000

Table S13: ROI analysis: BOLD Response in left angular gyrus Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

−0.712∗∗ 0.143 0.499∗∗∗ −0.048

−1.246 −0.051 0.279 −0.210 − − − − −

1.359 0.364 0.340 0.001 3.724

Upper −0.177 0.337 0.719 0.114 − − − − −

SE 0.273 0.099 0.112 0.083

Df 4253 4253 4253 4253

− − − − −

t −2.61 1.45 4.45 −0.58

p 0.009 0.147 0.000 0.563

− − − − −

− − − − −

− − − − −

Df

t

p

*0 not included in the 95% Confidence Interval; Obs = 4282.

Table S14: ROI analysis: BOLD Response in right angular gyrus Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

−0.090 0.352∗∗∗ 0.395∗∗∗ −0.232∗∗

−0.547 0.175 0.242 −0.371 − − − − −

1.163 0.360 0.116 0.089 3.087

Upper 0.366 0.530 0.548 −0.094 − − − − −

SE 0.233 0.091 0.078 0.071

4253 4253 4253 4253

− − − − −

−0.39 3.89 5.06 −3.29

0.698 0.000 0.000 0.001

− − − − −

− − − − −

− − − − −

Df

t

p

*0 not included in the 95% Confidence Interval; Obs = 4282.

Table S15: ROI analysis: BOLD response in posterior cingulate Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

−0.353∗ 0.139 0.298∗∗∗ −0.095

−0.683 −0.013 0.180 −0.202 − − − − −

0.839 0.336 0.126 0.110 2.267

Upper −0.023 0.292 0.417 0.013 − − − − −

SE 0.168 0.078 0.060 0.055

4253 4253 4253 4253

− − − − −

−2.10 1.79 4.95 −1.73

0.036 0.074 0.000 0.085

− − − − −

− − − − −

− − − − −

Df

t

p

*0 not included in the 95% Confidence Interval; Obs = 4282.

Table S16: ROI analysis: BOLD response in left middle frontal gyrus Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

−0.165 0.476∗∗∗ 0.422∗∗∗ 0.052 0.820 0.593 0.269 0.190 4.196

−0.505 0.203 0.198 −0.145 − − − − −

*0 not included in the 95% Confidence Interval; Obs = 4282.

11

Upper

SE

0.175 0.750 0.647 0.249

0.173 0.140 0.115 0.100

− − − − −

− − − − −

4253 4253 4253 4253 − − − − −

−0.95 3.41 3.69 0.51 − − − − −

0.343 0.001 0.000 0.607 − − − − −

Table S17: ROI analysis: BOLD response in medial prefrontal cortex Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

−1.241∗∗∗ 0.499∗∗ 0.476∗∗∗ −0.053

−1.782 0.199 0.256 −0.295 − − − − −

1.361 0.656 0.125 0.364 4.512

Upper −0.700 0.800 0.696 0.189 − − − − −

SE 0.276 0.153 0.112 0.123

Df 4253 4253 4253 4253

− − − − −

t −4.50 3.26 4.25 −0.43

p 0.000 0.001 0.000 0.670

− − − − −

− − − − −

− − − − −

Df

t

p

*0 not included in the 95% Confidence Interval; Obs = 4282.

Table S18: ROI analysis: BOLD response in left inferior frontal gyrus Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

1.250∗∗∗ 0.544∗∗∗ −0.053 −0.241∗∗

0.803 0.349 −0.240 −0.389 − − − − −

1.131 0.396 0.247 0.000 3.398

Upper 1.697 0.739 0.134 −0.094 − − − − −

SE 0.228 0.100 0.095 0.075

4253 4253 4253 4253

− − − − −

5.48 5.46 −0.56 −3.20

0.000 0.000 0.579 0.001

− − − − −

− − − − −

− − − − −

Df

t

p

*0 not included in the 95% Confidence Interval; Obs = 4282.

Table S19: ROI analysis: BOLD Response in right inferior frontal gyrus Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

0.790∗∗∗ 0.865∗∗∗ 0.021 −0.288∗∗∗

0.372 0.652 −0.191 −0.439 − − − − −

1.052 0.449 0.348 0.000 3.458

Upper 1.207 1.078 0.232 −0.138 − − − − −

SE 0.213 0.109 0.108 0.077

4253 4253 4253 4253

− − − − −

3.71 7.96 0.19 −3.76

0.000 0.000 0.848 0.000

− − − − −

− − − − −

− − − − −

Df

t

p

*0 not included in the 95% Confidence Interval; Obs = 4282.

Table S20: ROI analysis: BOLD response in right supramarginal gyrus Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

0.532∗∗ 0.446∗∗∗ −0.109 −0.091 0.863 0.370 0.151 0.000 2.623

0.191 0.275 −0.247 −0.205 − − − − −

*0 not included in the 95% Confidence Interval; Obs = 4282.

12

Upper

SE

0.874 0.617 0.028 0.023

0.174 0.087 0.070 0.058

− − − − −

− − − − −

4253 4253 4253 4253 − − − − −

3.06 5.12 −1.56 −1.57 − − − − −

0.002 0.000 0.120 0.116 − − − − −

Table S21: ROI analysis: BOLD response in supplementary motor cortex Variable Fixed effect Stimulus Nbr of Draws Freq Prob Bay Prob Random effect (SD) Stimulus Nbr of Draws Freq Prob Bay Prob Error

Estimate

Lower

1.119∗∗∗ 0.259∗∗ −0.292∗∗ −0.103

0.545 0.069 −0.500 −0.272

Upper 1.693 0.448 −0.084 0.065

− − − − −

1.469 0.376 0.341 0.209 3.389

SE 0.293 0.097 0.106 0.086

− − − − −

− − − − −

Df 4253 4253 4253 4253

t 3.82 2.68 −2.76 −1.20

− − − − −

p 0.000 0.007 0.006 0.230

− − − − −

− − − − −

t

p

*0 not included in the 95% Confidence Interval; Obs = 4282.

Table S22: ROI analysis: Interaction Probability x ROI (Freq ROI = 0; Bay ROI = 1) Variable Fixed effect Stimulus (in Freq ROI) Stimulus x Bay ROI Nbr of Draws (in Freq ROI) Freq Prob (in Freq ROI) Bay Prob (in Freq ROI) Nbr of Draws x Bay ROI Freq Prob x Bay ROI Bay Prob x Bay ROI Random effect (SD) Stimulus (in Freq ROI) Stimulus x Bay ROI Nbr of Draws (in Freq ROI) Freq Prob (in Freq ROI) Bay Prob (in Freq ROI) Nbr of Draws x Bay ROI Freq Prob x Bay ROI Bay Prob x Bay ROI Error

Estimate

Lower

−0.709∗∗∗ 2.007∗∗∗ 0.380∗∗∗ 0.584∗∗∗ −0.101 0.341∗∗∗ −0.569∗∗ 0.415∗∗∗

−1.063 1.624 0.183 0.406 −0.218 0.208 −0.917 0.217 − − − − − − − − −

0.901 0.897 0.483 0.331 0.172 0.180 0.710 0.275 3.640

Upper −0.356 2.389 0.577 0.762 0.016 0.474 −0.221 0.612 − − − − − − − − −

SE 0.180 0.195 0.101 0.091 0.060 0.068 0.178 0.101 − − − − − − − − −

Df 25659 25659 25659 25659 25659 25659 25659 25659

−3.93 10.29 3.78 6.42 −1.70 5.02 −3.20 4.12

− − − − − − − − −

0.000 0.000 0.000 0.000 0.090 0.000 0.001 0.000

− − − − − − − − −

− − − − − − − − −

t

p

*0 not included in the 95% Confidence Interval; Obs = 25692.

Table S23: ROI analysis: Interaction Probability x ROI (Bay ROI = 0; Freq ROI = 1) Variable Fixed effect Stimulus (in Bay ROI) Stimulus x Freq ROI Nbr of Draws (in Bay ROI) Freq Prob (in Bay ROI) Bay Prob (in Bay ROI) Nbr of Draws x Freq ROI Freq Prob x Freq ROI Bay Prob x Freq ROI Random effect (SD) Stimulus (in Bay ROI) Stimulus x Freq ROI Nbr of Draws (in Bay ROI) Freq Prob (in Bay ROI) Bay Prob (in Bay ROI) Nbr of Draws x Freq ROI Freq Prob x Freq ROI Bay Prob x Freq ROI Error

Estimate

Lower

1.291∗∗∗ −1.997∗∗∗ 0.710∗∗∗ 0.021 0.315∗∗∗ −0.323∗∗∗ 0.570∗∗∗ −0.422∗∗∗ 0.856 0.911 0.446 0.270 0.000 0.211 0.567 0.296 3.640

0.930 −2.383 0.515 −0.183 0.180 −0.463 0.263 −0.623 − − − − − − − − −

*0 not included in the 95% Confidence Interval; Obs = 25692.

13

Upper 1.652 −1.610 0.905 0.226 0.450 −0.184 0.877 −0.220 − − − − − − − − −

SE 0.184 0.197 0.099 0.104 0.069 0.071 0.157 0.103 − − − − − − − − −

Df 25659 25659 25659 25659 25659 25659 25659 25659 − − − − − − − − −

7.01 −10.12 7.14 0.21 4.58 −4.54 3.64 −4.10 − − − − − − − − −

0.000 0.000 0.000 0.837 0.000 0.000 0.000 0.000 − − − − − − − − −

Table S24: Connectivity analysis: Angular minus inferior frontal gyrus Cluster Local Max L Angular Gyrus L Angular Gyrus L Angular Gyrus R Angular Gyrus R Angular Gyrus R Angular Gyrus Posterior Cingulate Precuneus Posterior Cingulate R Mid Cingulate Medial/Sup/Middle/L Orbito Frontal L Middle Frontal R Sup Frontal Sup Medial Frontal L Middle Temporal L Middle Temporal L Temporal Pole L Middle Temporal R Lat Orbito Frontal R Orbito Frontal R Orbito Frontal R Orbito Frontal R Middle Temporal R Temporal Pole R Middle Temporal R Middle Temporal Cerebelum Cerebelum L Lingual R Lingual

pFDR

kE

punc pFDR

0.000

0.000

0.000

0.000

0.000

0.001

0.000

0.023

2461

t

z

punc

x

y

z

0.000

1443

0.000 0.000

15.68 15.45

7.65 7.61

0.000 0.000

−42 −48

−62 −70

32 32

0.000 0.003

11.52 7.50

6.73 5.38

0.000 0.000

58 46

−60 −56

32 24

0.001 0.001 0.002

8.65 8.27 7.87

5.83 5.69 5.53

0.000 0.000 0.000

0 −4 10

−70 −54 −50

32 32 32

0.001 0.003 0.005

8.65 7.60 7.24

5.83 5.42 5.27

0.000 0.000 0.000

−38 22 12

20 32 36

52 54 54

0.004 0.006 0.006

7.35 6.67 6.57

5.31 5.01 4.96

0.000 0.000 0.000

−60 −54 −52

−22 0 −24

−18 −30 −14

0.005 0.012 0.073

7.00 6.03 4.94

5.16 4.70 4.09

0.000 0.000 0.000

42 52 32

32 42 26

−18 −14 −20

0.005 0.018 0.025

6.87 5.82 5.58

5.10 4.58 4.46

0.000 0.000 0.000

60 64 64

0 −12 −34

−28 −16 −6

0.052 0.148 0.220

5.13 4.57 4.35

4.20 3.86 3.72

0.000 0.000 0.000

−4 −10 10

−40 −34 −36

−4 −8 −10

x

y

z

0.000

2249

0.000

8472

0.000

769

0.000

301

0.000

486

0.000

134

0.010

Height threshold: T = 3.45, p = 0.001; Extent threshold: k = 100 voxels, p = 0.022.

Table S25: Connectivity analysis: Inferior frontal minus angular gyrus Cluster Local Max Post/Precentral L Precentral R Pars Opercularis L Precentral L Occipital/Temporal L Inf Temporal L Inf Occipital L Inf Temporal R Mid Temporal R Mid Temporal

pFDR

kE

punc pFDR

0.000

0.001

0.008

39397

t

z

punc

0.000

389

0.000 0.000 0.000

16.88 15.93 13.39

In f 7.70 7.19

0.000 0.000 0.000

−50 54 −48

4 10 −4

34 26 40

0.040 0.056 0.061

5.37 5.18 5.14

4.34 4.23 4.20

0.000 0.000 0.000

−46 −40 −46

−54 −76 −64

−10 −8 −4

0.040

5.36

4.33

0.000

48

−58

−2

0.000

233

0.001

Height threshold: T = 3.45, p = 0.001; Extent threshold: k = 100 voxels, p = 0.022.

14

Table S26: Voxel-based analysis: BOLD regressed on prior position (left to right) Cluster Local Max R Occipital R Lingual R Calcarine R Sup Occiptal R Occipital R Sup Occipital

pFDR

kE

punc pFDR

0.000

778

0.007

t

z

0.005 0.020 0.226

7.18 6.10 4.51

5.20 4.70 3.80

0.060

5.34

4.29

punc

x

y

z

0.000 0.000 0.000

12 16 24

−74 −82 −98

0 4 10

0.000

22

−92

24

x

y

z

−12 −10 −10

−78 −70 −82

−6 −6 4

x

y

z

0.000

145

0.007

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.021.

Table S27: Voxel-based analysis: BOLD regressed on prior position (right to left) Cluster Local Max L Occipital L Lingual L Lingual L Calcarine

pFDR

kE

punc pFDR

0.000

1252

t

z

6.14 6.09 5.80

4.72 4.69 4.54

punc

0.000 0.061 0.061 0.066

0.000 0.000 0.000

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.021.

Table S28: Voxel-based analysis: BOLD regressed on right minus left hand Cluster Local Max L Motor Cortex L Postcentral L Precentral L Postcentral R Cerebelum R Cerebelum R Cerebelum R Cerebelum Medial Motor/Mid Cingulate Medial Motor Mid Cingulate

pFDR

kE

punc pFDR

0.000

0.001

0.044

1239

299

106

t

z

punc

0.000 0.003 0.060

9.82 7.57 5.74

6.17 5.36 4.51

0.000 0.000 0.000

−34 −34 −48

−22 −22 −18

46 62 56

0.060 0.221 0.523

5.64 4.81 4.03

4.46 3.98 3.49

0.000 0.000 0.000

12 8 20

−50 −58 −46

−12 −8 −24

0.217 0.367

4.89 4.47

4.04 3.78

0.000 0.000

−6 −6

−18 −26

50 48

0.000

0.000

0.012

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.014.

15

Table S29: Voxel-based analysis: BOLD regressed on left minus right hand Cluster Local Max R Motor Cortex R Precentral R Precentral R Precentral

pFDR

kE

punc pFDR

0.000

1305

t

z

punc

x

y

z

42 40 36

−16 −28 −20

62 64 50

0.000 0.000 0.000 0.000

10.93 10.38 9.69

6.49 6.34 6.13

0.000 0.000 0.000

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.014.

Table S30: Voxel-based analysis: BOLD regressed on the auction price Cluster Local Max Bilat Caudate L Caudate R Caudate R Caudate Occipital R Linguale R Calcarine R Sup Occipital R Cerebelum R Cerebelum R Cerebelum R Cerebalum

pFDR

kE

punc pFDR

0.000

0.001

0.019

510

t

z

0.027 0.126 0.126

7.40 6.14 6.04

5.29 4.72 4.67

0.197 0.285 0.285

5.19 4.87 4.85

0.218 0.445 0.495

5.07 4.35 4.22

punc

x

y

z

0.000 0.000 0.000

−8 6 8

20 16 8

4 0 −4

4.21 4.02 4.01

0.000 0.000 0.000

6 12 20

−78 −96 −98

−6 6 16

4.14 3.70 3.61

0.000 0.000 0.000

18 30 36

−76 −76 −72

−18 −18 −22

x

y

z

0.000

399

0.000

194

0.002

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.019.

Table S31: Voxel-based analysis: BOLD regressed on the net payoff Cluster Local Max R Striatum R Putamen R Caudate R Putamen L Striatum L Caudate L Caudate L Putamen L Putamen L Putamen L Putamen L Putamen Ventral Medial Prefrontal Ventral Medial Prefrontal Ventral Medial Prefrontal Ventral Medial Prefrontal

pFDR

kE

punc pFDR

0.000

0.000

0.009

0.009

780

984

198

197

t

z

punc

0.001 0.244 0.244

9.38 5.13 5.10

6.02 4.17 4.15

0.000 0.000 0.000

18 8 30

12 2 6

−2 −4 −2

0.005 0.017 0.017

7.81 6.99 6.97

5.46 5.11 5.11

0.000 0.000 0.000

−10 −16 −20

12 12 12

−4 18 −2

0.208 0.643 0.643

5.31 4.29 4.20

4.28 3.66 3.60

0.000 0.000 0.000

−30 −26 −30

−12 −20 −32

4 10 10

0.301 0.643 0.643

4.96 4.34 4.21

4.07 3.69 3.61

0.000 0.000 0.000

−6 −2 2

46 42 44

−10 −16 −2

0.000

0.000

0.001

0.001

Height threshold: T = 3.47, p = 0.001; Extent threshold: k = 100 voxels, p = 0.011.

16

References Chumbley J, Worsley K, Flandin G, Friston K (2010) Topological FDR for neuroimaging. Neuroimage 49:3057–3064. Chumbley JR, Friston KJ (2009) False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage 44:62–70.

17

The Human Brain Encodes Event Frequencies ... - Caltech Authors

Here we show all the steps leading to the Bayesian formulas. ..... Table S8: Voxel-based analysis: BOLD regressed on Bayesian expected net payoff. Cluster.

57KB Sizes 0 Downloads 215 Views

Recommend Documents

The Human Brain Encodes Event Frequencies While ...
6. 4.2.3 Betting, Auction, and Final Outcome Epoch . .... Results for the triangles moving to the right are shown in Table S6. ... To test if the effect of frequentist and Bayesian probabilities was significantly stronger in the frequentist vs Bayesi

Understanding Price Controls and Nonprice ... - Caltech Authors
Support Program sets a minimum price for milk ... Foundation and the support of the Caltech Laboratory of ... set of qualities Q, where the set Q is a finite set.

From Threat to Fear - Caltech Authors
Sep 30, 2009 - tor, the postencounter reflects the initial detection of the poten- tial threat, whereas the circa-strike is associated with direct interaction with the predator (i.e., when the predator attacks). The postencounter is linked with “pa

Counting Independent Sets using the Bethe ... - Caltech Authors
Bethe free energy, independent set, belief propagation, loop series. AMS subject classifications. .... Bethe free energy for a graph on n nodes with max-degree d, the algorithm takes. O(n2d42dε−4 ...... online from http://arxiv.org/abs/0910.4664.

Counting Independent Sets using the Bethe ... - Caltech Authors
Here F ⊆ E are (edge) subgraphs of G, and the explicit form of weight w(F) can be obtained as ...... First some notation: given a list of apples {Ci} and F = S.

On the use of dislocations to model interseismic ... - Caltech Authors
realistic 2-D finite element model that accounts for the mechanical layering of the continental .... North of the high range, it probably roots into a subhorizontal shear zone .... Except where the fault emerges, the three approaches yield about the 

Thermal structure and exhumation history of the ... - Caltech Authors
Oct 20, 2004 - (HHC) and the black slates and quartzites (LH), lending support to the validity of defining the MCT based on ... [14] The carbonaceous black schists, which are rich in CM and relatively abundant in the LH, make it possible ...... The a

Effective field theories on noncommutative space-time - Caltech Authors
Jul 21, 2003 - Using Seiberg-Witten map techniques, we derive the leading order ... space-time, we need to define the concept of noncommuta- ... The mapping be- tween the noncommutative field theory and the effective field theory on a usual commutati

Linear Network Codes: A Unified Framework for ... - Caltech Authors
code approaches zero as n grows without bound for any source U with H(U) < R. The fixed-rate, linear encoder is independent of the source distribution; we use distribution-dependent typical set decoders for simplicity. Let an be an ⌈nR⌉ × n matr

Activity in Inferior Parietal and Medial Prefrontal ... - Caltech Authors
Jan 31, 2013 - The activation of past outcomes in memory is evoked as a possible mechanism to ... to increase with the probability of an upcoming punishment.

Free-standing all-polymer microring resonator ... - Caltech Authors
'Broadband modulation of light by using an electro-optic polymer', Science, 2002, 298, pp. 1401–1403. 3 YARIV, A.: 'Universal relations for coupling of optical ...

Activity in Inferior Parietal and Medial Prefrontal ... - Caltech Authors
Jan 31, 2013 - The activation of past outcomes in memory is evoked as a possible mechanism to ... to increase with the probability of an upcoming punishment.

Anomalous Hypothalamic Responses to Humor in ... - Caltech Authors
May 21, 2008 - Anomalous Hypothalamic Responses to Humor in. Cataplexy. Allan L. Reiss1*, Fumiko Hoeft1, Adam S. Tenforde1, Wynne Chen2, Dean Mobbs1,3, Emmanuel J. Mignot2 ..... Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch fo

Simulating the Human Brain - Cordis
Build a suite of analytics applications to process brain data. (signal analytics, visual analytics, real-time analytics, auto- analytics); build data display applications ...

Simulating the Human Brain - Cordis
Understand the brain at all levels of organization (genes to whole brain); simulate the brain ... Build software applications to model, simulate, visualize and diagnose biologically ... ICT methods for pharmaceutical companies. (disease and drug ...

Event-related brain dynamics
visual ERP (the so-called 'N1' – a negative. 'peak' that is typically ... the single-trial data over a period that ... presentation, the phase of an ongoing rhythm is ...

the human brain evolving - John Allman
Bottom: right lateral view. ... Close-up views of anatomical details evident in the structural MR image. .... Society London B Biological Sciiences 360, 733-750.

the human brain evolving - John Allman
brain using a high-field experimental imaging system. ... on a 9.4 Tesla MRI system. To test the ... using Amira (Mercury, San Diego) and the FSL suite of MRI ...

How the brain perceives causality: an event- related ...
Statistical analysis was performed to examine the simple effects of the three visual events compared with the null stimulus, the main effects of causality vs ...

Effects of 900-MHz Radio Frequencies on the Chemotaxis of Human ...
concentration gradient and the electrical field lines to motion at right angles to the ... as temperature and the chemo-attractant concentration gradients. How-.