

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

The Pythonic Way

Jack Rosenthal December 5, 2016 Mines Linux Users Group

Table of contents 1. Background 2. Python Style 3. Language Structures 4. Object Oriented Programming 5. Decorators 6. Generators & Comprehensions 7. Functional Programming 8. Useful Libraries 9. Learning Resources

Background

A Bit of History

• Python ﬁrst appeared in early 1991. This means that Python is older than Java and Ruby. • Guido van Rossum (GvR, the creator of Python) designed his language with emphasis on readability. • Python was named after Monty Python’s Flying Circus. • The language quickly gained popularity because of its appeal to long-time UNIX/C hackers1 .

1

See the Jargon File on hackers vs. crackers

A Bit of History

• Python ﬁrst appeared in early 1991. This means that Python is older than Java and Ruby. • Guido van Rossum (GvR, the creator of Python) designed his language with emphasis on readability. • Python was named after Monty Python’s Flying Circus. • The language quickly gained popularity because of its appeal to long-time UNIX/C hackers1 .

1

See the Jargon File on hackers vs. crackers

A Bit of History

• Python ﬁrst appeared in early 1991. This means that Python is older than Java and Ruby. • Guido van Rossum (GvR, the creator of Python) designed his language with emphasis on readability. • Python was named after Monty Python’s Flying Circus. • The language quickly gained popularity because of its appeal to long-time UNIX/C hackers1 .

1

See the Jargon File on hackers vs. crackers

A Bit of History

• Python ﬁrst appeared in early 1991. This means that Python is older than Java and Ruby. • Guido van Rossum (GvR, the creator of Python) designed his language with emphasis on readability. • Python was named after Monty Python’s Flying Circus. • The language quickly gained popularity because of its appeal to long-time UNIX/C hackers1 .

1

See the Jargon File on hackers vs. crackers

Python: The Perfect Companion to Linux

• Easy to use without a domain speciﬁc IDE or editor • On-line documentation with pydoc similar to man • UNIX system calls share the same name as in libc • Fast and lightweight • Very general purpose • Easy to learn, but plenty to master

Python: The Perfect Companion to Linux

• Easy to use without a domain speciﬁc IDE or editor • On-line documentation with pydoc similar to man • UNIX system calls share the same name as in libc • Fast and lightweight • Very general purpose • Easy to learn, but plenty to master

Python: The Perfect Companion to Linux

• Easy to use without a domain speciﬁc IDE or editor • On-line documentation with pydoc similar to man • UNIX system calls share the same name as in libc • Fast and lightweight • Very general purpose • Easy to learn, but plenty to master

Python: The Perfect Companion to Linux

• Easy to use without a domain speciﬁc IDE or editor • On-line documentation with pydoc similar to man • UNIX system calls share the same name as in libc • Fast and lightweight • Very general purpose • Easy to learn, but plenty to master

Python: The Perfect Companion to Linux

• Easy to use without a domain speciﬁc IDE or editor • On-line documentation with pydoc similar to man • UNIX system calls share the same name as in libc • Fast and lightweight • Very general purpose • Easy to learn, but plenty to master

Python: The Perfect Companion to Linux

• Easy to use without a domain speciﬁc IDE or editor • On-line documentation with pydoc similar to man • UNIX system calls share the same name as in libc • Fast and lightweight • Very general purpose • Easy to learn, but plenty to master

A Note on Python 2 and Python 3

Python 3 ﬁxed many odds and ends from older versions of Python. When it was originally released, its usage was low due to many backwards incompatibilities. Now days, most modern projects use Python 3, so this issue is largely irrelevant. For the purposes of this presentation, we will be talking strictly of Python 3. Setting The Default Some systems have Python 2 as the default, the general solution is to alias python to python3. Add this to your shell’s rc ﬁle. alias python=python3

A Note on Python 2 and Python 3

Python 3 ﬁxed many odds and ends from older versions of Python. When it was originally released, its usage was low due to many backwards incompatibilities. Now days, most modern projects use Python 3, so this issue is largely irrelevant. For the purposes of this presentation, we will be talking strictly of Python 3. Setting The Default Some systems have Python 2 as the default, the general solution is to alias python to python3. Add this to your shell’s rc ﬁle. alias python=python3

A Simple Example The classical Fizz Buzz problem: for all the numbers from 1 to 100, print Fizz if the number is divisible by 3, Buzz if divisible by 5, Fizz Buzz if divisible by 3 and 5, and the number otherwise. for i in range(1, 101): if i % 3 == 0 and i % 5 == 0: print("Fizz Buzz") elif i % 3 == 0: print("Fizz") elif i % 5 == 0: print("Buzz") else: print(i)

The Zen of Python

PEP-20 lists a series of principles for which the language was designed under. Typing import this at the Python interpreter will show you the zen: >>> import this The Zen of Python, by Tim Peters ... In short, Python was designed with careful thought about how to make it Pythonic.

The Zen of Python

PEP-20 lists a series of principles for which the language was designed under. Typing import this at the Python interpreter will show you the zen: >>> import this The Zen of Python, by Tim Peters ... In short, Python was designed with careful thought about how to make it Pythonic.

Python Style

A Foolish Consistency is the Hobgoblin of Little Minds • GvR makes a point: code is read more often than it is written, so readability counts. • Python is one of the few languages with a style guide (PEP-8) since there is a huge amount of Python code out there and the language’s core principle is readability. • Thus, it’s important to follow Python’s ofﬁcial style whenever possible Legacy Code It should be noted that when working on a project that was started before the ages of PEP-8, generally they have their own style guide and you should follow that instead. Otherwise, it would be generally considered unacceptable to not follow PEP-8.

A Foolish Consistency is the Hobgoblin of Little Minds • GvR makes a point: code is read more often than it is written, so readability counts. • Python is one of the few languages with a style guide (PEP-8) since there is a huge amount of Python code out there and the language’s core principle is readability. • Thus, it’s important to follow Python’s ofﬁcial style whenever possible Legacy Code It should be noted that when working on a project that was started before the ages of PEP-8, generally they have their own style guide and you should follow that instead. Otherwise, it would be generally considered unacceptable to not follow PEP-8.

A Foolish Consistency is the Hobgoblin of Little Minds • GvR makes a point: code is read more often than it is written, so readability counts. • Python is one of the few languages with a style guide (PEP-8) since there is a huge amount of Python code out there and the language’s core principle is readability. • Thus, it’s important to follow Python’s ofﬁcial style whenever possible Legacy Code It should be noted that when working on a project that was started before the ages of PEP-8, generally they have their own style guide and you should follow that instead. Otherwise, it would be generally considered unacceptable to not follow PEP-8.

A Foolish Consistency is the Hobgoblin of Little Minds • GvR makes a point: code is read more often than it is written, so readability counts. • Python is one of the few languages with a style guide (PEP-8) since there is a huge amount of Python code out there and the language’s core principle is readability. • Thus, it’s important to follow Python’s ofﬁcial style whenever possible Legacy Code It should be noted that when working on a project that was started before the ages of PEP-8, generally they have their own style guide and you should follow that instead. Otherwise, it would be generally considered unacceptable to not follow PEP-8.

Naming • Python uses snake_case for variable names, function names, method names, and module names • You should avoid using underscores when possible to improve readability (eg. randint is better than rand_int, as the naming is obvious without the underscore). • When there are conﬂicts with builtin keywords and a better name is not possible, an underscore should be appended to the variable name (eg. class_) • Class names should be typed in CapWords • Function, method, and class names should describe the interface rather than the implementation. • Private methods and variables should start with an underscore.

Naming • Python uses snake_case for variable names, function names, method names, and module names • You should avoid using underscores when possible to improve readability (eg. randint is better than rand_int, as the naming is obvious without the underscore). • When there are conﬂicts with builtin keywords and a better name is not possible, an underscore should be appended to the variable name (eg. class_) • Class names should be typed in CapWords • Function, method, and class names should describe the interface rather than the implementation. • Private methods and variables should start with an underscore.

Naming • Python uses snake_case for variable names, function names, method names, and module names • You should avoid using underscores when possible to improve readability (eg. randint is better than rand_int, as the naming is obvious without the underscore). • When there are conﬂicts with builtin keywords and a better name is not possible, an underscore should be appended to the variable name (eg. class_) • Class names should be typed in CapWords • Function, method, and class names should describe the interface rather than the implementation. • Private methods and variables should start with an underscore.

Naming • Python uses snake_case for variable names, function names, method names, and module names • You should avoid using underscores when possible to improve readability (eg. randint is better than rand_int, as the naming is obvious without the underscore). • When there are conﬂicts with builtin keywords and a better name is not possible, an underscore should be appended to the variable name (eg. class_) • Class names should be typed in CapWords • Function, method, and class names should describe the interface rather than the implementation. • Private methods and variables should start with an underscore.

Naming • Python uses snake_case for variable names, function names, method names, and module names • You should avoid using underscores when possible to improve readability (eg. randint is better than rand_int, as the naming is obvious without the underscore). • When there are conﬂicts with builtin keywords and a better name is not possible, an underscore should be appended to the variable name (eg. class_) • Class names should be typed in CapWords • Function, method, and class names should describe the interface rather than the implementation. • Private methods and variables should start with an underscore.

Naming • Python uses snake_case for variable names, function names, method names, and module names • You should avoid using underscores when possible to improve readability (eg. randint is better than rand_int, as the naming is obvious without the underscore). • When there are conﬂicts with builtin keywords and a better name is not possible, an underscore should be appended to the variable name (eg. class_) • Class names should be typed in CapWords • Function, method, and class names should describe the interface rather than the implementation. • Private methods and variables should start with an underscore.

Indentation

As Python uses the indentation of the text to denote scope, consistency of indentation is critically important. PEP-8 recommends the following: • Use 4 spaces per indentation level, never use hard tabs. • On multiline function calls, list literals, etc., the arguments should be aligned and indented from the rest of the text. “Hanging indent” is acceptable as well. • Multiline if/while etc. should be indented to align with the top line

Indentation

As Python uses the indentation of the text to denote scope, consistency of indentation is critically important. PEP-8 recommends the following: • Use 4 spaces per indentation level, never use hard tabs. • On multiline function calls, list literals, etc., the arguments should be aligned and indented from the rest of the text. “Hanging indent” is acceptable as well. • Multiline if/while etc. should be indented to align with the top line

Indentation

As Python uses the indentation of the text to denote scope, consistency of indentation is critically important. PEP-8 recommends the following: • Use 4 spaces per indentation level, never use hard tabs. • On multiline function calls, list literals, etc., the arguments should be aligned and indented from the rest of the text. “Hanging indent” is acceptable as well. • Multiline if/while etc. should be indented to align with the top line

Other Pet Peeves

• Keep lines to 79 characters2 • Avoid extraneous whitespace inside parentheses, brackets, and braces Yes: spam(ham[1], {eggs: 2}) No: spam(ham[1], { eggs: 2 }) • Don’t use parentheses on if/while etc. like you might in C-like languages Yes: if i < 3: No: if(i < 3): 2

It’s OK to go to 90 or 100 if everyone in your project agrees.

Other Pet Peeves

• Keep lines to 79 characters2 • Avoid extraneous whitespace inside parentheses, brackets, and braces Yes: spam(ham[1], {eggs: 2}) No: spam(ham[1], { eggs: 2 }) • Don’t use parentheses on if/while etc. like you might in C-like languages Yes: if i < 3: No: if(i < 3): 2

It’s OK to go to 90 or 100 if everyone in your project agrees.

Other Pet Peeves

• Keep lines to 79 characters2 • Avoid extraneous whitespace inside parentheses, brackets, and braces Yes: spam(ham[1], {eggs: 2}) No: spam(ham[1], { eggs: 2 }) • Don’t use parentheses on if/while etc. like you might in C-like languages Yes: if i < 3: No: if(i < 3): 2

It’s OK to go to 90 or 100 if everyone in your project agrees.

Truthiness Anything None, False, zero, or an empty sequence/mapping will implicity be false, and you should take advantage of that. Disgusting: if mybool == False: Pythonic: if mybool: Disgusting: if mydata == None: Pythonic: if mydata: Ehh: Pythonic:

if mynumber != 0: if mynumber:

Ugly: Better: Pythonic:

if len(mylist) == 0: if not len(mylist): if not mylist:

Comments Every comment in the source code is a personal failure of the programmer, because it proves that he didn’t manage to express the purpose of the code fragment with the programming language itself. — Uncle Bob

Take Home: Comments are important when they are needed, but you should try and make your code readable instead.

Concluding Remarks on Coding Style

Readability Counts! No really, it is of utmost importance that Python code be readable by following the guidelines of PEP-8. You should read through PEP-8 before getting serious with Python.

Language Structures

Literals # List names = ['Euclid', 'Lovelace', 'Turing'] # Tuples (immutible) names = ('Euclid', 'Lovelace', 'Turing') # To specify a one-tuple names = ('Euclid',) # Dictionaries names = {'Lovelace': 'Ada', 'Turing': 'Alan'} # Sets (unique values) names = {'Euclid', 'Lovelace', 'Turing'}

Selection Python’s primary structure for selection is if: if i == 0 and j == 1: print(i, j) elif i > 10 or j < 0: print("whoa!") else: print("all is fine") There’s also a ternary operator (good for simple conditionals): def foo(bar, baz): return bar if bar else baz

Selection Python’s primary structure for selection is if: if i == 0 and j == 1: print(i, j) elif i > 10 or j < 0: print("whoa!") else: print("all is fine") There’s also a ternary operator (good for simple conditionals): def foo(bar, baz): return bar if bar else baz

Why no switch/case?

Most switch/case statements over-complicate what could be done in a single line using a dictionary. Where this is not the case, you really shouldn’t be using a switch anyway.

Why no switch/case? An Example switch in C switch (a) { case 'q': count++; break; case 'x': count--; break; case 'z': count += 4; }

Why no switch/case?

The Pythonic Way choice = {'q': 1, 'x': -1, 'z': 4} count += choice[a]

Iteration Python provides your traditional while loop, the syntax is similar to if: while n < 100: j /= n n += j But under most cases, the range-based for loop is preferred: for x in mylist: print(x) It should be noted that Python’s for loop is strictly range-based, unlike C’s for loop which is really just a fancy while loop.

Iteration Python provides your traditional while loop, the syntax is similar to if: while n < 100: j /= n n += j But under most cases, the range-based for loop is preferred: for x in mylist: print(x) It should be noted that Python’s for loop is strictly range-based, unlike C’s for loop which is really just a fancy while loop.

while-else and for-else Little known is the ability to pair an else block with for and while. The block will be executed only if the loop ﬁnishes without breaking. An example of this can be seen below: for i in range(10): x = input("Enter your guess: ") if i == x: print("You win!") break else: print("Truly incompetent!")

Slicing mylist = [1, 2, 3, 4] # syntax is [start:stop:step], step optional mylist[1:3] # => [2, 3] # unused parameters can be ommited mylist[::-1] # => [4, 3, 2, 1] # without the first element mylist[1:] # => [2, 3, 4] # without the last element mylist[:-1] # => [1, 2, 3]

Tuple Expansion & Collection Multiple assignments work like so: names = ("R. Stallman", "L. Torvalds", "B. Joy") a, b, c = names * can be used to collect a tuple: # drop the lowest and highest grade grades = (79, 81, 93, 95, 99) lowest, *grades, highest = grades The same can be done to expand a tuple in a function call: print(*grades)

Tuple Expansion & Collection Multiple assignments work like so: names = ("R. Stallman", "L. Torvalds", "B. Joy") a, b, c = names * can be used to collect a tuple: # drop the lowest and highest grade grades = (79, 81, 93, 95, 99) lowest, *grades, highest = grades The same can be done to expand a tuple in a function call: print(*grades)

Tuple Expansion & Collection Multiple assignments work like so: names = ("R. Stallman", "L. Torvalds", "B. Joy") a, b, c = names * can be used to collect a tuple: # drop the lowest and highest grade grades = (79, 81, 93, 95, 99) lowest, *grades, highest = grades The same can be done to expand a tuple in a function call: print(*grades)

Functions Functions are ﬁrst-class citizens in Python: >>> def identity(x): ... return x ... >>> type(identity) Functions can also be written anonymously as lambdas: >>> identity = lambda x:x >>> identity(42) 42 In this case, the ﬁrst style is preferred. It’s a bit easier to read, not to mention it’s actually named.

Functions Functions are ﬁrst-class citizens in Python: >>> def identity(x): ... return x ... >>> type(identity) Functions can also be written anonymously as lambdas: >>> identity = lambda x:x >>> identity(42) 42 In this case, the ﬁrst style is preferred. It’s a bit easier to read, not to mention it’s actually named.

Functions Functions are ﬁrst-class citizens in Python: >>> def identity(x): ... return x ... >>> type(identity) Functions can also be written anonymously as lambdas: >>> identity = lambda x:x >>> identity(42) 42 In this case, the ﬁrst style is preferred. It’s a bit easier to read, not to mention it’s actually named.

*args, **kwargs Python allows you to deﬁne functions that take a variable number of positional (*args) or keyword (**kwargs) arguments. In principle, this really just works like tuple expansion/collection. def crazyprinter(*args, **kwargs): for arg in args: print(arg) for k, v in kwargs.items(): print("{}={}".format(k, v)) crazyprinter("hello", "cheese", bar="foo") # hello # cheese # bar=foo

*args, **kwargs Python allows you to deﬁne functions that take a variable number of positional (*args) or keyword (**kwargs) arguments. In principle, this really just works like tuple expansion/collection. def crazyprinter(*args, **kwargs): for arg in args: print(arg) for k, v in kwargs.items(): print("{}={}".format(k, v)) crazyprinter("hello", "cheese", bar="foo") # hello # cheese # bar=foo

Generator Functions

Python provides a special kind of function which yields rather than returns. This generator function is effectively an efﬁcient iterable. Consider the range function we have been using3 : def range(start, stop, step=1): i = 0 while i < stop: yield i i += step As we will see later on, generator functions are a certain kind of the more generic generator. 3

This is actually a simpliﬁcation

Generator Functions

Python provides a special kind of function which yields rather than returns. This generator function is effectively an efﬁcient iterable. Consider the range function we have been using3 : def range(start, stop, step=1): i = 0 while i < stop: yield i i += step As we will see later on, generator functions are a certain kind of the more generic generator. 3

This is actually a simpliﬁcation

Object Oriented Programming

Classes

A simple class can be deﬁned like so: class Point: def __init__(self, x, y): self.x, self.y = x, y A few things to notice: • __init__ is the initializes the object. It’s actually what is called a magic method • All the methods of the class take a parameter self, the object you are working on

Classes

A simple class can be deﬁned like so: class Point: def __init__(self, x, y): self.x, self.y = x, y A few things to notice: • __init__ is the initializes the object. It’s actually what is called a magic method • All the methods of the class take a parameter self, the object you are working on

Magic Methods Magic methods are methods with certain names that allow you to bind features of your class to certain Python features. • __init__ was the simple example we just saw. • __del__ gets called when your object gets destructed. • __lt__, __eq__, etc. allow you to deﬁne comparisons. • __len__ binds into Python’s len(·) • There’s far more than I can mention here. Read the docs! Why do this rather than .equals(), .length() and such? In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably only one – obvious way to do it. Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods Magic methods are methods with certain names that allow you to bind features of your class to certain Python features. • __init__ was the simple example we just saw. • __del__ gets called when your object gets destructed. • __lt__, __eq__, etc. allow you to deﬁne comparisons. • __len__ binds into Python’s len(·) • There’s far more than I can mention here. Read the docs! Why do this rather than .equals(), .length() and such? In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably only one – obvious way to do it. Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods Magic methods are methods with certain names that allow you to bind features of your class to certain Python features. • __init__ was the simple example we just saw. • __del__ gets called when your object gets destructed. • __lt__, __eq__, etc. allow you to deﬁne comparisons. • __len__ binds into Python’s len(·) • There’s far more than I can mention here. Read the docs! Why do this rather than .equals(), .length() and such? In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably only one – obvious way to do it. Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods Magic methods are methods with certain names that allow you to bind features of your class to certain Python features. • __init__ was the simple example we just saw. • __del__ gets called when your object gets destructed. • __lt__, __eq__, etc. allow you to deﬁne comparisons. • __len__ binds into Python’s len(·) • There’s far more than I can mention here. Read the docs! Why do this rather than .equals(), .length() and such? In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably only one – obvious way to do it. Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods Magic methods are methods with certain names that allow you to bind features of your class to certain Python features. • __init__ was the simple example we just saw. • __del__ gets called when your object gets destructed. • __lt__, __eq__, etc. allow you to deﬁne comparisons. • __len__ binds into Python’s len(·) • There’s far more than I can mention here. Read the docs! Why do this rather than .equals(), .length() and such? In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably only one – obvious way to do it. Avoid .length(), .getLength(), .size() inconsistencies

Magic Methods Magic methods are methods with certain names that allow you to bind features of your class to certain Python features. • __init__ was the simple example we just saw. • __del__ gets called when your object gets destructed. • __lt__, __eq__, etc. allow you to deﬁne comparisons. • __len__ binds into Python’s len(·) • There’s far more than I can mention here. Read the docs! Why do this rather than .equals(), .length() and such? In the face of ambiguity, refuse the temptation to guess. There should be one – and preferably only one – obvious way to do it. Avoid .length(), .getLength(), .size() inconsistencies

Properties

Readability counts, so Python provides a way to avoid writing “getters and setters” when unnecessary. In Java, it’s nearly impossible to make everything public, since changing a class to use getters and setters would require a change of everything that interfaces with it. Python’s properties allow you to make your variable public to begin with, and then write getters and setters only once they are needed to actually check something.

Properties

Readability counts, so Python provides a way to avoid writing “getters and setters” when unnecessary. In Java, it’s nearly impossible to make everything public, since changing a class to use getters and setters would require a change of everything that interfaces with it. Python’s properties allow you to make your variable public to begin with, and then write getters and setters only once they are needed to actually check something.

Properties

Readability counts, so Python provides a way to avoid writing “getters and setters” when unnecessary. In Java, it’s nearly impossible to make everything public, since changing a class to use getters and setters would require a change of everything that interfaces with it. Python’s properties allow you to make your variable public to begin with, and then write getters and setters only once they are needed to actually check something.

Using Properties

class CameraSensor: def __init__(self): self.brightness = 10 def take_picture(self): # do something return image

camera = CameraSensor() camera.brightness = 40 camera.take_picture()

Using Properties class CameraSensor: def __init__(self): self._brightness = 10 def take_picture(self): # do something return image @property def brightness(self): return self._brightness @brightness.setter def brightness(self, value): if not 0

camera = CameraSensor() camera.brightness = 40 camera.take_picture()

Decorators

Decorators @property as we just saw is what is called a decorator. Decorators are really just a pretty way to wrap functions using functions that return functions. Both the following are equivalent: @logging def foo(bar, baz): return bar + baz - 42 # equivalent to... def foo(bar, baz): return bar + baz - 42 foo = logging(foo)

Decorators @property as we just saw is what is called a decorator. Decorators are really just a pretty way to wrap functions using functions that return functions. Both the following are equivalent: @logging def foo(bar, baz): return bar + baz - 42 # equivalent to... def foo(bar, baz): return bar + baz - 42 foo = logging(foo)

Deﬁning Decorators When deﬁning wrapper functions, you should decorate it with wraps from functools, this will keep attributes about the function. from functools import wraps def logging(func): @wraps(func) def wrapper(*args, **kwargs): result = func(*args, **kwargs) print(result) return result return wrapper

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a recursive function with a recurrence relation fast. Here’s an example: from functools import lru_cache @lru_cache(maxsize=None) def fibonacci(n): if n == 0 or n == 1: return n return fibonacci(n - 1) + fibonacci(n - 2)

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a recursive function with a recurrence relation fast. Here’s an example: from functools import lru_cache @lru_cache(maxsize=None) def fibonacci(n): if n == 0 or n == 1: return n return fibonacci(n - 1) + fibonacci(n - 2)

Decorators in the Wild: Welford’s Equations Welford’s Equations are a one-pass mean and standard deviation algorithm. One important property is that we won’t have to store the results in a list. Our goal will be to implement a decorator we can use like this: @Welford def diceroll(u): return int(u * 6) + 1 # call diceroll with some u's in (0, 1) print(diceroll.mean, diceroll.stdev)

Decorators in the Wild: Welford’s Equations Welford’s Equations are a one-pass mean and standard deviation algorithm. One important property is that we won’t have to store the results in a list. Our goal will be to implement a decorator we can use like this: @Welford def diceroll(u): return int(u * 6) + 1 # call diceroll with some u's in (0, 1) print(diceroll.mean, diceroll.stdev)

Decorators in the Wild: Implementing Welford The key here is that we can make callable objects using __call__. from functools import update_wrapper from math import sqrt class Welford: def __init__(self, f): self.f = f update_wrapper(self, f) self.mean = 0 self.v = 0 self.trials = 0 def __call__(self, *args, **kwargs): r = self.f(*args, **kwargs) self.trials += 1 d = r - self.mean self.v += d**2 * (self.trials - 1)/self.trials self.mean += d/self.trials return r @property def stdev(self): return sqrt(self.v/self.trials) if self.trials else 0

More Decorator Tricks

• Decorators can wrap classes as well as functions. A practical example might be creating a decorator which adds attributes of a class to a database (a @model decorator?) • When multiple decorators are typed, they are applied bottom-up.

More Decorator Tricks

• Decorators can wrap classes as well as functions. A practical example might be creating a decorator which adds attributes of a class to a database (a @model decorator?) • When multiple decorators are typed, they are applied bottom-up.

Generators & Comprehensions

Generator Expressions Remember the generator function from earlier? Generators can be written inline, these are called generator expressions. (x + 4 for x in nums if x % 2 == 0) There’s two parts to a generator expression: 1. Performing something for every element with for...in. 2. Selecting a subset of elements to operate on with if. This part is optional. The Pythonic Way Generator expressions are key to the art of Python. Without extensive knowledge of generator expressions, one will forever be a novice Pythonist.

Generator Expressions Remember the generator function from earlier? Generators can be written inline, these are called generator expressions. (x + 4 for x in nums if x % 2 == 0) There’s two parts to a generator expression: 1. Performing something for every element with for...in. 2. Selecting a subset of elements to operate on with if. This part is optional. The Pythonic Way Generator expressions are key to the art of Python. Without extensive knowledge of generator expressions, one will forever be a novice Pythonist.

Generator Expressions Remember the generator function from earlier? Generators can be written inline, these are called generator expressions. (x + 4 for x in nums if x % 2 == 0) There’s two parts to a generator expression: 1. Performing something for every element with for...in. 2. Selecting a subset of elements to operate on with if. This part is optional. The Pythonic Way Generator expressions are key to the art of Python. Without extensive knowledge of generator expressions, one will forever be a novice Pythonist.

Generator Expressions Remember the generator function from earlier? Generators can be written inline, these are called generator expressions. (x + 4 for x in nums if x % 2 == 0) There’s two parts to a generator expression: 1. Performing something for every element with for...in. 2. Selecting a subset of elements to operate on with if. This part is optional. The Pythonic Way Generator expressions are key to the art of Python. Without extensive knowledge of generator expressions, one will forever be a novice Pythonist.

Expression Syntax

(expression for expr in sequence1 if condition1 for expr2 in sequence2 if condition2 for expr3 in sequence3 ... if condition3 for exprN in sequenceN if conditionN) Notice the loops are evaluated outside-in.

Applications of Generator Expressions

• Summing ASCII values of a string sum(ord(c) for c in s) Note that the double-parentheses can be omitted.

• File readers reader = (float(line) for line in f) while processing_queue: process(next(reader))

• Hash Function pRNGs rng = (hashfunc(x)/MAXHASH for x in count()) diceroll(next(rng))

• The possibilities are endless!

Applications of Generator Expressions

• Summing ASCII values of a string sum(ord(c) for c in s) Note that the double-parentheses can be omitted.

• File readers reader = (float(line) for line in f) while processing_queue: process(next(reader))

• Hash Function pRNGs rng = (hashfunc(x)/MAXHASH for x in count()) diceroll(next(rng))

• The possibilities are endless!

Applications of Generator Expressions

• Summing ASCII values of a string sum(ord(c) for c in s) Note that the double-parentheses can be omitted.

• File readers reader = (float(line) for line in f) while processing_queue: process(next(reader))

• Hash Function pRNGs rng = (hashfunc(x)/MAXHASH for x in count()) diceroll(next(rng))

• The possibilities are endless!

Applications of Generator Expressions

• Summing ASCII values of a string sum(ord(c) for c in s) Note that the double-parentheses can be omitted.

• File readers reader = (float(line) for line in f) while processing_queue: process(next(reader))

• Hash Function pRNGs rng = (hashfunc(x)/MAXHASH for x in count()) diceroll(next(rng))

• The possibilities are endless!

List Comprehensions Building lists in a syntax like generator expressions can be done simply by using square brackets. my_list = [x + 4 for x in nums if x % 2 == 0] Non-comprehensive Alternative This is an alternative to the bad programming edition: my_list = [] for x in nums: if x % 2 == 0: my_list.append(x) Please avoid writing absolute garbage like this to initialize a data structure! It’s convoluted and slow!

List Comprehensions Building lists in a syntax like generator expressions can be done simply by using square brackets. my_list = [x + 4 for x in nums if x % 2 == 0] Non-comprehensive Alternative This is an alternative to the bad programming edition: my_list = [] for x in nums: if x % 2 == 0: my_list.append(x) Please avoid writing absolute garbage like this to initialize a data structure! It’s convoluted and slow!

Generic Comprehensions

The same comprehension syntax can be applied to other data structures like so: # Sets myset = {foo(x, y) for x, y in points} # Dictionaries mydict = {point: dist(p) for p in points} # Tuples mytup = tuple(foo(x, y) for x, y in points)

Functional Programming

Functional Programming

• High-order functions • We can do a lot in very few lines • Allow us to mathematically prove our algorithms correct, that’s better than any ﬁnite amount of unit tests! • Decorators are a little piece of functional programming • Generator expressions are also a form of functional programming

Functional Programming

• High-order functions • We can do a lot in very few lines • Allow us to mathematically prove our algorithms correct, that’s better than any ﬁnite amount of unit tests! • Decorators are a little piece of functional programming • Generator expressions are also a form of functional programming

Functional Programming

• High-order functions • We can do a lot in very few lines • Allow us to mathematically prove our algorithms correct, that’s better than any ﬁnite amount of unit tests! • Decorators are a little piece of functional programming • Generator expressions are also a form of functional programming

Functional Programming

• High-order functions • We can do a lot in very few lines • Allow us to mathematically prove our algorithms correct, that’s better than any ﬁnite amount of unit tests! • Decorators are a little piece of functional programming • Generator expressions are also a form of functional programming

Functional Programming

• High-order functions • We can do a lot in very few lines • Allow us to mathematically prove our algorithms correct, that’s better than any ﬁnite amount of unit tests! • Decorators are a little piece of functional programming • Generator expressions are also a form of functional programming

min/max min/max gets the minimum or maximum value from an iterable, optionally using a key function to select by. Example: x = min(points, key=lambda p:dist(p, z)) The Bad Programming Version min_dist = float('inf') for p in points: d = dist(p, z) if d < min_dist: x = p Don’t do this crap!

min/max min/max gets the minimum or maximum value from an iterable, optionally using a key function to select by. Example: x = min(points, key=lambda p:dist(p, z)) The Bad Programming Version min_dist = float('inf') for p in points: d = dist(p, z) if d < min_dist: x = p Don’t do this crap!

min/max min/max gets the minimum or maximum value from an iterable, optionally using a key function to select by. Example: x = min(points, key=lambda p:dist(p, z)) The Bad Programming Version min_dist = float('inf') for p in points: d = dist(p, z) if d < min_dist: x = p Don’t do this crap!

zip

zip creates a iterator over the nth element of each of it’s arguments (which are iterables). Example: for a, b, c in zip(list1, list2, list3): # do something Pro Tip: Iterating over the columns of a 2D matrix for col in zip(*M): # do something with each column

zip

zip creates a iterator over the nth element of each of it’s arguments (which are iterables). Example: for a, b, c in zip(list1, list2, list3): # do something Pro Tip: Iterating over the columns of a 2D matrix for col in zip(*M): # do something with each column

zip

zip creates a iterator over the nth element of each of it’s arguments (which are iterables). Example: for a, b, c in zip(list1, list2, list3): # do something Pro Tip: Iterating over the columns of a 2D matrix for col in zip(*M): # do something with each column

Other Functional Things

• map(func, *iterables), which calls func(*t) for all t in zip(*iterables). Note that map is completely unnecessary as the same can be done using generator expressions. Under a few cases, it may be better to use map to improve readability. • reduce(func, sequence) which reduces a sequence by calling func(func(func(a, b), c), ...). This is useful for taking the product of a sequence (use operator.mul)

Other Functional Things

• map(func, *iterables), which calls func(*t) for all t in zip(*iterables). Note that map is completely unnecessary as the same can be done using generator expressions. Under a few cases, it may be better to use map to improve readability. • reduce(func, sequence) which reduces a sequence by calling func(func(func(a, b), c), ...). This is useful for taking the product of a sequence (use operator.mul)

Recommended Reading

The Functional Programming HOWTO page in the Python documentation has some very useful tips for functional programming. https://docs.python.org/howto/functional.html

Useful Libraries

itertools

• Built into Python’s standard library • Features common generator functions • Features generator functions for iterating over various combinatorics, eg. permutations Example: Exhaustive Search Over Permutations def tourlen(tour): return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1])) def exhaustive(points): st = points.pop(0) return list(min(((st,) + p for p in permutations(points)), key=tourlen))

itertools

• Built into Python’s standard library • Features common generator functions • Features generator functions for iterating over various combinatorics, eg. permutations Example: Exhaustive Search Over Permutations def tourlen(tour): return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1])) def exhaustive(points): st = points.pop(0) return list(min(((st,) + p for p in permutations(points)), key=tourlen))

itertools

• Built into Python’s standard library • Features common generator functions • Features generator functions for iterating over various combinatorics, eg. permutations Example: Exhaustive Search Over Permutations def tourlen(tour): return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1])) def exhaustive(points): st = points.pop(0) return list(min(((st,) + p for p in permutations(points)), key=tourlen))

itertools

• Built into Python’s standard library • Features common generator functions • Features generator functions for iterating over various combinatorics, eg. permutations Example: Exhaustive Search Over Permutations def tourlen(tour): return sum(dist(a, b) for a, b in zip(tour, tour[1:] + tour[:1])) def exhaustive(points): st = points.pop(0) return list(min(((st,) + p for p in permutations(points)), key=tourlen))

Requests • Useful library to do make HTTP requests easy • Requests is the only Non-GMO HTTP library for Python, safe for human consumption. Behold! The power of Requests! >>> r = requests.get('https://api.github.com/user', auth=('user', 'pass')) >>> r.status_code 200 >>> r.headers['content-type'] 'application/json; charset=utf8' >>> r.encoding 'utf-8' >>> r.text u'{"type":"User"...' >>> r.json() {u'private_gists': 419, u'total_private_repos': 77, ...}

Requests • Useful library to do make HTTP requests easy • Requests is the only Non-GMO HTTP library for Python, safe for human consumption. Behold! The power of Requests! >>> r = requests.get('https://api.github.com/user', auth=('user', 'pass')) >>> r.status_code 200 >>> r.headers['content-type'] 'application/json; charset=utf8' >>> r.encoding 'utf-8' >>> r.text u'{"type":"User"...' >>> r.json() {u'private_gists': 419, u'total_private_repos': 77, ...}

Requests • Useful library to do make HTTP requests easy • Requests is the only Non-GMO HTTP library for Python, safe for human consumption. Behold! The power of Requests! >>> r = requests.get('https://api.github.com/user', auth=('user', 'pass')) >>> r.status_code 200 >>> r.headers['content-type'] 'application/json; charset=utf8' >>> r.encoding 'utf-8' >>> r.text u'{"type":"User"...' >>> r.json() {u'private_gists': 419, u'total_private_repos': 77, ...}

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def index(name): return template('Hello {{name}}!', name=name) run(host='localhost', port=8080)

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def index(name): return template('Hello {{name}}!', name=name) run(host='localhost', port=8080)

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def index(name): return template('Hello {{name}}!', name=name) run(host='localhost', port=8080)

Bottle: Really Simple Web Framework • Provides routing and convenient access to data • Built in HTTP server, or use any WSGI-compatible web server • Very lightweight, only a couple thousand lines of code A Hello, World! App from bottle import route, run, template @route('/hello/') def index(name): return template('Hello {{name}}!', name=name) run(host='localhost', port=8080)

Library Suggestions?

Learning Resources

Learning Resources

• The Python documentation is excellent, and includes many tutorials and howtos that may be more readable to a beginner • My slides4 from this past summer are online at https://coding.campinc.com, these might be better for someone with zero programming experince • Online courses? I haven’t tried any. • The Python Cookbook by David Beazely and Brian K. Jones is a good book for seasoned Pythonists 4

These slides aren’t complete without someone to teach them.

Learning Resources

• The Python documentation is excellent, and includes many tutorials and howtos that may be more readable to a beginner • My slides4 from this past summer are online at https://coding.campinc.com, these might be better for someone with zero programming experince • Online courses? I haven’t tried any. • The Python Cookbook by David Beazely and Brian K. Jones is a good book for seasoned Pythonists 4

These slides aren’t complete without someone to teach them.

Learning Resources

• The Python documentation is excellent, and includes many tutorials and howtos that may be more readable to a beginner • My slides4 from this past summer are online at https://coding.campinc.com, these might be better for someone with zero programming experince • Online courses? I haven’t tried any. • The Python Cookbook by David Beazely and Brian K. Jones is a good book for seasoned Pythonists 4

These slides aren’t complete without someone to teach them.

Learning Resources

• The Python documentation is excellent, and includes many tutorials and howtos that may be more readable to a beginner • My slides4 from this past summer are online at https://coding.campinc.com, these might be better for someone with zero programming experince • Online courses? I haven’t tried any. • The Python Cookbook by David Beazely and Brian K. Jones is a good book for seasoned Pythonists 4

These slides aren’t complete without someone to teach them.

Questions?

Copyright Notice

This presentation was from the Mines Linux Users Group. A mostly-complete archive of our presentations can be found online at https://lug.mines.edu. Individual authors may have certain copyright or licensing restrictions on their presentations. Please be certain to contact the original author to obtain permission to reuse or distribute these slides.

[image: Pin Configuration for BLHeliSuite 4-Way Interfaces (4w-if) - GitHub]
Pin Configuration for BLHeliSuite 4-Way Interfaces (4w-if) - GitHub

[image: Learn Python The Hard Way, 3rd Edition Table Of Contents - GitHub]
Learn Python The Hard Way, 3rd Edition Table Of Contents - GitHub

[image: The queue - GitHub]
The queue - GitHub

[image: The fuzz Manual - GitHub]
The fuzz Manual - GitHub

[image: The Book - GitHub]
The Book - GitHub

[image: Simulating the Ionosphere - GitHub]
Simulating the Ionosphere - GitHub

[image: Measuring The Beam - GitHub]
Measuring The Beam - GitHub

[image: The Coco Framework - GitHub]
The Coco Framework - GitHub

[image: The Enchiridion - Higginson - GitHub]
The Enchiridion - Higginson - GitHub

[image: The fuzz Manual - GitHub]
The fuzz Manual - GitHub

[image: Setting the Scene - GitHub]
Setting the Scene - GitHub

[image: The AndBug Debugger - GitHub]
The AndBug Debugger - GitHub

[image: The Adventure - GitHub]
The Adventure - GitHub

[image: The User Manual - GitHub]
The User Manual - GitHub

[image: The future - GitHub]
The future - GitHub

[image: The Enchiridion - Rolleston - GitHub]
The Enchiridion - Rolleston - GitHub

[image: The Enchiridion - Matheson - GitHub]
The Enchiridion - Matheson - GitHub

[image: the accessibility cheatsheet - GitHub]
the accessibility cheatsheet - GitHub

[image: The IPython notebook - GitHub]
The IPython notebook - GitHub

The Pythonic Way - GitHub

GvR makes a point: code is read more often than it is written, so readability counts. â€¢ Python is one of the few languages with a style guide. (PEP-8) since there is ...

 Download PDF

 742KB Sizes
 1 Downloads
 291 Views

 Report

Recommend Documents

[image: alt]

Pin Configuration for BLHeliSuite 4-Way Interfaces (4w-if) - GitHub

C2CK 3 D9. PB1. C2CK 3 D5. PD5. C2CK 4 D8. PB0. C2CK 4 D6. PD6. C2CK 5 A2. PC2. C2CK 5 D7. PD7. C2CK 6 A3. PC3. C2CK 6 D8. PB0. C2CK 7 A4.

[image: alt]

Learn Python The Hard Way, 3rd Edition Table Of Contents - GitHub

Imagine you are watching the four animals in our list above (['bear', 'tiger', 'penguin', ... If they want the tiger, they grab it. Sessions And Tracking Users.

[image: alt]

The queue - GitHub

Input file: A.in. Output file: A.out. Time limit: 1 second. Memory limit: 64 megabytes. There is an interesting queue. Cashier of this queue is not a good one. In fact ...

[image: alt]

The fuzz Manual - GitHub

6. The fuzz manual. This manual describes versions of the fuzz package numbered \plus n. ^{n}. For example, R \star is printed as Râˆ—, and R^{n} is printed as Rn vs. \hide, 18. SliTEX, 12 space commands, ignored by type checker, 24.

[image: alt]

The Book - GitHub

for styling a complex XML document into a PDF with SILE. ... TeX and InDesign, but seeks to be more flexible, extensible and programmable than In Chapter 10, we'll look at how the docbook class works, and how you can define processing.

[image: alt]

Simulating the Ionosphere - GitHub

Sep 30, 2009 - DEFINITION: Approximating measurements at intermediate scales/positions from scattered measurements. We have sparse measurements.

[image: alt]

Measuring The Beam - GitHub

Nominal beam model E accounts for the bulk of the DDE. ... Example: 3C147 field, dE-phase solutions as a ... solutions, but little reduction in imaging artefacts.

[image: alt]

The Coco Framework - GitHub

Aug 10, 2017 - failure. In a consortium of banks, members could be large, global, systemically important financial institutions (GSIFIs). ... End users, such as a bank's customers, do not have an identity in the Coco network and cannot transact

[image: alt]

The Enchiridion - Higginson - GitHub

This pdf was compiled on 8 Oct 2015 with nature in this respect, you will be elated with some reason; for you will be elated at some good of your own. you, but also the value of proper courtesy toward your host. Thirty-Seven. If you have .

[image: alt]

The fuzz Manual - GitHub

cations and check them for compliance with the Z scope and type rules. ... For information about Z, and a description of the scope and type rules used by the fuzz ...

[image: alt]

Setting the Scene - GitHub

... equations. â—‹ 4GC: Statistical analysis of the residuals ... Proven software now exists (OMS, WSRT) ... Application (aw-projection vs facet imaging). â—‹ Topic ...

[image: alt]

The AndBug Debugger - GitHub

Many small tools wrapped by "Android" and Eclipse. Includes a ... or emulator. Key dependency of ANY Android debugger. ... AndBug is 90% Python, 10% C.

[image: alt]

The Adventure - GitHub

The fourth rulebook in the series is the MASTER the study. In such a case, any attempt at an ability that requires prior learning will result in an Theology. CHA 2+, VIT 5+, MAG 3+. Qualification Test: To qualify for a trade, the charac

[image: alt]

The User Manual - GitHub

Defined Wireless Networking Experiments 2017 1.7.3 Encryption. Mininet-WiFi supports all the common wireless security protocols, such as WEP (Wired Equivalent. Privacy), WPA (Wi-Fi Protected Access) and WPA2. mac80211_hwsim practical exam

[image: alt]

The future - GitHub

Domain-specific abstraction. Direct mapping to ... remember to free memcpy(strings[s], buf, i); People want stability and 100% compatibility. â€“ With significant ...

[image: alt]

The Enchiridion - Rolleston - GitHub

... the GNU GPLv2 and can be found online at ... This pdf was compiled on 8 Oct 2015 ... and that to miss what you desire is unfortunate, but it is mis- fortune to ...

[image: alt]

The Enchiridion - Matheson - GitHub

The LATEX source for this project is licensed under the GNU GPLv2 and can be found online at github.com/mikepierce/Enchiridion. This pdf was compiled on 8 ...

[image: alt]

the accessibility cheatsheet - GitHub

Jun 2, 2015 - 2 - â€œOperableâ€� - User interface components and navigation must be ... Lay out your HTML the way the page is inteaded to be read and, where ...

[image: alt]

The IPython notebook - GitHub

tool chain to compile the notebook to a publishable PDF, has inspired me to I have tested the HTML outputs on my Galaxy S3 and S4, IPAD and Nexus7.

×
Report The Pythonic Way - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

