The Transmission of Language: models of biological and cultural evolution

Kenneth Smith M. A. (Hons), M. Sc.

A thesis submitted in fulfilment of requirements for the degree of Doctor of Philosophy

to Theoretical and Applied Linguistics, University of Edinburgh

March 2003

c Copyright 2003 by Kenneth Smith M. A. (Hons), M. Sc.

i

Abstract

Theories of language evolution typically attribute its unique structure to pressures acting on the genetic transmission of a language faculty and on the cultural transmission of language itself. In strongly biological accounts, natural selection acting on the genetic transmission of the language faculty is seen as the key determinant of linguistic structure, with culture relegated to a relatively minor role. Strongly cultural accounts place greater emphasis on the role of learning in shaping language, with little or no biological adaptation. Formal modelling of the transmission of language, using mathematical or computational techniques, allows rigorous study of the impact of these two modes of transmission on the structure of language. In this thesis, computational models are used to investigate the evolution of symbolic vocabulary and compositional structure. To what extent can these aspects of language be explained in terms of purely biological or cultural evolution? Should we expect to see a fruitful interaction between these two adaptive processes in a dual transmission model? As a first step towards addressing these questions, models which focus on the cultural transmission of language are developed. These models suggest that the conventionalised symbolic vocabulary and compositional structure of language can emerge through the adaptation of language itself in response to pressure to be learnable. This pressure arises during cultural transmission as a result of 1) the inductive bias of learners and 2) the poverty of the stimulus available to learners. Language-like systems emerge only when learners acquire their linguistic competence on the basis of sparse input and do so using learning procedures which are biased in favour of one-to-one mappings between meanings and signals. Children acquire language under precisely such circumstances. As the second stage of inquiry, dual transmission models are developed to ascertain whether this cultural evolution of language interacts with the biological evolution of the

iii

language faculty. In these models an individual’s learning bias is assumed to be genetically determined. Surprisingly, natural selection during the genetic transmission of this innate endowment does not reliably result in the development of learning biases which lead, through cultural processes, to language-like communication – there is no synergistic interaction between biological and cultural evolution. The evolution of language may therefore best be explained in terms of cultural evolution on a domain-general or exapted innate substrate.

iv

Declaration I hereby declare that this thesis is of my own composition, and that it contains no material previously submitted for the award of any other degree. The work reported in this thesis has been executed by myself, except where due acknowledgement is made in the text.

Kenneth Smith

v

Acknowledgements

Acknowledgements sections are usually over-long and toe-curlingly awful. I’ve managed to keep this one short, but have singularly failed to remove the cringe factor. Sorry. Thanks firstly to my wife Becky, who has supported me with good grace and charm through my interminable stint as a student. You are the best. For financial support, my parents deserve a mention, as do the Carnegie Trust for the Universities of Scotland. The department of Theoretical and Applied Linguistics also stumped up several sums of cash so I could go off to conferences and summer schools. I hope everyone feels they’ve got their money’s worth. On an academic level, thanks first of all to Simon Kirby and Jim Hurford for being excellent supervisors. Thanks are also due to Henry Brighton, who has worked closely with me on some of the models outlined in this thesis, in particular the model in Chapter 5. Andrew Smith also deserves a mention, for the helpful feedback he’s given me over the years, for providing an enjoyable working environment in the Junior LEC office, and for not objecting too strongly to his nickname. Thanks to Cedric McMartin and the rest of the computing support team. I’ve been thrashing every processor in the department for the past three years, and I couldn’t have done so without your help. Finally, no thanks to Scotland (for being useless at football, but not quite useless enough to stop me caring), UEFA (for running the Champions’ League every year) and FIFA (I could have done without World Cup 2002, to be honest).

vii

Contents

Abstract

iii

Declaration

v

Acknowledgements

Chapter 1 1.1

1.2

1.3

vii

Introduction

1

The uniqueness of language . . . . . . . . . . . . . . . . . . . . . . . . .

2

1.1.1

Design features of language . . . . . . . . . . . . . . . . . . . .

3

1.1.2

Design features of animal communication . . . . . . . . . . . . .

4

1.1.3

Oliphant’s taxonomy of communication systems . . . . . . . . .

6

1.1.4

Refining the taxonomy . . . . . . . . . . . . . . . . . . . . . . .

8

Theories of Language . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

1.2.1

The Nativist paradigm . . . . . . . . . . . . . . . . . . . . . . .

9

1.2.2

The Empiricist paradigm . . . . . . . . . . . . . . . . . . . . . . 11

Evidence for language evolution . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1

Archaeological evidence . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2

Current-day evidence . . . . . . . . . . . . . . . . . . . . . . . . 16

ix

1.4

Theories of language evolution . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.1

Non-adaptationist accounts . . . . . . . . . . . . . . . . . . . . . 20

1.4.2

Adaptationist accounts . . . . . . . . . . . . . . . . . . . . . . . 29

1.5

Formal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6

Guide to the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2 2.1

2.2

2.3

2.4

37

General and linguistic models . . . . . . . . . . . . . . . . . . . . . . . 38 2.1.1

A general model . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.2

Linguistic models . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Transmission and Cultural Traits . . . . . . . . . . . . . . . . . . . . . . 47 2.2.1

Cultural traits and transmission in the general model . . . . . . . 47

2.2.2

Cultural traits and transmission in linguistic models . . . . . . . . 49

Forces acting on cultural transmission . . . . . . . . . . . . . . . . . . . 56 2.3.1

Natural selection of cultural variants . . . . . . . . . . . . . . . . 58

2.3.2

Guided variation . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3.3

Directly biased transmission . . . . . . . . . . . . . . . . . . . . 69

2.3.4

Indirectly-biased transmission . . . . . . . . . . . . . . . . . . . 76

2.3.5

Frequency-dependent bias . . . . . . . . . . . . . . . . . . . . . 79

2.3.6

Transmission through a bottleneck . . . . . . . . . . . . . . . . . 81

Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 3 3.1

Models of cultural transmission

The cultural evolution of communication

93

Models of the evolution of vocabulary . . . . . . . . . . . . . . . . . . . 94

x

3.2

The communication model . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3

Model 1: a feedforward network model . . . . . . . . . . . . . . . . . . 100

3.4

3.5

3.6

3.7

3.3.1

The communicative agent . . . . . . . . . . . . . . . . . . . . . 101

3.3.2

The Iterated Learning Model . . . . . . . . . . . . . . . . . . . . 104

3.3.3

Network architecture, learning bias and natural selection . . . . . 106

3.3.4

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Model 2: an associative network model . . . . . . . . . . . . . . . . . . 114 3.4.1

Communicative agents . . . . . . . . . . . . . . . . . . . . . . . 115

3.4.2

Acquisition of an optimal system . . . . . . . . . . . . . . . . . 117

3.4.3

The Iterated Learning Model . . . . . . . . . . . . . . . . . . . . 119

3.4.4

Maintenance of an optimal system . . . . . . . . . . . . . . . . . 120

3.4.5

Construction of an optimal system . . . . . . . . . . . . . . . . . 121

3.4.6

Summary: The classification hierarchy . . . . . . . . . . . . . . 122

The Key Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.5.1

The key bias in the associative network model . . . . . . . . . . . 125

3.5.2

The key bias in the feedforward network model . . . . . . . . . . 128

3.5.3

The key bias in other models . . . . . . . . . . . . . . . . . . . . 132

Biases in vocabulary acquisition in humans and non-humans . . . . . . . 135 3.6.1

Biases against synonymy in humans . . . . . . . . . . . . . . . . 136

3.6.2

Biases against homonymy in humans . . . . . . . . . . . . . . . 138

3.6.3

Biases in non-human animals? . . . . . . . . . . . . . . . . . . . 143

Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xi

Chapter 4 4.1

4.2

The genetic and cultural evolution of communication

Modelling genetic transmission . . . . . . . . . . . . . . . . . . . . . . . 149 4.1.1

Natural selection on genetic transmission . . . . . . . . . . . . . 150

4.1.2

Models of the genetic transmission of communication . . . . . . 151

The dual inheritance model . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.2.1

4.3

4.5

The genetic transmission of direct bias . . . . . . . . . . . . . . . 156

The Evolutionary Iterated Learning Model . . . . . . . . . . . . . . . . . 158 4.3.1

4.4

149

The evolutionary iterated learning of vocabulary . . . . . . . . . 158

Model 1: Adding genetic transmission to the feedforward network model 161 4.4.1

Genotypes, phenotypes and the genotype-phenotype mapping . . 162

4.4.2

Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.4.3

The EILM algorithm . . . . . . . . . . . . . . . . . . . . . . . . 163

4.4.4

Emergence of a communication system . . . . . . . . . . . . . . 164

4.4.5

Maintenance of an optimal system . . . . . . . . . . . . . . . . . 167

4.4.6

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Model 2: Adding genetic transmission to the associative network model . 170 4.5.1

Genotypes, phenotypes and the genotype-phenotype mapping . . 170

4.5.2

Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.5.3

The EILM algorithm . . . . . . . . . . . . . . . . . . . . . . . . 171

4.5.4

Main result: optimal communication rarely emerges . . . . . . . 174

4.5.5

Varying the speed of convergence by varying e . . . . . . . . . . 180

4.5.6

Varying the speed of convergence by varying cultural population size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xii

4.6

4.5.7

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.5.8

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Chapter 5 5.1

5.2

5.3

5.4

The cultural evolution of compositionality

195

Models of the cultural evolution of linguistic structure . . . . . . . . . . . 196 5.1.1

Varying the learner model . . . . . . . . . . . . . . . . . . . . . 196

5.1.2

Varying the transmission bottleneck . . . . . . . . . . . . . . . . 198

5.1.3

Varying the structure of the meaning space . . . . . . . . . . . . 198

An Iterated Learning Model . . . . . . . . . . . . . . . . . . . . . . . . 200 5.2.1

Languages and communication . . . . . . . . . . . . . . . . . . . 200

5.2.2

Communicative agents . . . . . . . . . . . . . . . . . . . . . . . 202

5.2.3

The Iterated Learning Model . . . . . . . . . . . . . . . . . . . . 207

5.2.4

Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.2.5

Measuring compositionality . . . . . . . . . . . . . . . . . . . . 210

The impact of transmission bottleneck and environment structure . . . . . 213 5.3.1

Linguistic evolution in the absence of a bottleneck . . . . . . . . 213

5.3.2

Linguistic evolution in the presence of a bottleneck . . . . . . . . 220

5.3.3

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Exploring the impact of learning bias . . . . . . . . . . . . . . . . . . . . 230 5.4.1

Acquisition of a compositional system . . . . . . . . . . . . . . . 230

5.4.2

Maintenance through a bottleneck . . . . . . . . . . . . . . . . . 232

5.4.3

Construction through a bottleneck . . . . . . . . . . . . . . . . . 233

xiii

5.4.4 5.5

5.6

5.7

The key bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 5.5.1

An overview of the learning biases . . . . . . . . . . . . . . . . . 235

5.5.2

The two parts of the bias . . . . . . . . . . . . . . . . . . . . . . 241

5.5.3

The bias in other models . . . . . . . . . . . . . . . . . . . . . . 248

5.5.4

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

One-to-one biases and the acquisition of linguistic structure . . . . . . . . 251 5.6.1

One-to-one biases in general: clarity and isomorphism . . . . . . 252

5.6.2

One-to-one biases in morphology . . . . . . . . . . . . . . . . . 254

5.6.3

One-to-one biases in syntax . . . . . . . . . . . . . . . . . . . . 256

Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Chapter 6 6.1

The classification hierarchy . . . . . . . . . . . . . . . . . . . . 235

The evolution of compositionality in populations

263

Models of the evolution of linguistic structure in populations . . . . . . . 264 6.1.1

Cultural evolution in populations . . . . . . . . . . . . . . . . . . 264

6.1.2

Gene-culture coevolution in populations . . . . . . . . . . . . . . 265

6.2

Languages, communication and communicative agents . . . . . . . . . . 270

6.3

Cultural evolution in populations . . . . . . . . . . . . . . . . . . . . . . 271

6.4

6.3.1

Linguistic evolution in the absence of a bottleneck . . . . . . . . 274

6.3.2

Linguistic evolution in the presence of a bottleneck . . . . . . . . 277

6.3.3

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

The evolution of learning biases for compositional language . . . . . . . 282 6.4.1

Genotypes, phenotypes and reproduction . . . . . . . . . . . . . 282

xiv

6.4.2

The EILM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

6.4.3

The environment . . . . . . . . . . . . . . . . . . . . . . . . . . 285

6.4.4

A negative result . . . . . . . . . . . . . . . . . . . . . . . . . . 285

6.4.5

A positive result: the evolution of learning biases for compositional language . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

6.4.6

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

6.5

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

6.6

Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Chapter 7

Conclusions

297

Appendix A Mathematical models of transmission

309

A.1 Models of cultural transmission . . . . . . . . . . . . . . . . . . . . . . . 309 A.1.1 Basic cultural transmission models . . . . . . . . . . . . . . . . . 309 A.1.2 Pressures acting on cultural transmission . . . . . . . . . . . . . 312 A.2 Genetic transmission and natural selection . . . . . . . . . . . . . . . . . 322 A.3 Dual transmission and direct bias . . . . . . . . . . . . . . . . . . . . . . 324

Appendix B Published papers

329

References

437

xv

List of Tables

1.1

Trends in brain size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1

The loss of phonemic distinctions in Czech . . . . . . . . . . . . . . . . 42

3.1

Production and reception in feedforward neural networks . . . . . . . . . 103

3.2

The imitator learning bias . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3

The obverter learning bias . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4

The imitator random bias . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.5

The obverter random bias . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.6

The classification of weight-update rules . . . . . . . . . . . . . . . . . . 123

3.7

Learning biases of the weight-update rules . . . . . . . . . . . . . . . . . 129

5.1

Sensitivity to initial conditions . . . . . . . . . . . . . . . . . . . . . . . 218

5.2

Comparison of the stability of compositional language across environments229

5.3

A compositional language . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.4

The classification of weight-update rules . . . . . . . . . . . . . . . . . . 236

5.5

Values of g for various analyses . . . . . . . . . . . . . . . . . . . . . . 237

5.6

Values of g for various analyses . . . . . . . . . . . . . . . . . . . . . . 240

5.7

Values of g for various analyses . . . . . . . . . . . . . . . . . . . . . . 242

5.8

Average internal compositionality for all rules . . . . . . . . . . . . . . . 243 xvii

5.9

Values of g for holistic analyses . . . . . . . . . . . . . . . . . . . . . . 245

5.10 Values of g for compositional analyses . . . . . . . . . . . . . . . . . . . 247 6.1

Summary of results for the population ILM . . . . . . . . . . . . . . . . 278

xviii

List of Figures

1.1

Oliphant’s taxonomy of communication systems . . . . . . . . . . . . . .

6

1.2

An extended taxonomy of communication systems . . . . . . . . . . . .

9

1.3

Jackendoff’s schedule for the evolution of language . . . . . . . . . . . . 31

2.1

A general model of cultural transmission . . . . . . . . . . . . . . . . . . 39

2.2

The transmission of language from generation to generation . . . . . . . 40

2.3

The Arena of Use in the cycle of linguistic transmission . . . . . . . . . . 45

2.4

The Expression/Induction cycle . . . . . . . . . . . . . . . . . . . . . . 45

2.5

The Negotiation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6

The Iterated Learning Model . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7

Language as a mapping between three spaces . . . . . . . . . . . . . . . 55

2.8

Tomasello’s cultural ratchet . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.9

Hutchins & Hazelhurst’s autoassociator network . . . . . . . . . . . . . . 72

2.10 Exemplars in Batali’s model . . . . . . . . . . . . . . . . . . . . . . . . 87 2.11 Argument maps in Batali’s model . . . . . . . . . . . . . . . . . . . . . 90 3.1

Imitator and obverter network architectures . . . . . . . . . . . . . . . . 102

3.2

Communicative accuracy in imitator and obverter populations . . . . . . 107

xix

3.3

Communicative accuracy in imitator populations, with natural selection of cultural variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4

Communicative accuracy in obverter populations, with natural selection of cultural variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5

Communicative accuracy in imitator populations, with natural selection of cultural variants and noise on cultural transmission . . . . . . . . . . . 112

3.6

Communicative accuracy in obverter populations, with natural selection of cultural variants and noise on cultural transmission . . . . . . . . . . . 113

3.7

The associative network . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.8

Production in the associative network . . . . . . . . . . . . . . . . . . . 117

3.9

Learning in the associative network . . . . . . . . . . . . . . . . . . . . 118

3.10 Maintenance of an optimal system . . . . . . . . . . . . . . . . . . . . . 121 3.11 Construction of an optimal system . . . . . . . . . . . . . . . . . . . . . 123 3.12 The hierarchy of weight-update rules . . . . . . . . . . . . . . . . . . . . 124 3.13 The hierarchy of weight-update rules restated . . . . . . . . . . . . . . . 128 3.14 The bias of imitator networks . . . . . . . . . . . . . . . . . . . . . . . . 130 3.15 The bias of obverter networks for ambiguous mappings . . . . . . . . . . 131 3.16 The bias of obverter networks for unambiguous mappings . . . . . . . . . 131 3.17 The learning bias of Oliphant & Batali’s obverter . . . . . . . . . . . . . 136 4.1

A simple model of genetic transmission . . . . . . . . . . . . . . . . . . 150

4.2

The dual transmission model . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3

The generational EILM . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.4

The gradual EILM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.5

Genotype-phenotype mapping in the feedforward network model . . . . . 162

xx

4.6

Communicative accuracy in imitator populations, with natural selection on genetic transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.7

Communicative accuracy in imitator populations, with natural selection on genetic transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.8

Communicative accuracy in obverter populations, with natural selection on genetic transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.9

Slumping in imitator populations . . . . . . . . . . . . . . . . . . . . . . 169

4.10 Selection pressure arising from tournament selection . . . . . . . . . . . 173 4.11 Selection pressure on cultural variants arising from tournament selection . 174 4.12 Evolution of learning biases leading to optimal communication . . . . . . 175 4.13 The three phases of a successful run . . . . . . . . . . . . . . . . . . . . 177 4.14 Relative communicative accuracy of constructors . . . . . . . . . . . . . 178 4.15 Relative communicative accuracy of maintainers . . . . . . . . . . . . . 178 4.16 Relative communicative accuracy of learners

. . . . . . . . . . . . . . . 179

4.17 Relative communicative accuracy of non-learners . . . . . . . . . . . . . 179 4.18 The impact of learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.19 The impact of spatial organisation . . . . . . . . . . . . . . . . . . . . . 183 4.20 Time-space diagrams for cultural spatialisation . . . . . . . . . . . . . . 185 4.21 Time-space diagrams for genetic spatialisation . . . . . . . . . . . . . . . 186 4.22 Time-space diagrams for combined spatialisation . . . . . . . . . . . . . 187 5.1

The structured associative network . . . . . . . . . . . . . . . . . . . . . 203

5.2

Learning in the structured associative network . . . . . . . . . . . . . . . 205

5.3

Production in the structured associative network . . . . . . . . . . . . . . 206

5.4

Analysis pairs as parse trees . . . . . . . . . . . . . . . . . . . . . . . . 207

xxi

5.5

Unstructured environments . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.6

Structured environments . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.7

I-compositionality for sparse environments, with no bottleneck . . . . . . 214

5.8

E-compositionality for sparse environments, with no bottleneck . . . . . . 215

5.9

E-compositionality for medium density environments, with no bottleneck 216

5.10 E-compositionality for dense environments, with no bottleneck . . . . . . 217 5.11 Sensitivity to initial conditions . . . . . . . . . . . . . . . . . . . . . . . 218 5.12 Compositionality in sparse environments, where c = 0:8 . . . . . . . . . 222 5.13 Compositionality in medium density environments, where c = 0:4 . . . . 222 5.14 Compositionality in medium density environments, where c = 0:6 . . . . 223 5.15 Compositionality in medium density environments, where c = 0:8 . . . . 223 5.16 Compositionality in dense environments, where c = 0:25 . . . . . . . . . 224 5.17 Compositionality in dense environments, where c = 0:4 . . . . . . . . . . 224 5.18 Compositionality in dense environments, where c = 0:6 . . . . . . . . . . 225 5.19 Compositionality in dense environments, where c = 0:8 . . . . . . . . . . 225 5.20 Maintenance of a compositional language . . . . . . . . . . . . . . . . . 233 5.21 Construction of a compositional language . . . . . . . . . . . . . . . . . 234 5.22 Connection weights after learning . . . . . . . . . . . . . . . . . . . . . 238 6.1

Compositionality in sparse environments, with no bottleneck . . . . . . . 275

6.2

Compositionality in medium density environments, with no bottleneck . . 276

6.3

Sample runs of the population ILM . . . . . . . . . . . . . . . . . . . . . 279

6.4

Sample runs of the population ILM . . . . . . . . . . . . . . . . . . . . . 286

xxii

6.5

Evolution of learning bias leading to communicatively optimal, compositional language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

6.6

Early stages of evolution of learning bias leading to communicatively optimal, compositional language . . . . . . . . . . . . . . . . . . . . . . 288

6.7

Learning bias, communicative accuracy and compositionality . . . . . . . 289

6.8

Relative communicative accuracy for +constructor, +ic-preserver weightupdate rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

6.9

Relative communicative accuracy for +maintainer, constructor, +icpreserver weight-update rules . . . . . . . . . . . . . . . . . . . . . . . . 290

6.10 Relative communicative accuracy for

+maintainer, constructor,

ic-

preserver weight-update rules . . . . . . . . . . . . . . . . . . . . . . . . 291 6.11 Relative communicative accuracy for

xxiii

maintainer weight-update rules . . 291

The Transmission of Language: models of biological ...

learning procedures which are biased in favour of one-to-one mappings between mean- ings and signals. Children acquire language under precisely such ...

39KB Sizes 1 Downloads 191 Views

Recommend Documents

The Transmission of Language: models of ... - Semantic Scholar
current-day evidence cannot directly show us the time-course of the ..... offers no detailed explanation for this initial exaptation, although Wilkins & Wakefield ...... might be tempted to explain the preference for the term “mobile phone” over

The Transmission of Language: models of ... - Semantic Scholar
field (1995) deal with the processes which lead up to a cognitive capacity which ...... phone” and “cell phone” between British and American English, “turnip” and ...

The Inferential Transmission of Language
Figures 1, 2, 4, 5 appear in color online: http://adb.sagepub.com ... Tel.: +44 (0)131 651 1837, Fax: +44 (0)131 650 3962. ..... that children receive little, if any, direct corrective feedback ..... how many signals are sent, communication does not.

Predictive Models of Cultural Transmission
Thus, only those ideas that are best fit for a mind are remembered and ... The key idea behind agent-based social simulation (ABSS) is to design simple bottom- ... goal directed agents that plan sequences of actions to achieve their goals. ... caused

Learning Bias, Cultural Evolution of Language, and the Biological ...
Sciences, University of Edinburgh, Dugald Stewart Building, 3 Charles Street, ... to be relatively straightforward: all normally developing individuals acquire the ...... be outweighed by the costs of social learning, resulting in selection in favor

The Effect of Language Models on Phonetic Decoding ...
EVALUATION PROCEDURE. 3.1 Metrics and data. STD accuracy is measured in terms of simultaneously maximising the percentage of detected occurrences (detec- tion rate) and ... to a “standard” large vocabulary speech recognition config- uration, usin

Comparing biological and mathematical models of ...
BMC Systems Biology 6:1. 6. I. Yanai et al (2008). Molecular Systems Biology 4:163. 7. H. Chamberlin, Prof. of Mol. Gen., The Ohio State University. Several sources were used to infer signs and directedness of the interactions. Most inferences were m

Usage based models of language Michael Barlow ...
when people are likened to animals, to being wholly constituted by the metaphor for all intents and purposes (e.g. a layperson's understanding of the. Big Bang).

Connectionist Models of Language Production ... - Wiley Online Library
May 9, 2002 - Theories of language production have long been expressed as connectionist models. We outline the issues and challenges that must be addressed by connectionist models of lexical access and grammatical encoding, and review three recent mo

The transmission of financial shocks: the case of ...
Oct 21, 2011 - *Ethan Cohen-Cole: Robert H Smith School of Business. email: .... that investors in the commercial paper market demanded a higher premium to .... use commercial paper to fund on-going cash-flow needs such as payroll ..... We define an

The Biological Origin of Linguistic Diversity - ScienceOpen
Oct 30, 2012 - Group, Warwick Business School, University of Warwick, Coventry, United Kingdom, 3 Departament de Fısica i Enginyeria Nuclear, Universitat Polite`cnica de ... A challenge for evolutionary biology is to reconcile the diversity of langu

Language as a Biological Construct - On the Intrinsic Variability and ...
in onomatopoeia) mapped to a particular meaning. .... Language as a Biological Construct - On the Intrinsic Variability and Selection of Language.pdf. Language ...

Influence of vermiwash on the biological productivity of ...
room temperature (+30oC) and released back into the tanks. The agitation in .... The data were subjected to Duncan's .... In proc.2nd Australian Conf. Grassl.

The Quantal Nature of Synaptic Transmission at the ...
locust extensor tibiae muscle, and curves based on Eq. 2 were calculated from both of the amplitude histograms taking into account the different positions of the ...

The Quantal Nature of Synaptic Transmission at the ...
evenly distributed over a given muscle fiber, and that the amplitude ... ments was reasonably good and the computed parameters x, y, and a for the curves.

Skin Effects models for Transmission Line Structures ...
Abstract. A recipe has been developed to model the skin effect for various transmission line structures. The final cir- cuit structure to model this effect can be used with a generic SPICE circuit simulator. The ladder like net- work[1] element is fa

Information theoretic models in language evolution - ScienceDirect.com
Information theoretic models in language evolution. 1. Rudolf Ahlswede, Erdal Arikan, Lars Bäumer, Christian Deppe. Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, 33501 Bielefeld,. Germany. Abstract. We study a model for languag

Models of the Atom Notes.pdf
There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. Models of the ...

Three models of the future
'Edward Hallet Carr, The Twenty Years' Crisis 1919-1939 (London: ... first trade deficit since 1893 and to accelerating attacks on the dollar, the president imposed ... representative of the three prevailing schools of thought on political economy: .

Randomized Language Models via Perfect Hash Functions
Randomized Language Models via Perfect Hash Functions ... jor languages, making use of all the available data is now a ...... functions. Journal of Computer and System Sci- ence ... Acoustics, Speech and Signal Processing (ICASSP). 2007 ...

Knowledge Integration Into Language Models
Mar 9, 2009 - Deleted interpolation! In what order do we back off or delete? Well... No “natural ... Or tried to find the “optimal” path or combination of paths.

Intergenerational transmission of emotional trauma.pdf
Page 1 of 6. Intergenerational transmission of emotional trauma. through amygdala-dependent mother-to-infant. transfer of specific fear. Jacek Debieca,b,c,1 and Regina Marie Sullivana,b. a. Emotional Brain Institute, Department of Child and Adolescen