

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

The Layered Games Framework for Specifications and Analysis of Security Protocols Full version, draft of February 4, 2008 Extended abstract version in TCC’08, full version in eprint [30]

Amir Herzberg and Igal Yoffe Computer Science Department, Bar Ilan University, Ramat Gan, 52900, Israel {herzbea,ioffei}@cs.biu.ac.il

Abstract. We establish rigorous foundations to the use of modular, layered design for building complex distributed systems. Layering is key to the design of the Internet and other distributed systems, hence such solid, theoretical foundations are essential, especially when considering adversarial settings, such as for security and cryptographic protocols. We define the basic concepts for modular, layered design: protocols, systems, configurations, executions, and models, and three relations: indistinguishability (between two systems), satisfaction (of a model by a system), and realization (by protocol, of one model over another model). We prove several basic properties, including the layering lemma and the indistinguishability lemma. The indistinguishability lemma shows that if two systems ΓL , ΓR are indistinguishable, and ΓL satisfies some model M, then ΓR also satisfies M. The layering lemma shows that given protocols {πi }ui=1 , if every protocol πi realizes model Mi over model Mi−1 , then the composite protocol π1||...||u realizes model Mu over M0 . This allows specification, design and analysis of each layer independently, and combining the results to ensure properties of the complete system. Our framework is based on games, following many works in applied cryptography. This differs from existing frameworks allowing compositions of cryptographic protocols, based on simulatability of ideal functionality. Game-based models are more general and flexible than ideal functionality specifications, supporting different adversarial models and avoiding over-specification, which is essential for practical distributed systems and networks.

1

Introduction

The design and analysis of complex distributed systems, such as the Internet and applications using it, is an important and challenging goal. Such systems are designed in modular fashion, typically by decomposing the system into multiple layers. Some of the well known layered network architectures include the ‘OSI 7layers reference model’ and the ‘IETF 5-layers reference model’ (also referred to

2

Amir Herzberg, Igal Yoffe

as the Internet or TCP/IP model, and often extended with two optional security sub-layers - TLS and IP-Sec); see e.g. Kurose and Ross [33]. The present work is part of an effort, described in Herzberg and Yoffe [27], to extend such layered networking architectures, to support secure e-commerce applications. Figure 1 shows the five IETF layers, together with two optional security sub-layers, and the four secure e-commerce layers of [27].

Application Payment Orders

E-commerce layers

Delivery Evidences (DE) Transport Security (TLS) Transport (TCP) Network Security (IP-SEC) Network (IP)

IETF layers

Link (Ethernet) Physical

Fig. 1. IETF and e-commerce layers; (optional) IETF security sub-layers marked with dotted contour. Layer i expects the (lower) layer i − 1 to fulfill some (lower) layer model. For example, in Herzberg and Yoffe [29] we define the communication layer model MComm , for the service expected by the Deliver Evidences (DE) layer, operating on top of the IETF layers.

Layered (or modular) architectures allow to specify, design, analyze, implement and test protocols for each layer, independently of protocols for other layers. This is based on the paradigm of lower layers abstraction. For each layer i, we define a model Mi . The model Mi defines specifications, not just for the protocol πi for layer i, but for the entire system Γi , comprising of copies of πi running in multiple processors, all communicating via the ‘lower layer’ system Γi−1 (satisfying model Mi−1). πi Given protocol πi and (lower layer) system Γi−1 , let Γi ≡ be the comΓi−1 position of (multiple instances of) πi running over Γi−1 (see Figure 4). Protocol πi πi realizes model Mi over model Mi−1 , if Γi ≡ satisfies Mi , provided Γ i−1 πi that Γi−1 satisfies Mi−1 . We write this as: Mi ` . Mi−1 We prove two key lemmas: the layering lemma and the indistinguishability lemma. The indistinguishability lemma shows that if two systems ΓL , ΓR are

The Layered Games Framework

3

indistinguishable, and ΓL satisfies some model M, then ΓR also satisfies M. This allows use of complex reduction arguments, e.g. hybrid arguments, to facilitate proofs of security of complex protocols; see for example [8]. The layering lemma shows that given protocols {πi }ui=1 , if every protocol πi realizes model Mi over model Mi−1 , then the composite protocol π1||...||u realizes model Mu over M0 . This provides firm foundations to the security of modular and layered architectures, as in Figure 1. For example, in Herzberg and Yoffe [29] we define the communication model MComm ; this is a formalization of a commonly-used model of communication systems such as the Internet, using a reliable transport protocol like TCP over an unreliable lower-layer service (e.g. the Internet Protocol). We then define the πDE delivery evidences model MDE , and show a protocol πDE s.t. MDE ` . MComm Similarly, in Herzberg and Yoffe [28] we define the orders model MOrders , and πOrders show protocol πOrders s.t. MOrders ` . Using the fundamental lemma MDE of layering, the composite protocol πDE||Orders realizes the orders model directly πDE||Orders over the communication model, i.e. MOrders ` . MComm

Adversary system ΓA

Experiment ΓE(MDE)

πDE

πDE

πDE

∧

Adversary system ΓA

Adversary system ΓA

Experiment ΓE(MOrders)

Experiment ΓE(MOrders)

πOrders

πOrders

πOrders

System ΓComm satisfying model MComm

System ΓDE satisfying model MDE

(a) DE over Comm

(b) Orders over DE

πDE||Orders

πDE||Orders

πDE||Orders

System ΓComm satisfying model MComm (c) Orders over Comm

Fig. 2. Layering of realizations of the Order and Delivery Evidences (DE) layers. This figure contains three simple configurations ((a), (b) and (c)), each of them containing three copies of a protocol (πDE , πOrders and πDE||Orders , respectively). Part (a) illustrates that πDE realizes MDE over MComm ; part (b) illustrates that πOrders realizes MOrders over MDE ; and part (c) illustrates that protocol πDE||Orders realizes MOrders over MComm .

This is illustrated in Figure 2. In each of the three parts of the figure, we see a protocol realizing one model over another. For example, in (a) we see protocol πDE , which realizes model MDE over model MComm . Namely, when πDE is combined over any system ΓComm that satisfies MComm , the resulting

4

Amir Herzberg, Igal Yoffe

 πDE satisfies MDE . Formally, the model MDE ΓComm includes an experiment system ΓExp (MDE), which interacts with the composite πDE system ΓDE = and with an adversary program A (see Figure 2 (a)). ΓComm πDE The system ΓDE = satisfies MDE , if the probability that Exp(MDE) ΓComm outputs 1 is negligible. Similarly, in Figure 2 (b), we see protocol πOrders , which realizes model MOrders over model MDE . Namely, when πOrders is combined over ΓDE that sat any system πOrders isfies MDE , the resulting combined system ΓOrders = satisfies MOrders . ΓDE Finally, in Figure 2 (c), we see protocol πDE||Orders , which is the composition πOrders of protocol πOrders ‘on top of’ protocol πDE , denoted πDE||Orders ≡ . πDE The layering lemma of shows that πDE||Orders realizes model MOrders directly over model MComm . Namely, when πDE||Orders is combined over any system ΓComm that πDE||Orders satisfies MComm , the resulting combined system ΓOrders = satisfies ΓComm MOrders . Organization. In Section 2 we define a specific execution model which we use in the framework, consisting of protocols, systems, configurations (of protocols and systems), and executions (of configurations). In Section 3 we define models and realizations, and present the layering lemma. In Section 4 we define emulation and indistinguishability of systems, based on the indistinguishability game, and the indistinguishability lemma. We conclude and discuss future work in Section 5. In the rest of this introduction, we discuss the need for a theoretical basis for layering, the reasons for using game-based models rather than ideal functionalities, and related works. combined system ΓDE =

1.1

The need for theoretical foundations for layering

Modular design is a basic engineering principle, applied in all large scale systems. In particular, layering is a common, simple form of modular design, which is widely used in distributed systems and networks, e.g. the Internet. However, existing proposals and standards of specifications of layers are only stated informally, often by (partial) specification for the operation of the protocols, rather than (full) specification for the service model that the higher layer can rely on. For example, the IP (Internet Protocol) layer is essentially only required to provide a vaguely-described ‘best effort’ service. Layered compositions of protocols are also used without formal definition or proof. A possible explanation for the fact that layering was not yet based on formal foundations, in spite of its wide use, is the fact that similar compositions work as expected for many models, often trivially. For example, the composition of two polynomial time algorithms is trivially also a polynomial time algorithm.

The Layered Games Framework

5

However, as Abadi and Lamport [1] argue, composition properties require proof, and may not hold for all (natural) models. For example, the composition of two polynomial time interactive Turing machines (ITM), or of (infinite) state machines with polynomial-time transition functions, may not be polynomialtime, in the natural setting where the outputs of each machine is considered part of the inputs of the other. Indeed, our proof of the layering lemma is simple; however, we found that some definitional choices could have subtle but critical impact on composability. This motivated the precise execution model, which we present in Section 2. 1.2

Games vs. ideal functionalities

Several frameworks were shown to ensure secure composition of cryptographic protocols, including universal composability (UC) by Canetti [14], reactive simulatability by Backes, Pfitzmann, and Waidner [4], Pfitzmann and Waidner [37], observational equivalence by Lincoln, Mitchell, Mitchell, and Scedrov [35], and more. These frameworks all follow the ideal functionality paradigm. The ideal functionality paradigm is elegant and powerful, and resulted in many significant results. This includes proofs that under certain assumptions on faults, communication and synchronization, it is possible to simulate an arbitrary ideal functionalities, so that no efficient adversary can distinguish between the realization and the ideal functionality; see Goldreich, Micali, and Wigderson [23], Canetti [12, 14]. Grossly simplifying, an ‘ideal functionality’ for layer i is a single program Fi , which has multiple copies of the interfaces to layer i + 1. Protocol πi is considered secure, if executions of multiple copies of it over Fi−1 , are indistinguishable from executions of Fi . Ideal functionalities can support a large variety of scenarios. In particular, ideal functionalities can allow the adversary to control and observe ‘environmental’ aspects, e.g. to determine delays and faults, by providing appropriate ‘channel controls and indicators‘. This is critical, since practical systems are never fully implemented; there is always some dependency on the environment, and some lower-level events may be observable by the adversary, e.g. packet transmission. Most specifications following the ‘simulation of ideal functionality’ are based on a specific game, and seem1 to be expressible as a specification in the layered games framework. However, the reverse does not seem to hold: not all games can be expressed by simulation of some ideal functionality. In fact, we believe that the layered games framework has the following advantages compared to simulation of ideal functionality; these advantages are crucial for realistic modeling of distributed systems and networks. Flexible security and adversarial models: game-based specifications allow significantly greater flexibility in the definition of the security specifications 1

This intuition should yet be carefully confirmed, due to subtle yet critical variations, esp. regarding the execution model.

6

Amir Herzberg, Igal Yoffe

and adversarial models, compared to specifications requiring simulation of an ideal functionality. In particular, game-based specifications allow flexible, diverse assumptions on synchronization, communication and failures. For example, we can use game-based specifications to analyze‘proactive security’ protocols, see e.g. Canetti, Gennaro, Herzberg, and Naor [16]. Support complex, unpredictable adversarial controls and indicators: To model realistic systems, the ideal functionality may allow the adversary to determine different ‘environmental’ controls, e.g. over delays and faults, and provide some indicators, e.g. of packet transmission. However, this requires the definition of the ideal functionality, to include every possible control and indicator. This often substantially increases the complexity of the ideal functionality, and could result in omission of some ‘side channels’. Finally, to control message delivery, we must inform the adversary of the message transmission event; this may give an unrealistic ability to the adversary, and make it more difficult to define and achieve some (privacy) goals. Such issues are easily handled in the layered games framework. Avoid over-specification: an ideal functionality may restrict the set of allowed protocols, by specifying aspects of their operation which are not essential for the applications. As a particular extreme case, consider using ideal functionality to specify the requirements from a stand-alone program; in this case, the ideal functionality could simply be used as the program. This clearly violates the goals of top-down, modular design. Indeed, in the practice of layered protocol design, the goal is to specify the behavior of protocols rather then their precise operation, and over-specification is considered harmful, see e.g. Bradner [10]. Realizability: Some cryptographic primitives have secure implementations for game-based specifications, where the corresponding ideal functionalities are not realizable, see Datta, Derek, Mitchell, Ramanathan, and Scedrov [19], Canetti, Kushilevitz, and Lindell [17], Canetti and Fischlin [13]. This motivates investigating compositions of protocols satisfying game-playing specifications. Simplicity and clarity: definitions of ideal functionalities often get complicated, by adding different ‘environment controls and indicators’, e.g. to control delays and faults. We believe that game-based specifications can often be significantly simpler and clearer. 1.3

Related works

The game-playing paradigm The layered games framework is based on the game-playing paradigm, instead of following the ideal functionality paradigm. The game playing paradigm is central to the theory of cryptography, see e.g. Goldreich et al. [23], Goldreich [21]. Game playing supports strong analytical tools, e.g. Bellare and Rogaway [8], and may facilitate the use of (semi) automated proof-checking tools, see e.g. Halevi [26]. In the game-playing paradigm, one specifies an interactive game between a component and an adversary, where security is defined by the probability of the

The Layered Games Framework

7

adversary winning in the game. With information-theoretic games the adversarial entity is allowed unbounded computational resources, while concrete and probabilistic polynomial time games assume certain limitations on adversarial resources, e.g. available time. Game-based specifications are widely used, and available for many cryptographic primitives such as digital signature and encryption schemes, pseudo-random functions, and many more, e.g., Goldwasser and Micali [24], Goldwasser, Micali, and Yao [25], Goldreich [21]. Execution model Our execution model is closely related to the execution models of I/O Automata of Lynch and Tuttle [36], especially the Probabilistic I/O Automata model of Canetti et al. [15], and to the Reactive Simulatability framework [4, 5, 38]. In an especially related work, Backes et al. [3] define a relaxed notion of conditional reactive simulatability, where simulation is required only if the environment fulfills some constraints; however, there are significant differences between the works, most notably their constraints are on the environment and not on the lower layers. Computational vs. symbolic security The layered games framework follows the computational approach to cryptography, which treats protocols and cryptographic schemes as programs/machines, operating on arbitrary stings (bits). This is in contrast to the symbolic approach, where cryptographic operations are seen as functions on a space of symbolic (formal) expressions, and security properties are stated as symbolic expressions; see Dolev and Yao [20], Burrows, Abadi, and Needham [11]. Several works investigate compositions of cryptographic protocols with the symbolic approach, e.g. Datta et al. [18] and Backes at al. [6]. We believe that it may be possible and beneficial, to extend the layered games framework to support symbolic/formal analysis, possibly building on recent results on the relationships between the two approaches, such as Abadi and Rogaway [2]. This may facilitate the use of verification tools; notice also that we use state machines as the basic computational model, which can also be helpful in applying verification tools. Worst-case analysis Our focus and main motivation is specification and analysis of security and cryptographic protocols. However, the layered games framework can be applicable when the goal is to analyze performance of protocols under hard to predict scenarios. In particular, the layered games framework allows generalization of the the adversarial queuing theory of Borodin, Kleinberg, Raghavan, Sudan, and Williamson [9].

2

Execution Model: Protocols, Systems, Configurations and Executions

In this section, we present an execution model for distributed systems, which we later use to define models and games, and to prove the layering lemmas. Such

8

Amir Herzberg, Igal Yoffe

precise execution model is essential, to ensure that the analysis is not invalidated due to some ‘technical’, subtle issues; we handled several such issues when developing the framework, some of them found by careful readers (see acknowledgments). The execution model defines protocols, systems, configurations and executions. Some readers may prefer to skip this section at first reading, and read the rest of the paper based on their intuitive interpretation of these concepts. 2.1

Protocols

Our basic element of computation is a protocol. Protocols are state machines2 that accept input on one of the input interfaces, and produce output on one or more output interfaces. We also allow a protocol to define ‘self-connections’, from output interfaces to an input interfaces. The protocol includes a transition function δ, which maps the input (interface and value) and current state, to a new state and to outputs on the different output interfaces. We use ⊥ to denote a special value which is not a binary string (⊥ 6∈ {0, 1}∗); a protocol outputs ⊥ on some output interface to signal ‘no output’. The transition function δ can depend on two additional inputs: random bits and a security parameter. A deterministic protocol ignores the random bits; deterministic protocols can be useful, e.g. to analyze the provision and use of pseudo-random bits. The (unary) security parameter, allows to define computational properties of the protocol and of specifications, such as security against computationally-bounded adversary. Specifically, we use the security parameter to define a polynomial protocol. Definition 1 (Protocol (extended with self-connections)). A protocol π is redefined as a tuple hS, IIN , IOU T , δ, SeCoi, where S, IIN , IOU T and δ are defined as in Definition 2, and where SeCo maps from IOU T to IIN ∪ {⊥}. When a protocol π has no self-connections, we may omit SeCo and write π = hS, IIN , IOU T , δi. Definition 2 (Protocol). A protocol π is a tuple hS, IIN , IOU T , δ, SeCoi where: 1. 2. 3. 4.

2

S is a set of states, where ⊥ ∈ S is the initial state, IIN is a set of input interface identifiers, IOU T is a set of output interface identifiers, δ : IN → OU T is a transition function, with: – Domain IN = 1∗ ×S×IIN ×{0, 1}∗ ×{0, 1}∗ (security parameter, current state, input interface, input value, random bits).

We use state machines, rather than e.g. ITM as in Universal Composability [14], since we found it simpler, and easier to ensure that an execution involving multiple protocols, some of which are adversarial, will have well-defined scheduling and distribution of events. Also, in many cases protocols may be represented by finite state machines, which may have advantages including possible use of automated verification tools.

The Layered Games Framework |I

9

|

– Range OU T = S × ({0, 1}∗ ∪ {⊥}) OU T . The outputs consist of a new state, denoted δ.s ∈ S, and output values δ.ov[ιo] ∈ {0, 1}∗ ∪{⊥} for each interface ιo ∈ IOU T . 5. SeCo is a mapping of ‘self connections’, from IOU T to IIN ∪ {⊥} The protocol is polynomial if δ is polynomial-time computable, and if the length of the outputs is the same as the length of the inputs3 , plus a polynomial in the security parameter, i.e. ∃c ∈ N s.t. ∀(1k , s, ι, x; r) ∈ IN, ιo ∈ IOU T : |δ.ov[ιo](1k , s, ι, x; r)| ≤ |x| + |k|c . Notations: Π, Πpoly : we denote the set of all protocols by Π, and the set of polynomial protocols by Πpoly . Dot notation: The range of δ is a set of pairs (s, ov[ιo]), where s ∈ S is the new state and ov[ιo] ∈ {0, 1}∗ ∪ {⊥} is the output on each output interface ιo ∈ IOU T . To refer directly to the state or the outputs, we use dot notation as in δ.s(·) and δ.ov[ιo](·) respectively. We also use dot notation to refer to a specific part of a protocol, e.g. π.IIN is the set of input interface identifiers IIN of protocol π. Range, Domain: We use Domain(SeCo) and Range(SeCo) to refer to range and domain, respectively, of SeCo (or other mapping), i.e. SeCo = Domain(SeCo) → Range(SeCo). 2.2

Layered protocols and systems

For simplicity, in this work we focus on analysis of layered protocols and systems, as common in practice; see Figure 3. A layered protocol π has only two external input interfaces, {IH , IL } = π.IIN /Domain(π.SeCo), for higher and lower layer, respectively. Similarly, π has only two external output interfaces, {OH , OL } = π.IOU T /Range(π.SeCo), for higher and lower layer, respectively. Layered protocols are a simplification of practical protocols, which usually have few interfaces to and from the higher layer, and few interfaces to and from the lower layer; these can usually be ‘merged’ to the interfaces above. We investigate executions of n copies of the analyzed layered protocol π, each running in one of n ‘processors’. The n copies of π interact with some 3

This restriction of the output length to be the same as input length, plus some ‘overhead’ which depends only on the security parameter, is a simple method to prevent exponential blow-up in input and output lengths, as outputs of one protocol become inputs to another protocol during execution. This restriction is reasonable in practice, and sufficient for our needs; for example, it allows a protocol to ‘duplicate’ input from one interface, to multiple output interfaces, but maintains a polynomial bound on the length of the inputs and outputs on each interface during the execution. More elaborate ways to prevent exponential blow-up were presented by K¨ usters [34] describing a general model for systems which satisfy certain acyclic conditions, Canetti [14] and Hofheinz, M¨ uller-Quade, and Unruh [32] for UC, and Backes et al. [5] for reactive simulatability.

10

Amir Herzberg, Igal Yoffe

IH OL

π

...

OH IL

I E OE

I1

O1

In On

Γ (a) Layered Protocol π

(b) System Γ

Fig. 3. Layered protocol (a) and system (b).

network-wide protocols, for the adversary, experiments, and ‘environment’ (e.g., lower layers). We found it convenient to refer to such network-wide protocols as systems; this allows us to refer to layered protocols simply as ‘protocols’. The parameter n can impact the number of interfaces of the systems, or their transition functions. As a convention, we use π for (layered) protocols, and Γ for systems. Specifically, we use ΓA for the adversary system, ΓExp for the experiment system, and Γi for the layer i system. The layer i system is the combination of the environment and all protocols, from layer i and below. The layer i system Γi (n), for n processors, has input interfaces {Ij }nj=1 , and output interfaces {Oj }nj=1 , one pair (Ij , Oj) for each processor j ∈ {1, . . . , n}. In addition, the layer has input interface IE and output interface OE , for inputs to (respectively, outputs from) the ‘environment’, e.g. to define delays and to report on ‘low level’ events, observable via the environment (e.g. packet transmission). In addition, the system Γi (n) can contain self-connections. two (layered) protocols π2 , π1 , we define the composite protocol π1||2 ≡ Given π2 by ‘merging’ the two protocols, as shown in Figure 4 (a). Similarly, given π1 π1 protocol π1 and system Γ0 , we define the composite system Γ1 ≡ , as in Γ0 Figure 4 (b). We omit the (trivial) details of both compositions. The following proposition states a trivial, yet important, observation, namely that composition is associative. Proposition 1 (Layering is associative). Let π1 , π2 , π3 be three protocols. The layering of π1 , π2 and π3 results in the same protocol π1||2||3 , regardless of the order, i.e. π2||3 π3 π1||2||3 = π(1||2)||3 = = = π1||(2||3) π1 π1||2

The Layered Games Framework

IH

I E OE

OH

IH OL

π2

O1

I1 IH

OH

OH

OL

IL

π1

. . .I

On

n

...

IL

11

IH

OH

OL

π1

IL

... IH OL OL

OH

π1

IL

I E OE

I1

O1

...

In On

Γ0

IL

(a) Composition of protocols

(b) Composition of protocol over system

Fig. 4. Composite protocol π1||2 (a) and system Γ1 (b) .

Similarly, let Γ0 be a system; the layering of π1 and π2 on top of Γ0 results in the same system Γ2 , regardless of the order, i.e.: π2 π2 Γ 2 = π1 = π1 Γ0 Γ0 The next proposition states that composition preserves efficiency, in the sense of polynomial-time complexity. A system Γ is polynomial if for every n, Γ (n) is a polynomial protocol; if Γ (n) is efficiently computable, we say that the system Γ is uniformly polynomial, otherwise, it is non-uniformly polynomial. Proposition 2 (Layering preserves efficiency). The layering of polynomial protocols, results in a polynomial protocol. The layering of a polynomial protocol over a (uniformly) polynomial system, results in an (uniformly) polynomial system. 2.3

Configurations

We study executions of configurations, containing multiple protocols and systems, connected via their interfaces. A configuration is a directed graph, whose nodes P are identifiers of protocols or systems, and whose edges are defined by mappings p0 = nP(p, ι) (for ‘next protocol’) and ι0 = nI(p, ι) (for ‘next interface’), mapping output interface ι ∈ oI(p) of node p, to input interface ι0 ∈ iI(p0)

12

Amir Herzberg, Igal Yoffe

of node p0 . Identification of the input and output interfaces, corresponds to the awareness of the network-layer, e.g. of router or firewall, to the identification of the network interface card on which a packet was received. Definition 3 (Configuration). A configuration is a tuple C = hP, iI, oI, nP, nIi, where: P is a set of protocol instance identifiers, iI, oI map identifiers in P to input and output interfaces, respectively, nP maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to p0 = nP(p, ι), where either p0 = ⊥ or p0 ∈ P (another instance), nI maps from instance identifier p ∈ P and an output interface ι ∈ oI(p), to input interface ι0 , s.t. if nP(p, ι) ∈ P then ι0 ∈ iI(nP(p, ι)), Usually, we investigate families of configurations C = {C(n)}, where each C(n) = hPn , iIn , oIn , nPn , nIn i is a configuration as above; this allows, in particular, to consider n protocols, and systems Γ (n) whose set of interfaces is a function of n (e.g. to interact with n protocols). For convenience, we use the term ‘configuration’ also when referring to a family of configurations C = {C(n)}. Configurations as defined above, are quite general. In particular, we intentionally avoided assuming any specific communication or synchronization mechanisms. This allows use of the framework in diverse scenarios, e.g. with or without assumptions on synchronization, communication and failures. 2.4

Executions

An execution is defined by a sequence of transitions of a protocol π running in one node p ∈ P inside a configuration C(n) = hPn , iIn , oIn , nPn , nIn i. To define the execution, we use a mapping π = Γn (p) from the protocol identifiers P to the protocols implementing each node. An important design goal, is that the set of executions of a given configuration C(n), with a specific mapping to protocols Γn , would be a well-defined random variable. This makes it easier to use an execution as a ‘subroutine’, to facilitate reduction-based reasoning and proofs. To further simplify such reductions, we require that executions be a deterministic function of explicit random-tape inputs. Specifically, the ith event in the execution, denoted ξi , is defined by the (deterministic) transition function of the protocol Γn (pi) invoked at this event (where pi is the identifier of that node). We allow the protocol to make random choices, but only using uniformly-selected random bits Ri ∈R {0, 1}∗ , provided as input to the transition function. Let R ≡ {{0, 1}∗ }i=1,2,... be the sequence whose elements are the sets of all binary strings {0, 1}∗ ; each execution is a deterministic function of the specific sequence R ∈ R used in that execution (i.e., R = {Ri }i=1,2,... s.t. (∀i)Ri = {0, 1}∗). Each protocol instance has its own state, and in each round it may decide to invoke interfaces of multiple other protocol instances; see for example the configurations in Figure 2. Recall that some of the output interfaces of a protocol may also be connected to input interfaces of the same protocol (self-connections).

The Layered Games Framework

13

At any point in the execution, there may be multiple ‘pending’ values sent from some output interface of one protocol p ∈ Pn , to some input interface of another protocol q ∈ Pn (possibly q = p, for self-connection). To define an execution, we need to decide on the order (scheduling) in which we handle these ‘pending’ input values. To ensure well-defined executions, without any non-deterministic choice (except for the explicit use of the random input strings R ∈ R), we use an adversary-generated4 schedule S. Specifically, in the games we define, the schedule is generated, before execution begins, by some (‘adversarial’) probabilistic polynomial time algorithm SG, which accepts as input the security parameter 1k and the number of processors n. Such a deterministic schedule is a simplification of reality, in which events are non-instantaneous and occur concurrently (and not even discretely), and even when they are ordered, the ordering is due to different implementation aspects which are not explicit in the modeling. We believe, that this is a useful simplification, which still provides good insights into expected behaviors of real systems. Definition 4 (Schedule). A schedule S of configuration C = hP, iI, oI, nP, nIi and protocol mapping Γ , is a sequence of pairs S = {< pi , ιi >}i∈N where pi ∈ P and ιi ∈ Γ (pi).IIN . The schedule is defined in advance and cannot depend on the execution (or on the random bits R ∈ R); in a sense, we consider two adversarial elements: the non-adaptive schedule and one or more adversarial systems, each aware of (only) inputs on its interfaces. A schedule could, of course, prevent events from happening; to prevent this from being a trivial method to cause executions where the adversary wins, our definitions of games (later) consider the adversary as winning only if some event happens, rather than by the absence of some event, and sometimes impose some restrictions on the schedule. For example, in the indistinguishability game which we later present, we restrict the schedule to prevent it from ‘leaking’ the selection of the experiment (L or R), to the adversary. A similar issue, where we tried to avoid non-determinism, involves how we handle multiple pending inputs, submitted on the same input interface. Our definition delivers inputs on an interface, in the order in which they were submitted. We do this by keeping a FIFO queue Q[p, ι], for protocol instance p and input interface ι, with regular semantics for the enqueue, dequeue, and is empty operations. This choice is natural, although other choices may be possible. Definition 5 (Execution). Let C = hP, iI, oI, nP, nIi be a configuration, and let Γ : P → Π be a mapping of the protocol identifiers P to specific protocols. Let S = {hpi ∈ P, ιi ∈ iI(pi)i}i∈N be a schedule of C and Γ . 4

We adopted the idea of an adversarial schedule from [15]. Initially, as in [15], we did not require the schedule to be efficiently computable (by the adversary); we added this restriction, following an elegant observation by Dennis Hofheinz [31], namely that an unrestricted schedule may encode a hint to our uniform adversary, which will allow it to win games against a protocol using (specially-crafted) primitives, which are secure only against a uniform adversary.

14

Amir Herzberg, Igal Yoffe

The execution Xk (C, Γ, S; R) of security parameter k ∈ 1∗ , configuration C, protocol mapping Γ , schedule S and sequence (of random bits) R = {Ri } ∈ R, is the sequence of execution events {ξi } = {hpi , ιi , ivi , ovi [·]i} resulting from the execution process in Figure 5.

For all p ∈ P: s[p] := ⊥; Q[p1 ,ι1].enqueue(0); For i := 1 to ∞ do: If Q[pi , ιi].is empty() then ivi = ⊥, ovi [·] = ⊥; Else: 1. 2. 3. 4.

ivi := Q[pi , ιi].dequeue(); hS, IIN , IOU T , δ, SeCoi := Γ (pi); hs[pi], ovi [ι ∈ IOU T]i := δ(k, s[pi], ιi , ivi ; Ri); For all ιo ∈ IOU T s.t. ovi [ιo] 6= ⊥: If nP(pi , ιo) 6= ⊥ Then Q[nP(pi , ιo), nI(pi , ιo)].enqueue(ovi [ιo]); Else if SeCo(ιo) 6= ⊥ Then Q[pi , SeCo(ιo)].enqueue(ovi [ιo]);

Fig. 5. Execution process

Let Xk (C, Γ, S) be the random variable Xk (C, Γ, S; R) for R ∈R R. Let Xk (C, Γ, S)[l] (Xk (C, Γ, S; R)[l]) denotes the l first events of Xk (C, Γ, S) (respectively, Xk (C, Γ, S; R)). If all protocols in the range of Γ are polynomial, we say that Γ is polynomial. If Γ is polynomial, then Xk (C, Γ, S)[l] is sampleable in time polynomial in k and l. This allows a polynomial protocol to run polynomial number of steps of an execution containing polynomial protocols, as part of its computational process (e.g. for reduction proofs). We restate this observation in the following proposition.

Proposition 3 (Executions of polynomial protocols are efficiently sampleable). Let C = hP, iI, oI, nP, nIi be a configuration and Γ : P → Πpoly be a mapping of the protocol identifiers P to specific polynomial protocols. Then Xk (C, Γ, S)[l] is sampleable in probabilistic polynomial time (as a function of k and l).

The Layered Games Framework

3

15

Models and Realizations

From this section, our discussion is focused, for simplicity5 , on layered architectures, as in Figure 1, with layered protocols and systems. Layered architectures are based on abstraction. Namely, the designer of protocol πi for layer i, is oblivious to details of lower layers, and only cares that the system Γi−1 , representing layer i − 1 and all lower layers, will satisfy the layer i model, denoted Mi−1 . The goal of the designer of protocol πi , for layer i, is to realize model Mi , over any system Γi−1 satisfying model Mi−1 . In the first subsection below, we give a game-based definition of a model, with conditions on the outcomes of the game, defining when a (layered) system ΓL is considered to satisfy model M; we denote this by M |=ΓL . In the second πU subsection, we define the realization relation, denoted MU ` , indicating ML that protocol πU realizes model MU , when running over any system satisfying lower layer model ML , and we present the layering lemma. 3.1

Models

We use the term model for the specifications of a (layered) system ΓL . We define a model M = (ΓExp (M), α(M)) by a simple zero-sum (win-lose) game between an adversary system ΓA and a system ΓL . These systems interact only via a third system, the experiment ΓExp (M), as shown in Figure 6. The experiment system defines the ‘rules of the game’, and outputs 1, on a designated output interface outcome, if the adversary ‘won’; if this happens (with probability over some winning threshold α(M) ∈ [0, 1]), then the system ΓL does not satisfy model M. Without loss of generality, the experiment outputs only 1 on outcome, and does so at most once in every execution. Typically, α = 0 (e.g. for forgery games) or α = 12 (e.g. for indistinguishability games). Figure 6 shows the configuration CLM (n) = hPn , iIn , oIn , nPn , nIn i of the layer modeling game, for n processors. The configuration contains only three protocol identifiers, Pn = {A, Exp, L}, which we map to the three systems ΓA (adversary), ΓExp (M) (experiment) and ΓL (layered system), respectively. The execution is determined by a schedule S and a protocol mapping, denoted Γn , where Γn : Pn → Πpoly , i.e. from each protocol identifier to an implementing protocol. Given protocol mapping Γn , and a schedule S = {hpi , ιi i} (of CLM (n) and Γn), the resulting first l steps of the execution are: {ξi }li=1 = {hpi , ιi , ivi , ovi [·]i}li=1 = Xk (CLM (n), Γn , S)[l]. Let ExpΓn ,S (1k , l; R) = ⊥ if there is no event ξi , for i ≤ l, with output on outcome interface of Exp, i.e. for all i ≤ l s.t. pi = Exp holds ovi [outcome] = ⊥. Otherwise, if pi = Exp and ovi [outcome] 6= ⊥ for some i ≤ l, i.e. there is output on outcome, then we let ExpΓn ,S (k, l; R) = 1. Recall that we required that Γn (Exp) 5

We believe that it is possible to generalize our concepts and results to modular, but not layered, architectures. However, this will cause (at least technical) complexities, that may make the resulting definitions less easy to understand and use.

16

Amir Herzberg, Igal Yoffe

O

IA

OE

IE

O1

IE

OE

I1

...

On

In

ΓA

ΓExp(M)

ΓL

I

OA I1

O1

...

In

outcome

On

Fig. 6. Layer Model Configuration.

produces value on outcome only once (or never), and if it produces a value, this must be 1. Definition 6 (Model satisfaction game). A model is a pair M = (Exp(M), α(M)), where α(M) ∈ [0, 1] and Exp(M) is a system (Exp(M)(n) ∈ Πpoly), that output on interface outcome at most once (and only the value 1). Let ΓL be a uniformly polynomial system, i.e. ΓL (n) ∈ Πpoly . We say that system ΓL (computationally) satisfies model M, and write M |=poly ΓL , if for every uniform polynomial system ΓA = {ΓA (n) ∈ Πpoly }, efficient algorithm SG ∈ PPT, integer n ∈ N, polynomial l, constant c and large enough 1k , holds: Pr ExpΓn ,SG(n,1k) (1k , l(k); R) = 1 ≤ α + k c R∈R

Where Γn (φ) = Γφ (n) for φ ∈ {A, L}, Γn (Exp) = ΓExp (M) and SG(n, 1k) is a schedule of CLM (n). System ΓL non-uniformly satisfies model M, which we denote by M |=nu ΓL , if the above holds even for non-uniform ΓA . System ΓL perfectly satisfies model M, which we denote by M |=perf ΓL , if the above holds when protocols are not required to be polynomial, and without the k c term. Shorthand: we may write M |= ΓL , when it is obvious that we refer to M |=poly ΓL . We also may omit the word ‘computational’, i.e. say that ΓL satisfies layer model M. We observe the trivial relation among the three notions of satisfaction. Proposition 4. For any model M and system ΓL holds: (M |=perf ΓL) ⇒ (M |=poly ΓL) ⇒ (M |=nu ΓL)

The Layered Games Framework

17

Model ML is (polynomially / non-uniformly / perfectly) weaker than model MR , if every system ΓL that satisfies MR , also satisfies ML . We denote this by ML ≺φ MR , where φ ∈ {poly, nu, perf} respectively. Models ML and MR are φ−equivalent, if ML ≺φ MR and MR ≺ ML ; we denote this by ML ≡φ MR . Models ML and MR are fully equivalent if they are polynomially, non-uniformly and perfectly equivalent; we denote this by ML ≡ MR . Clearly, the ≺ relations define a partial order, while the ≡ relations define equivalence classes. We next show that we can essentially assume, without loss of generality, that the winning threshold of all models is 21 . Proposition 5 (WLOG alpha = model M’, s.t. α(M0) = 12 .

1 2).

Every model M, has a fully equivalent

Proof: We first show that there exists such M’ s.t. α(M0) ≤ 12 . This is trivial; Exp(M0) flips a fair coin b ∈R {0, 1}, and returns 1 only if b = 1 and Exp(M) outputs 1. Hence, we assume, without loss of generality, that α(M) ≤ 21 , and define M0 s.t. α(M0) = 12 . This is again trivial; Exp(M0) flips a biased coin b ∈ {0, 1}, with Pr(b = 1) = 21 − α(M), and returns 1 if either b = 1 or Exp(M) outputs 1. u t 3.2

Model Realization and the Layering Lemma

The model satisfaction game defines specifications for systems, i.e. defines when a system satisfies a model. However, we normally design only the protocols for a specific layer, assuming they operate over some ‘underlying’ system, representing the combination of lower layers and the underlying environment. We next define such specification for a protocol. Definition 7. Let M1 , M0 be two models, and let π be a protocol. We say that π π computationally realizes M1 over M0 , and denote this by M1 ` , if M 0 π M1 |= , for every Γ0 s.t. M0 |= Γ0 . Γ0 π non-uniformly realizes M1 over M0 , which we denote by M1 `nu Similarly, π π , if M1 |=nu , for every Γ0 s.t. M0 |=nu Γ0 ; and π perfectly realizes M0 Γ0 π π M1 over M0 , which we denote by M1 `perf , if M1 |=perf , for every M0 Γ0 Γ0 s.t. M0 |=perf Γ0 . We now present the layering lemma, allowing compositions of protocols of multiple layers. The layering lemma shows that we can prove realization of each layer separately, and the composition of the realizations will be a realization of the highest layer over the lowest layer. This provides firm foundations to the accepted methodology of designing, implementing, analyzing and testing of each layer independently, yet relying on their composition to ensure expected properties. We state the lemma for only three layers - generalization for an arbitrary stack is immediate.

18

Amir Herzberg, Igal Yoffe

Lemma 1 (The Layering Lemma). Let M2 , M1 , M0 be three polynomial models, and π1 , π2 be polynomial protocols, such that for i = 1, 2, protocol πi computationally (non-uniformly, perfectly) realizes Mi over Mi−1 . Then π1||2 = π2 computationally (respectively, non-uniformly, perfectly) realizes M2 over π1 M0 . Namely: πi π1||2 (1) (i = 1, 2)Mi `poly ⇒ M2 `poly Mi−1 M0 πi π1||2 (i = 1, 2)Mi `nu ⇒ M2 `nu (2) Mi−1 M0 πi π1||2 (i = 1, 2)Mi `perf ⇒ M2 `perf (3) Mi−1 M0 Furthermore, let Γ0 be a polynomial system that computationally (nonπ1||2 uniformly, perfectly) satisfies M0 . Then Γ2 = computationally (respecΓ0 tively, non-uniformly, perfectly) satisfies M2 . Proof: We prove the computational claims; the non-uniform and perfect variants follow exactly in the same way. Let Γ 0 be a system that computationally π1 satisfies model M0 . Since M1 `poly , by definition 7, the composite proM0 π1 tocol Γ1 = satisfies M1 , namely M1 |= Γ1 . Γ0 π1||2 π2 Protocol layering is associative (Proposition 1), hence Γ2 = = . Γ Γ 0 1 π2 Since M2 `poly and M1 |= Γ1 , it follows from definition 7 that Γ2 = M1 π2 satisfies M2 , namely M2 |= Γ2 , proving the second part of the lemma. Γ1 The first part also follows, from definition 7, since this holds for every Γ0 that computationally satisfies model M0 . t u

4

Indistinguishable Systems

Indistinguishability games are used in many cryptographic definitions, e.g. pseudorandom functions Goldreich, Goldwasser, and Micali [22]. We next define such game for systems. Intuitively, two systems are (polynomially) indistinguishable, if no (polynomial time) adversary can distinguish between them. We use the ‘left-or-right’ style of Bellare, Desai, Jokipii, and Rogaway [7]. The configuration of the system indistinguishability games, CLR (n) = hPn , iIn , oIn , nPn , nIn i, is illustrated in Figure 7, for some fixed number of instances n. The main difference between CLR and the configuration CLM of the model game, is the addition of the node R, mapped to the system ΓR .

The Layered Games Framework

OE

IE

IE

OE

...

I1

O1

I1 O1

OLE

ILE

OL1 IL1

IE

OE

I1 O1

ΓL

19

ΓA On

In

Init

g

In

On

Init

g

ΓIND OLn

ILn

ORE

IRE

OR1

In

On

IE

OE

I1

IR1

O1

ΓR

...

outcome ORn

IRn

In

On

Fig. 7. The Systems Indistinguishability game. System ΓL is indistinguishable from system ΓR , if no (polytime) adversary can distinguish between interacting with ΓL and interacting with ΓR (with significant probability).

We next define the layer realization game and its execution, much like we did for layer model games. The execution is determined by a schedules and a mapping Γn : Pn → Πpoly , from each protocol identifier to an implementing protocol. Given schedule S = {hpi , ιi i} and mapping Γn , the resulting first l steps of the execution are: {ξi }li=1 = {hpi , ιi , ivi , ovi [·]i}li=1 = Xk (CLR (n), Γn , S)[l]. k Let ExpLR Γn ,S (1 , l; R) = ⊥ if there is no event ξi , for i ≤ l, with output on outcome interface of Exp, i.e. for all i ≤ l s.t. pi = Exp holds ovi [outcome] = ⊥. Otherwise, if pi = Exp and ovi [outcome] 6= ⊥ for some i ≤ l, i.e. there is output k on outcome (which must be 1 by our design), then we let ExpLR Γn ,S (1 , l; R) = 1. In the layer realization indistinguishability game, we use the specific experiment system ΓIND below, i.e. Γn (Exp) = ΓIND (n). Upon initialization, ΓIND flips a fair coin b ∈R {L, R}. The game ends when ΓIND receives a guess b0 of either L or R from the adversary A, on the g (guess) input interface. Upon receiving the guess b0 , ΓIND outputs on its outcome output interface 1 if b = b0 (otherwise, it never produces output on outcome). Details follow. Definition 8 (System indistinguishability experiment). Let ΓIND (n) = hS, IIN (n), IOU T (n), δn i be the following system: S = {⊥, testing, done} IIN (n) = {Init, g, IE } ∪ {Ii , IL i , IR i }i=1,...,n IOU T (n) = {outcome} ∪ {Oi , OL i , OR i }i=1,...,n

20

Amir Herzberg, Igal Yoffe

δn : 1. In initialization state ⊥, upon any input, select randomly b ∈R {L, R}, and move to testing state. 2. In testing state, pass all input events on interfaces Ii , for i ∈ {E, 1, . . . , n}, to corresponding output event on output interfaces OL i (if b = L), or OR i (if b = R). Similarly, pass all input events on interfaces IL i (if b = L) or IR i (if b = R), to corresponding output events on interface Oi . 3. When, in testing state, the guess input interface g is invoked with input (guess) b0 ∈ {L, R}, output on outcome the value 1 if b = b0 . Move to the done state (and ignore all further inputs). The system indistinguishability experiment is the core of the system indistinguishability game, which we define next. The game tests whether an adversarial system ΓA is able to distinguish between two systems, ΓL and ΓR . However, with some schedules, it becomes trivial for the adversary to detect whether the experiment chose to interact with L or with R. Specifically, consider a schedule that includes interfaces of L, but never schedules interfaces of R. This allows the adversary to trivially detect whether ΓIND chose L or R. This is a somewhat formal problem, since the schedule only defines the order of execution among concurrently enabled events; intuitively, in practice, we don’t really expect a ‘malicious’ schedule. However, we need a formal solution. Our solution is somewhat technical, yet it appears sufficient for specifications and analysis of typical layered protocols; more general solutions may exist. Namely, we restrict the schedules in the system indistinguishability game, to schedules which are ‘fair’, i.e. ‘give equal opportunities’ to L and R sides (see in definition). Intuitively, this means that input and output events between the experiment and L, are always paired with a corresponding event for R - without any event for the adversary between the two. In fact, in the definition below, we impose stronger (and more complex) conditions on the schedule, since L and R may need specific sequences of events to ‘handle’ an input event. Specifically, we divide the input interfaces in the layer realization configuration, and the self-connections of the protocols, into three disjoint sets: IL , containing the input interfaces of ΓL , and the input interfaces of Exp, which receive inputs from L; IR , containing input interfaces of ΓR and the input interfaces of ΓIND , which receive inputs from R. all other input interfaces in CLR , i.e. all input interfaces of A, and the input interfaces of Exp not in IL ∪ IR . For each schedule SR containing only input interfaces in IR , there should be some ‘equivalent’ schedule SL containing only input interfaces in IL , so that the adversary cannot guess the choice b ∈ {L, R} made by the experiment, if it can only interact before or after the concatenated schedule SL ||SR . This is formalized in the following definition.

The Layered Games Framework

21

Definition 9 (System indistinguishability game). Let CLR (n) = hPn , iIn , oIn , nPn , nIn i and Pn = {A, Exp, L, R} as above. Let M, MLL be two polynomial layer models. Given protocols ΓL (n), ΓR (n) ∈ Πpoly , let: IL (n) ≡ {(Exp, ι)|ι ∈ {IL i∈{E,1,...,n ∪ {(L, ι)|ι ∈ IIN (ΓL (n))} IR (n) ≡ {(Exp, ι)|ι ∈ {IR i∈{E,1,...,n ∪ {(R, ι)|ι ∈ IIN (ΓR (n))} An L-sub-schedule SL (n) is a sequence SL (n) = {SL (n)[j]}, s.t. for every j ∈ N, SL (n)[j] is a sequence SL (n)[j] = {(pi , ιi) ∈ IL (n)}. Similarly, an R-subschedule SR (n) is a sequence SR (n) = {SR (n)[j]}, s.t. for every j ∈ N, SR (n)[j] is a sequence SR (n)[j] = {(pi , ιi) ∈ IR (n)}. A schedule S is (SR , SL , n)-Fair, if: S = S1N ||SL (n)[1]||SR (n)[1] || S2N ||SL (n)[2]||SR (n)[2] || . . . Where (∀i ∈ N)SiN ∩ (IL (n) ∪ IR (n)) = ∅. System ΓR computationally emulates system ΓL , if for every R-sub-schedule collection SR , there exists a uniformly polynomial system ΓL where M |= ΓL and L-sub-schedule collection SL , s.t. for every polynomial system ΓA and algorithm SG ∈ PPT, constant c and polynomial l, for sufficiently large 1k holds 1 k Pr ExpLR (1 , l(k); R) = 1 ≤ + kc k Γn ,SG(n,1) R∈R 2 Where SG(n, 1k) is a (SR , SL , n)-Fair schedule of CLM (n), Γn (φ) = Γφ (n) for φ ∈ {A, L, R} and Γn (Exp) = ΓIND (n). We say that ΓR perfectly emulates system ΓL , if the above holds when the adversary system ΓA is non-uniformly polynomial. We say that ΓR perfectly emulates system ΓL , if the above holds when the adversary system ΓA and schedulegenerating algorithm SG, are not limited to polynomial time, and without the k c term. Notations. We denote the fact that system ΓR computationally emulates system ΓL by ΓL ≺poly ΓR (or simply by ΓL ≺ ΓR). If ΓL ≺poly ΓR and also ΓR ≺poly ΓL , then we say that ΓR and ΓL are computationally indistinguishable, and denote it by ΓL ≡poly ΓR (or simply by ΓL ≡ ΓR). We use ΓL ≺nu ΓR , ΓL ≺perf ΓR , ΓL ≡nu ΓR and ΓL ≡perf ΓR , to denote that ΓR non-uniformly emulates, perfectly emulates, is non-uniformly indistinguishable and is perfectly indistinguishable ΓL , respectively. We observe the trivial relation among the three notions of emulation (and indistinguishability). Proposition 6. For any two systems ΓL , ΓR holds: (ΓL ≺perf ΓR) ⇒ (ΓL ≺nu ΓR) ⇒ (ΓL ≺poly ΓR) We next present the system emulation lemma, which shows that if ΓR emulates ΓL , and ΓL satisfies model M, then ΓR also satisfies M. This allows us to use emulation and equivalence relations among systems, to prove that a system satisfies a model.

22

Amir Herzberg, Igal Yoffe

Lemma 2 (System emulation lemma). Let M be a model and ΓL ≺poly ΓR be two systems. If M |=poly ΓL , then M |=poly ΓR . Proof: We prove the equivalent claim: ^ (M |=poly ΓLL) (¬ [M |=poly ΓR]) ⇒ (¬ [ΓL ≺poly ΓR]) Namely, assume ΓL satisfies M, but ΓR does not satisfy M. We will construct an adversary ΓALR that distinguishes between ΓR and ΓL , which completes the proof. Without loss of generality, assume that M = (ΓExp (M), 12), i.e. the winning threshold α(M) is 12 . Since ΓR does not satisfy M, i.e. ¬ [M |=poly ΓR], there is some adversary system ΓA ∈ Πpoly , integer n, schedule generating algorithm SGR ∈ PPT, polynomial l, and constant cR , s.t. for all 1k0 there is some 1k > 1k0 for which Pr ExpΓn ,SGR (n,1k) (1k , l(k); R) = 1 ≥ k cL R∈R

where Γn (L) = ΓR (n), Γn (A) = ΓA (n), and Γn (Exp) = ΓExp (M)(n). Since the result of the execution depends only on the output after l(k) steps, we can assume, without loss of generality, that SGR (n, 1k) is of length at most l(k). We now use ΓA and SGR , to design the distinguishing adversary ΓALR and the corresponding schedule generator SGLR . Specifically, let ΓALR be the natural L composition of ΓA and ΓExp , except for following change in the output on outL come. If ΓExp outputs 1 on outcome, then ΓALR outputs R on its g (guess) output L does not output 1 by the end of the run, interface. On the other hand, if ΓExp LR after l(k) steps, then ΓA flips a coin b0 ∈R {L, R} and outputs 1 if b0 = 1. It remains to show, that ΓALR distinguishes between runs where ΓIND (n) flips R, i.e. ΓALR interacts with ΓR , and between runs where ΓIND (n) flips L, i.e. ΓALR interacts with the ΓL . This is all using the LR indistinguishability configuration CLR (n); see Figure 7. Namely, we show that for some n and some R-sub-schedule SR , for every Lsub-schedule SL , there is some efficient schedule-generating algorithm SGLR ∈ PPT that outputs (SR , SL , n)-Fair schedules SGLR (n, 1k), s.t. for some constant c and polynomial l, and for every k0 , there is some k > k0 for which Pr

R∈R

 1 + kc ExpLR Γn ,SGLR (n,1k) (k, l(k); R) = 1 > 2

(4)

Where Γn (A) = ΓALR (n), Γn (φ) = Γφ (n) for φ ∈ {L, R}, and Γn (Exp) = ΓIND (n). We prove that Equation 4 holds, by proving that the following two equations hold: 1 Pr ExpLR (k, l(k); R) = 1 = R > + k c+1 (5) b R k Γn ,SG (n,1) R∈R 2 1 Pr ExpLR − k c−1 (6) Γn ,SGLR (n,1k) (k, l(k); R) = 1 b = L > R∈R 2

The Layered Games Framework

23

This shows that equation 4 holds, since the layer realization experiment flips a fair coin to select L or R, hence the expected outcome of the experiment is the c+1 c−1 average of the left-hand-side of equations 5 and 6, which is at least 1+k 2−k , 1 c which (for k > 2) is more than 2 + k . It remains to prove the two equations; we begin with Equation 5. Consider an execution of the indistinguishability game, where the indistinguishability experiment protocol ΓIND picks b = R, and using a schedule generating algorithm SGLR which outputs same schedules as SGR , except that it replaces every scheduling of adversary and experiment events, with the equivalent sequence for CLR (trivial details omitted), and adds some yet to be defined events for L before each sequence of scheduling of input interfaces in IR (n). This execution is equivalent to that of the model experiment above (except for the adaptation of outcome by ΓALR), hence: PrR∈R ExpLR (k, l; R) = 1 b = R = LR k Γn ,SG (n,1) = PrR∈R ExpΓn ,SGR (n,1k) (k, l(k); R) = 1 ≥ 21 + k cL Since this holds for any cL (for large enough k), we set cL = c + 1, to prove Equation 5. It remains to prove Equation 6. Recall that ΓL (n) computationally satisfies M, i.e. M |=poly ΓL . Namely, for every schedule generator SGL ∈ PPT of CLM (n) and constant c, for large enough k holds: 1 Pr ExpΓnL ,SGL (n,1k) (k, l(k); R) = 1 ≤ + k c R∈R 2 where ΓnL (A) = ΓAL (n), ΓnL (Exp) = ΓExp (M)(n) and ΓnL (L) = ΓL (n). Consider now an execution of the indistinguishability game, where the indistinguishability experiment protocol ΓIND picks b = L, and using a schedule generating algorithm SGLR as above, where we used the same sequences as SGL for scheduling the interfaces in IL (n). This execution is equivalent to that of the layer model experiment above (except for the adaptation of outcome by ΓALR), hence: PrR∈R ExpLR (k, l; R) = 1 = L = b LR k Γn ,SG (n,1) = PrR∈R ExpΓn ,SGL (n,1k) (k, l(k); R) = 0 ≥ 21 − k cR Since this holds for any cR , we set cR = c − 1, which completes the proof.

5

t u

Conclusions and Research Directions

In this work, we try to lay solid, rigorous foundations, to the important methodology of layered decomposition of distributed systems and network protocols,

24

Amir Herzberg, Igal Yoffe

particularly concerning security in adversarial settings. The framework is built on previous works on modeling and analysis of (secure) distributed systems, as described in the introduction. There are many directions that require further research. Here are some: – The best way to test and improve such a framework, is simply by using it to analyze different problems and protocols; there are many interesting and important problems, that can benefit from such analysis. As one important example, consider the secure channel layer problem. Many protocols and applications assume they operate over ‘secure, reliable connections’. In practice, this is often done using the standard layers in Figure 1, in one of two methods. In the first method, we use TLS (for security) over TCP (for reliability) over the ‘best effort’ service of IP. In the second method, we use TCP (for reliability) over IP-Sec (for security), again over ‘best effort’ (IP). It would be interesting to define a ‘secure, reliable connection’ layer, and to analyze these two methods with respect to it. – There are many desirable extensions to the framework, including: support for corruptions of nodes, including adaptive and/or mobile corruptions (proactive security and forward security); adaptive control of the number of nodes; support for side channels such as timing and power. – In this work, we have focused on layered configurations. These are sufficient for many scenarios. However, there are other scenarios. It would be interesting to identify important non-layered scenarios, and find appropriate games, specifications and composition properties, which will support them, possibly as generalizations of our definitions and results. – It would be interesting to explore the relationships between the layered games framework, and other formal frameworks for study of distributed algorithms and protocols (see introduction). – The framework is based on the computational approach to security, where attackers can compute arbitrary functions on information available to them (e.g. ciphertext). Many results and tools are based on symbolic analysis, see introduction (and [20, 11, 2]). It can be very useful to find how to apply such techniques and tools, within the framework.

Acknowledgments We would like to thank Ran Canetti, Alejandro Hevia, Yehuda Lindell, Mark Manulis, Michael Sedletsky and Haya Shulman for interesting discussions and helpful comments. Special thanks to Dominique Unruh, Oded Goldreich and Dennis Hofheinz. Along with other comments, Dominique noted the need for restricting the schedule of the layer realization game (motivating the definition of fair schedules), and Dennis showed us we should restrict the schedule to be efficiently computable.

Bibliography

[1] M. Abadi and L. Lamport. Composing specifications. ACM Trans. Program. Lang. Syst., 15(1):73–132, 1993. [2] Mart´ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002. [3] M. Backes, M. D¨ urmuth, D. Hofheinz, and R. K¨ usters. Conditional Reactive Simulatability. In ESORICS 2006, 11th European Symposium on Research in Computer Security, volume 4189 of Lecture Notes in Computer Science, pages 424–443. Springer, 2006. [4] M. Backes, B. Pfitzmann, and M. Waidner. A General Composition Theorem for Secure Reactive Systems. In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 336–354. Springer, 2004. [5] M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive Systems. Cryptology ePrint Archive, Report 2004/082, 2004. http:// eprint.iacr.org/. [6] Michael Backes, Anupam Datta, Ante Derek, John C. Mitchell, and Mathieu Turuani. Compositional analysis of contract-signing protocols. TCS: Theoretical Computer Science, 367, 2006. [7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption. In Proceedings of the 38th Annual Symposium on Foundations of Computer Science (FOCS-97), pages 394–405, Los Alamitos, October 20–22 1997. IEEE Computer Society Press. ISBN 0-8186-8197-7. [8] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer, 2006. ISBN 3-540-34546-9. URL http://dx.doi.org/10.1007/11761679 25. [9] Allan Borodin, Jon Kleinberg, Prabhakar Raghavan, Madhu Sudan, and David P. Williamson. Adversarial queuing theory. JACM: Journal of the ACM, 48(1):13–38, January 2001. [10] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119 (Best Current Practice), March 1997. URL http://www.ietf. org/rfc/rfc2119.txt. [11] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on Computer Systems (TOCS), 8(1):18–36, 1990. [12] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology, 13(1):143–202, 2000. [13] R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology

26

[14]

[15]

[16]

[17]

[18]

[19]

[20] [21] [22] [23]

[24]

[25]

[26]

Amir Herzberg, Igal Yoffe

Conference on Advances in Cryptology, pages 19–40, London, UK, 2001. Springer-Verlag. Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In IEEE Symposium on Foundations of Computer Science, pages 136–145, 2001. updated version: Cryptology ePrint Archive, Report 2000/067. Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A. Lynch, Olivier Pereira, and Roberto Segala. Time-bounded task-PIOAs: A framework for analyzing security protocols. In Shlomi Dolev, editor, Distributed Computing, 20th International Symposium, DISC 2006, Stockholm, Sweden, September 18-20, 2006, Proceedings, volume 4167 of Lecture Notes in Computer Science, pages 238–253. Springer, 2006. ISBN 3-540-44624-9. URL http://dx.doi.org/10.1007/11864219 17. Ran Canetti, Rosario Gennaro, Amir Herzberg, and Dalit Naor. Proactive security: Long-term protection against break-ins. RSA CryptoBytes, 3(1):1– 8, August 1997. URL ftp://ftp.rsa.com/pub/cryptobytes/crypto3n1. pdf. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptology, 19(2):135–167, 2006. A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system and compositional logic for security protocols. J. Comput. Secur., 13(3): 423–482, 2005. A. Datta, A. Derek, J. C. Mitchell, A. Ramanathan, and A. Scedrov. Games and the impossibility of realizable ideal functionality. In Theory of Cryptography, 3rd Theory of Cryptography Conference, TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 360–379. Springer, 2006. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information Theory, 29(2):198–208, 1983. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY, USA, 2004. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM, 33(4):792–807, 1986. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In STOC, pages 218–229. ACM, 1987. S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker keeping secret all partial information. In STOC ’82: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages 365– 377, New York, NY, USA, 1982. ACM Press. S. Goldwasser, S. Micali, and A. Yao. Strong signature schemes. In STOC ’83: Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 431–439, New York, NY, USA, 1983. ACM Press. Shai Halevi. A plausible approach to computer-aided cryptographic proofs. Report 2005/181, Cryptology ePrint Archive, June 2005. URL http:// eprint.iacr.org/2005/181.pdf.

The Layered Games Framework

27

[27] A. Herzberg and I. Yoffe. Layered Architecture for Secure E-Commerce Applications. In SECRYPT’06 - International Conference on Security and Cryptography, pages 118–125. INSTICC Press, 2006. [28] A. Herzberg and I. Yoffe. On Secure Orders in the Presence of Faults. In Proceedings of Secure Communication Networks (SCN), volume 4116 of LNCS, pages 126–140. Springer-Verlag, 2006. New version: Foundations of Secure E-Commerce: The Order Layer, in Cryptology ePrint Archive, Report 2006/352. [29] A. Herzberg and I. Yoffe. The delivery and evidences layer. Cryptology ePrint Archive, Report 2007/139, 2007. http://eprint.iacr.org/. [30] Amir Herzberg and Igal Yoffe. Layered games framework for specifications and analysis of security protocols. Cryptology ePrint Archive, Report 2006/398, 2006. Extended abstract version in proceedings of Theory of Cryptography Conference (TCC) 2008. [31] D. Hofheinz. Email communication, January 2008. [32] D. Hofheinz, J. M¨ uller-Quade, and D. Unruh. Polynomial Runtime in Simulatability Definitions. In CSFW ’05: Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05), pages 156–169, Washington, DC, USA, 2005. IEEE Computer Society. [33] J.F. Kurose and K.W. Ross. Computer networking: a top-down approach featuring the Internet. Addison-Wesley, 2003. [34] R. K¨ usters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In CSFW ’06: Proceedings of the 19th IEEE Workshop on Computer Security Foundations, pages 309–320, Washington, DC, USA, 2006. IEEE Computer Society. [35] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic polytime framework for protocol analysis. In CCS ’98: Proceedings of the 5th ACM conference on Computer and communications security, pages 112–121, New York, NY, USA, 1998. ACM Press. [36] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In PODC ’87: Proceedings of the sixth annual ACM Symposium on Principles of distributed computing, pages 137–151, New York, NY, USA, 1987. ACM Press. [37] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive systems. In CCS ’00: Proceedings of the 7th ACM conference on Computer and communications security, pages 245–254, New York, NY, USA, 2000. ACM Press. [38] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Application to Secure Message Transmission. In SP ’01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages 184–200, Washington, DC, USA, 2001. IEEE Computer Society.

[image: A Multiple Layered Spatial Data Integration Framework Based on ...]
A Multiple Layered Spatial Data Integration Framework Based on ...

[image: A Multiple Layered Spatial Data Integration Framework Based on ...]
A Multiple Layered Spatial Data Integration Framework Based on ...

[image: Layered - Mindshare World]
Layered - Mindshare World

[image: Innovation timing games: a general framework with applications]
Innovation timing games: a general framework with applications

[image: Layered: Augmented Reality - Mindshare]
Layered: Augmented Reality - Mindshare

[image: Innovation timing games: a general framework with applications]
Innovation timing games: a general framework with applications

[image: Full Featured Virtual World Games Framework using ...]
Full Featured Virtual World Games Framework using ...

[image: Deploying the BIG-IP Edge Gateway for Layered ... - F5 Networks]
Deploying the BIG-IP Edge Gateway for Layered ... - F5 Networks

[image: The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf ...]
The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf ...

[image: The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf ...]
The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf ...

[image: Work function changes in the double layered ...]
Work function changes in the double layered ...

[image: Layered Approach for Performance Requirements ...]
Layered Approach for Performance Requirements ...

[image: Semi-circle for layered skirt.pdf]
Semi-circle for layered skirt.pdf

[image: Optimized Layered Integrated Video Encoding - Daehyeok Kim]
Optimized Layered Integrated Video Encoding - Daehyeok Kim

[image: Work function changes in the double layered ...]
Work function changes in the double layered ...

[image: Work function changes in the double layered manganite La1.2Sr1 ...]
Work function changes in the double layered manganite La1.2Sr1 ...

[image: The Coco Framework - GitHub]
The Coco Framework - GitHub

[image: Semi-circle for layered skirt.pdf]
Semi-circle for layered skirt.pdf

[image: Multi-Layered Summarization of Spoken ... - Semantic Scholar]
Multi-Layered Summarization of Spoken ... - Semantic Scholar

[image: On the Semi-Supervised Learning of Multi-Layered ...]
On the Semi-Supervised Learning of Multi-Layered ...

The Layered Games Framework

of protocol Ï€Orders 'on top of' protocol Ï€DE, denoted Ï€DE||Orders â‰¡. [Ï€Orders This may facilitate the use of verification tools; notice also that we use state ...

 Download PDF

 518KB Sizes
 1 Downloads
 364 Views

 Report

Recommend Documents

[image: alt]

A Multiple Layered Spatial Data Integration Framework Based on ...

JAVA. RMI. Access. Local. Remote. NetBIOS. TCP/IP. Figure 5 shows another portion of ontology of the Persistence category. Its related concepts are Format, Access, Middleware. Figure 6 shows the process for data search/query/integration from the

[image: alt]

A Multiple Layered Spatial Data Integration Framework Based on ...

modeling, data mining, textual analysis, and statistical techniques. ... model which can be converted to database schema, or a result of a data mining Excel. Interface. POP3. Distributed. API. WebService. ODBC. DCOM. CORBA. JAVA. RMI. Access. Lo

[image: alt]

Layered - Mindshare World

Thirty UK smartphone users took part in a two week online self- ... described AR glasses (or 'character markers') that overlay letters on people's foreheads.

[image: alt]

Innovation timing games: a general framework with applications

Available online 15 June 2004. Abstract. We offer a ... best response of the second mover, which is the solution to a non-trivial maximization problem. c1, are a composition of three polynomials of the third degree. It is somewhat tedious but

[image: alt]

Layered: Augmented Reality - Mindshare

In partnership with Neuro-Insight, we used Steady State Topography â€œAugmented Reality: An Application of heads-up display technology to manual ...

[image: alt]

Innovation timing games: a general framework with applications

research and development (R&D) to obtain a better technology. Let kÙ‹tÙ‚ be follower's payoffs as functions of t alone: define LÙ‹tÙ‚ Â¼ p1Ù‹t, RÙ‹tÙ‚Ù‚ and FÙ‹tÙ‚ Â¼ p2Ù‹t, RÙ‹tÙ‚Ù‚ ...

[image: alt]

Full Featured Virtual World Games Framework using ...

Jul 29, 2003 - The presented web-interface-to-application architecture entails intensive interaction be- ... Figure 5: Framework game architecture using RSIp It is a tool for separating program logic (PHP scripts) from the presentation logic.

[image: alt]

Deploying the BIG-IP Edge Gateway for Layered ... - F5 Networks

1. On the Main tab, expand Network, and then click Self IPs. The Self IP screen opens. ... have a route for the remote network where application services reside.

[image: alt]

The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf ...

Page 1 of 367. Page 1 of 367. Page 2 of 367. 2. For James Proimos. Page 2 of 367. Page 3 of 367. 3. PART I. "THE TRIBUTES". Page 3 of 367. The Hunger ...

[image: alt]

The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf ...

Page 1. Whoops! There was a problem loading more pages. Retrying... The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf. The Hunger Games 1 The Hunger Games Suzanne_Collins.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying The Hunger

[image: alt]

Work function changes in the double layered ...

Sep 13, 2001 - the energy needed for transfer will also depend on the num- ber of initial 3d ... alternative way, that does permit us to observe these changes, as we will illustrate in the ... top post, exposing a clean and flat 001 surface. All mea-

[image: alt]

Layered Approach for Performance Requirements ...

economical way of developing and implementing any system. In this context developing a system mean, identifying non-functional requirements for the system.

[image: alt]

Semi-circle for layered skirt.pdf

Page. 1. /. 1. Loadingâ€¦ Page 1. Semi-circle for layered skirt.pdf. Semi-circle for layered skirt.pdf. Open. Extract. Open with. Sign In. Main menu. Displaying Semi-circle for layered skirt.pdf. Page 1 of 1.

[image: alt]

Optimized Layered Integrated Video Encoding - Daehyeok Kim

that handles MIMO antenna heterogeneity in wireless video multicast. We demonstrate its effectiveness through extensive. Matlab simulation and USRP testbed experiments. I. INTRODUCTION. Motivation: Wireless video traffic grows at an unprecedented rat

[image: alt]

Work function changes in the double layered ...

Sep 13, 2001 - here a sharp drop in both the ab and c axis resistivity of two orders of Duncombe, P. Lecoeur, P. Trouilloud, Y.Y. Wang, V.P. Dravid, and J.Z. ...

[image: alt]

Work function changes in the double layered manganite La1.2Sr1 ...

Sep 13, 2001 - exactly opposite to the work function changes calculated from the double-exchange model N. Furukawa, J. Phys. Soc. Jpn. 66, 2528 1997 but ...

[image: alt]

The Coco Framework - GitHub

Aug 10, 2017 - failure. In a consortium of banks, members could be large, global, systemically important financial institutions (GSIFIs). ... End users, such as a bank's customers, do not have an identity in the Coco network and cannot transact

[image: alt]

Semi-circle for layered skirt.pdf

Page 1 of 3. Page 1 of 3. Page 2 of 3. Page 2 of 3. Page 3 of 3. Page 3 of 3. Semi-circle for layered skirt.pdf. Semi-circle for layered skirt.pdf. Open. Extract. Open with. Sign In. Details. Comments. General Info. Type. Dimensions. Size. Duration.

[image: alt]

Multi-Layered Summarization of Spoken ... - Semantic Scholar

Speech Lab, College of EECS. National Taiwan University, Taipei, Taiwan, Republic of ... the Speech Content-based Audio Navigator (SCAN). System at AT&T Labs-Research [5], the Broadcast News Naviga- The first has roughly 85 hours of about 5,000

[image: alt]

On the Semi-Supervised Learning of Multi-Layered ...

several phone classification tasks over baseline MLPs. Index Terms: ... Foundation under grant IIS-0326382 and by the Office of Naval Re- search under MURI ...

×
Report The Layered Games Framework

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

