

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

The VN801 Chip Verification Environment Using Verilog and C Pham Thanh Hung, Ngo Quang Vinh, Nguyen Thanh Sang The VN801 verification environment uses C and Abstract – The VN801 chip verification environment based on simulation with the Synopsys’ tool – VCS is Verilog to increase flexibility and efficiency of testing. The presented. The chip will be verified from the RTL level to architecture of the VN801 chip verification environment is layout level. Effectiveness of verification process is shown in the Figure.2. determined through the coverage analyzer. This environment uses Verilog and C models to increase reliability for testing. Script language is used to connect Script (make, bash shell) components in the environment to increases flexibility for Scoreboard (mem Intruction Set checker, register Simulator (ISS) the verification environment. After the chip is passed by comparison) Random testcase verification environment, the VN801 chip is taped out Instruction generator decoder successfully. Until now the chip is free of bugs. (asm-> direct testcase VN801 Verification Environment

(assembly)

Index Terms – Verification, DUT, Environment, Script language

I. INTRODUCTION Today’s chips are more and more complex. Therefore, the accuracy requirement of the verification is higher. With complex chips, the verification environment must be easy to use, can be inherited and support debugging. The VN801 chip environment is qualified for all these features.

hex->inst)

BFMs driver (verilog)

VN801 (DUT) testcase_config (verilog)

Register monitor

Ram monitor Clock generator

Reset generator Port monitor

testbench

II. ENVIRONMENT ARCHITECTURE Figure 2: VN801 Chip Verification Environment The VN801, a microcontroller chip, includes an 8-bit processor core and peripherals such as watchdog-timer, Script: includes make script and bash script which is timer0, timer1, timer2, ccp1, interrupt controller, dual-port used to control simulation flow. RAM, and the port I/O [1]. The VN801 chip architecture is shown in Firgure.1. Random testcase generator: generates the random testcases. With every input constraint, it creates a corresponding testcase. I/O ports

Watchdog clock

Timer0 clock

I/O PORT CONTROLLER

WATCHDOG TIMER

TIMER0

Timer1 clock

Instruction decoder: contains an assembler and a program which converts assembly code to VN801 instructions.

TIMER1

Instruction Set Simulator (ISS): simulates the VN801 Instruction set by C language.

CCP1

Dual port RAM

DUT: is the design under test. In this case, it’s the VN801 chip.

CPU TIMER2

Clock generator: generates the clock for VN801 chip.

Program memory

Reset generator: drives chip’s reset signal. USART

Transmit/receive data

INTERRUPT CONTROLLER

Figure 1: VN801 Chip Architecture Pham Thanh Hung is with the IC Design Research & Education Center, 6th quarter, Linh Trung ward, Thu Duc district, Ho Chi Minh city, Vietnam (e-mail: ). Ngo Quang Vinh is with the IC Design Research & Education Center, 6th quarter, Linh Trung ward, Thu Duc district, Ho Chi Minh city, Vietnam (e-mail: ). Nguyen Thanh Sang is with the IC Design Research & Education Center, 6th quarter, Linh Trung ward, Thu Duc district, Ho Chi Minh city, Vietnam (e-mail: ).

Driver: drives and controls stimulus vectors to DUT. Tescase_config: configures the DUT for every testcase. Bus Functional Models (BFMs): BFM for USART, CCP1. Scoreboard: contains checkers and displays. Monitors: captures results on RAM, ports, registers, etc. A. Manual versus Automatic Script For a small design, the verification environment can be thought of as a simple testbench. Whenever stimulus vectors are applied directly to input ports of DUT from the

testbench, the result will be observed at output ports of DUT. It only needs some simple monitors to capture the result. The result can be observed directly on the waveform as well. However, for a complex design, things become more difficult. In this case, the verification environment must support more components e.g. drivers, arbiters, random generators, monitors, BFMs, VIPs or reference models, etc. Manually connecting and managing them is not feasible. Script languages can solve these problems [2]. Here, we use the shell script language and make utility to control all components of the environment. Shell command is very familiar in UNIX system. We usually use the shell script to build the initial setup for the environment, such as creating folders, deleting files created during the simulation, etc. It’s also used to check the test status after simulation or create output results as log file. The necessary components in the environment will be built easily with script languages. An initial configuration script for a testcase in VN801 chip is shown in the following example: #!/bin/bash #=================================== # User definitions AUTHOR="HUNG PHAM THANH" TEST_GROUP=test_interrupt # Main codes TEST_LIST=`ls -B $TEST_GROUP | grep "test_"` echo $TEST_LIST cd $TEST_GROUP for i in ${TEST_LIST} do cd $i rm -rf $i echo "#!/bin/bash" >> $i #cat < make.define >> $i echo "cd ../../../" >> $i echo "make $RUN_TYPE TEST_NAME=$i TEST_GROUP=$TEST_GROUP VCS_OPTIONS=$TIMING_MODE $VCS_OPTIONS VIP= $VIP RTL_RESULT_DIR=$RTL_RESULT_DIR" >> $i echo "cd tests/$TEST_GROUP/$i" >> $i #post-simulation echo "rm -rf $i.result " >> $i echo "touch $i.result" >> $i echo "echo "AUTHOR=$AUTHOR" >> $i.result" >> $i echo "grep "TEST_NAME" $i.log >> $i.result" >> $i echo "grep "TEST_STATUS" $i.log >> $i.result" >> $i chmod u+x $i cd .. done Meanwhile, the make utility is used to manage tasks, run an executed file, build a program in a certain order and connect components in the verification environment. With make, we can select the appropriate components for each design or testcase. For example, if a design needs a Synopsys’s Smartmodel, we will connect this Smartmodel to it through a variable which has been declared in the makefile – it’s a file to tell make what to do [2]. If this design needs another model, we just adjust the values of variables in makefile. Make builds a flow to execute source codes, commands or executable files. It supports the useful features to manage program. The main program will be split into simple programs for easy coding. Then, they will be linked

into a large program by make. Depending on user’s organization, it will create different programs. For example, a piece of the makefile used in the VN801 chip verification environment is: clear: rm -rf test.v program.rom chip.vpd rm -rf $(RTL_RESULT_DIR)/$(TEST_NAME)/*.log $(RTL_RESULT_DIR)/$(TEST_NAME)/*.vpd $(RTL_RESULT_DIR)/$(TEST_NAME)/DVEfiles . scripts/clean run_rtl: check clear config asm2rom vcs -f ./scripts/chip.f $(TRANSCRIPT_OPTIONS) $(VIP_OPTIONS) +vpdfile+$(RTL_RESULT_DIR)/$(TEST_NAME)/$(TEST_ NAME).vpd +v2k -debug_pp +define+DEBUG+CHIP+$(MEM)+$(MONITOR) -l $(RTL_RESULT_DIR)/$(TEST_NAME)/$(TEST_NAME).lo g $(VCS_OPTIONS) -lmc-swift -R +nospecify In the above program, if we run command: “make run_rtl”, the check task will be done first then it’s followed by clear task and asm2rom task. The "vcs –f . /script /chip.f ..." command will be done at last [3]. B. Instruction Set Simulator (ISS) The VN801 environment integrates an Instruction Set Simulator (ISS) and a stimulus generator which are written in C language. ISS model describes behavior of the VN801 instruction set. With each input, ISS will create a corresponding output result. The output result is the values of the file registers, RAM, program counter register (PC) and I/O ports. A stimulus generator produces test scenarios with various constraints such as instruction type, address of registers, values written to register, branch addresses, etc. Instructions are arranged into different contexts which depend on the particular requirements. Thereby, the random tests are generated. Then, these tests are put into ISS and design under test (DUT) to run simulation. With the ISS, we can easily create random tests with different levels of constraints. In addition, the VN801 environment also supports the directed tests. These testcases will be created manually. This is advantageous when we want to write a testcase to reach a corner in the chip. Testcases are coded in assembly language. So, the VN801 environment has an assembler to compile the assembly file into INTEL’s HEX file format. In addition, the environment also supports a program to convert HEX file into the VN801 opcode since the opcode is applied into the ISS to run the simulation. On the other hand, this opcode is also applied into the DUT to run simulation using VCS tool. Two results are generated, one of the DUT and another of the ISS. These results are checked by scoreboard which contains a register comparator, a ram checker and a PC comparator. The results of the comparisons will reflect the status of the testcase such as passed, failed or unknown. C. Block Level and System Level Verification The VN801 chip verification is split into two stages. The first stage is verification at block level and the second stage is verification at system level. The VN801 chip includes many blocks such as UART, CCP, TIMER, WATCHDOG, etc. At block level, tests are often simple and we only need a small testbench to check these blocks. This testbench has a driver task to apply stimulus vectors to

option. If it’s passed, it’ll be simulated with full-timing. To tape-out, the chip must pass the final step of gate level verification, called dynamic test. In the dynamic test, the chip is simulated in a timing-window. The timing-widow is in an arrangement which has value from minimum delay to The system level verification needs an environment to maximum delay. This is the final phase of simulation check all flexible functions of the whole chip. The VN801 process. chip is designed so that a testcase is described as a program. A testcase includes two elements: The first, written by E. Scoreboard Verilog, the second, VN801’s instructions are used to control Scoreboard in VN801 verification environment contains the test flow and to describe the checking functions, monitors, checker and displays. Monitors are used to respectively. capture events on output port or to store stimulus vector for An example of program for VN801 chip’s interrupt test is comparison later. Besides, they’re also used to monitor changes on a special register. Checkers are used to check the following: test’s status such as passed, failed and unknown. The main @0000 0175 part of a checker is the comparator. It compares the result @0004 3840 from DUT and reference model. Displays create warning @0005 01B4 messages, error message and other messages for debugging @0006 01C8 [5]. @0007 0000 F. Coverage Analyzer @0008 0000 @0009 0504 Coverage analyzer calculates coverage of the entire @000A 38C0 verification process on the design. The VN801 verification @000B 34C0 environment supports three types of coverage: line @000C 3004 coverage, condition coverage and FSM coverage. Line @000D 3084 coverage percentage shows that how many code lines are @000E 3140 touched. Normally, this coverage has to be 100% to ensure @000F 31C0 that all lines of code in design are visited during simulation. @0010 3E84 It isn’t difficult to achieve this. Condition coverage denotes … the degree of verification for condition expressions in design such as terms of expression if ... else, case D. Gate Level Verification expressions, condition operator expressions, etc. To achieve high coverage, the verification environment must have corner tests for intruding into the corner of the design. Most designs usually contain state machines. The FSM coverage is required to ensure that all states and transitions were done. There are states or transitions which are only reached when we use corner tests. Therefore, to achieve high coverage in verification, we must use both random tests and corner tests to verify the design. input ports and a monitor task to capture simulation results at output ports. The testbench at block level verification has no inheritability but it’s very simple and easy to find out the basic bugs of chip.

There is another important coverage type known as functional coverage. In this coverage type, all functions will be described into a list called as function table by verification language. The verification process must cover all items of this table before tape-out. Functional coverage Figure 3: Overview of the Verification Process is only supported by SystemVerilog environment, so the As shown by the Firgure.3, after the chip is passed at the VN801 environment doesn’t support this coverage. In RTL level, it’s synthesized by Design Compiler tool. The conclusion, when we tape-out a design, it should have high synthesis results in a nestlist - a chip at gate level. The gate coverage to ensure the design operates exactly. level verification ensures that all chip’s functions are still III. EXPERIMENTAL RESULTS right after synthesis. All testscases, which were used for The simulation result of the interrupt test in VN801 testing at RTL level, are used again to run the simulation for verification environment is shown as follows: the chip at post-synthesis. Besides, the formal verification is also used to increase feasibility of testing [4]. Formality is a Simulation environment: Intel ® Core 2 Duo CPU E8400 Synopsys’s tool which supports formal verification. The 3.0G, VCS A-2006-09 on Red Hat Enterprise 4.0, 4Gb VN801 at both the RTL and post-synthesis level are now RAM. analyzed by Formality. If there is any mismatch, Formality Simulation time: 42 seconds. Testbench description: Using external interrupt and timer will display error or warning messages. interrupt. When an interruption occurs, the main program The chip now undergoes place and route process after stops, the chip goes to the interrupting state. There is an being verified at post-synthesis level. The gate level interrupt service routine (ISR) which will detect the type of verification in this step ensures that the chip is right not only current interrupt and then the ISR corresponds with this at functions but also at timing and area constraints. VCS tool interrupt will be run. There are 1800 interrupts occurred in supports +nospecify option to suppress timing checks and this test. module path delays. The chip is simulated with +nospecify

Result under log file: Chip VN801. This is the chip_interupt test. Loading program memory with chip_interupt.rom End RESET_POR. Time:4032000,Value in ISR:cc Time:4052000: INT Interuption(cc) Time:4192000,Value in ISR:24 Time:5612000,Value in ISR:cc Time:5632000: INT Interuption(cc) Time:5792000,Value in ISR:81 Time:15512000,Value in ISR:88 Time:15532000: TIMER1 Interuption(88) Time:15592000,Value in ISR:07 Time:15612000,Value in ISR:00 Time:21592000,Value in ISR:bb Time:21612000: RB_ONCHANGE Interuption(bb) Time:21672000,Value in ISR:24

Time:21692000,Value in ISR:81 Time:21852000,Value in ISR:11 Time:21912000,Value in ISR:a5 Time:21932000,Value in ISR:00 Time:29892000,Value in ISR:bb … >>>pass_number= 2700 >>>fail_number= 0 >>>interrupt_number= 1800 TEST_STATUS: PASS

Result under waveform:

Figure 4: The Simulation Result of the Interrupt Test on DVE Coverage of this test:

IV. CONCLUSIONS In this paper, the verification environment for VN801 is proposed. This verification environment contains checker, coverage analyzer, C-based test generator, and compliance test suits. The integration of C and Verilog makes the test more reliable. Scripts render the verification environment more flexible and easier to configure it to suit each test case. When the chip is upgraded, there are not many changes in the environment so that it is inheritable. The VN801 chip is taped-out successfully. This shows that the proposed verification environment is practical for verifying real-world designs.

V. ACKNOWLEDGEMENT Our first and deepest thanks go to the Ministry of Science & Technology, Vietnam, and VNU-HCM for the grant in form of state-level research project with code: KC.01.08/06-10. We are indebted to Prof. Dr. Dang Luong Mo, advisor of VNU-HCM and ICDREC, for taking his time to thoroughly read our manuscript, help rewording it and finally reshaping it into the present form. VI. REFERENCES [1] [2] [3] [4]

[5]

“The VN801 datasheet”, ICDREC, October 2008. Robert Mecklenburg, “Managing Projects with GNU make, 3rd Edition”, November 2004, pages 157-160. “VCS® Y-2006.06 Testbench Quick Start Guide”, Synopsys, Inc version Y-2006.06, August 2006. By William K. Lam, “Hardware Design Verification: Simulation and Formal Method-Based Approaches”, Sun Microsystems, March 03, 2005. Janick Bergeron, “Writing Testbenches. Functional Verification of HDL Models 2nd edition”, Qualis Design Corporation.

[image: Ebook Free System-on-a-Chip Verification ...]
Ebook Free System-on-a-Chip Verification ...

[image: Multi-Chip Reticle Approach for OPC Model Verification]
Multi-Chip Reticle Approach for OPC Model Verification

[image: Multi-Chip Reticle Approach for OPC Model Verification]
Multi-Chip Reticle Approach for OPC Model Verification

[image: Speaker Verification Using Fisher Vector]
Speaker Verification Using Fisher Vector

[image: speaker identification and verification using eigenvoices]
speaker identification and verification using eigenvoices

[image: design of hamming code using verilog hdl]
design of hamming code using verilog hdl

[image: Integrated CMOS Transmit-Receive Switch Using On-Chip ... - CiteSeerX]
Integrated CMOS Transmit-Receive Switch Using On-Chip ... - CiteSeerX

[image: Integrated CMOS Transmit-Receive Switch Using On-Chip ... - CiteSeerX]
Integrated CMOS Transmit-Receive Switch Using On-Chip ... - CiteSeerX

[image: Verilog Tutorial]
Verilog Tutorial

[image: Online Signature Verification using PCA and Neural ...]
Online Signature Verification using PCA and Neural ...

[image: Online Signature Verification using PCA and Neural Network - IJRIT]
Online Signature Verification using PCA and Neural Network - IJRIT

[image: Face Verification using Gabor Filtering and Adapted ...]
Face Verification using Gabor Filtering and Adapted ...

[image: Speaker Verification Anti-Spoofing Using Linear ...]
Speaker Verification Anti-Spoofing Using Linear ...

[image: Online Signature Verification using Dynamic Time ... - Semantic Scholar]
Online Signature Verification using Dynamic Time ... - Semantic Scholar

[image: Online Signature Verification using PCA and Neural Network - IJRIT]
Online Signature Verification using PCA and Neural Network - IJRIT

[image: Identity Verification using Shape and Geometry of ...]
Identity Verification using Shape and Geometry of ...

[image: speaker identification and verification using eigenvoices]
speaker identification and verification using eigenvoices

[image: Visual Tracking in Cluttered Environment Using the ...]
Visual Tracking in Cluttered Environment Using the ...

[image: Face Verification using Gabor Filtering and Adapted ...]
Face Verification using Gabor Filtering and Adapted ...

[image: biometric verification using contour-based hand ...]
biometric verification using contour-based hand ...

[image: Online Signature Verification using PCA and ... - IJRIT]
Online Signature Verification using PCA and ... - IJRIT

[image: Using Conjunctions and Adverbs for Author Verification]
Using Conjunctions and Adverbs for Author Verification

The Vn801 Chip Verification Environment Using Verilog ...

processor core and peripherals such as watchdog-timer, timer0, timer1, timer2, ccp1, ... program which converts assembly code to VN801 instructions. Instruction ...

 Download PDF

 242KB Sizes
 2 Downloads
 153 Views

 Report

Recommend Documents

[image: alt]

Ebook Free System-on-a-Chip Verification ...

Dec 31, 2000 - The authors mention SPICE, spectre, and Cadence Analog. Design Environment only. I just finished a 37000 transistor analog & mixed-signal chip verification, and this book mentioned none of the tools and methods that I used, which inclu

[image: alt]

Multi-Chip Reticle Approach for OPC Model Verification

University of Oregon. ABSTRACT. The complexity ... engineering efforts and expenses to deliver the final product to customers. One of the largest ... Figure 1: Layout of the Multichip vehicle for both Metal and Via levels. As shown in the layout ...

[image: alt]

Multi-Chip Reticle Approach for OPC Model Verification

vehicle. In one of the four instances, no OPC was applied, while different OPC OPC VTRE model was generated using Mentor Graphics Calibre software [1].

[image: alt]

Speaker Verification Using Fisher Vector

Models-Universal Background Models(GMM-UBM)[1] lay the foundation of modeling speaker space and many approaches based on GMM-UBM framework has been proposed to improve the performance of speaker verification including Support Vec- tor Machine(SVM)[2]

[image: alt]

speaker identification and verification using eigenvoices

approach, in which client and test speaker models are confined to a low-dimensional linear ... 100 client speakers for a high-security application, 60 seconds or more of the development of more robust eigenspace training techniques. 5.

[image: alt]

design of hamming code using verilog hdl

and the receiver. As the name implies, ... transmitted to a receiver, which uses a suitable decoder to from the desktop and select 'New. Project' option under ...

[image: alt]

Integrated CMOS Transmit-Receive Switch Using On-Chip ... - CiteSeerX

(RF) applications, such as cellphones and wireless networking, has prompted ... countries where the infrastructure associated with wired telephony is weak or expensive to The details of each of these switches, and their benefits and.

[image: alt]

Integrated CMOS Transmit-Receive Switch Using On-Chip ... - CiteSeerX

switch, which is one transceiver block which has defied integration so far. Modern RF ... (MOSFET) characteristics as a switch have dramatically improved over the years, its performance still falls ... from my previous schools. A special Figur

[image: alt]

Verilog Tutorial

is a language used to describe a digital system, for example, a network switch, everybody would like to do what Gateway did so far âˆ’ changing the language for their own benefit. Wired outputs AND together (models openâˆ’collector).

[image: alt]

Online Signature Verification using PCA and Neural ...

vision-based ones include voice recognition and signature verification. Signature has been a ... electronic payments, access control, and so on. In this paper ...

[image: alt]

Online Signature Verification using PCA and Neural Network - IJRIT

includes online banking transactions, electronic payments, access control, and so on. ... prevalence of credit cards and bank cheques has long been the target of ...

[image: alt]

Face Verification using Gabor Filtering and Adapted ...

2Ã‰cole Polytechnique FÃ©dÃ©rale de Lausanne, Switzerland. 1. Abstract. â–· Face authentication is difficult because of the high-variability of face images.

[image: alt]

Speaker Verification Anti-Spoofing Using Linear ...

four major direct spoofing attack types against ASV systems. [11]. Among these ... training data. Therefore, SS and VC attacks are potential threats for falsifying ASV systems. For a detailed review and general information on spoofing attacks against

[image: alt]

Online Signature Verification using Dynamic Time ... - Semantic Scholar

Online Signature Verification, Dynamic Time Warping ... applications such as bank checks. ... achieved the best result with Equal Error Rate of 1.46%. H. Lei et al ...

[image: alt]

Online Signature Verification using PCA and Neural Network - IJRIT

Signature verification can be applied in commercial fields such as E-business, which includes online banking transactions, electronic payments, access control, ...

[image: alt]

Identity Verification using Shape and Geometry of ...

Fig.1. Process of joining the disjoint finger to the hand, (a) original hand image, (b) generated hand mask using pre-processing, the ring finger is disjoint from hand, (c) hand mask is rotated such that ring finger became vertical, (d) ring finger i

[image: alt]

speaker identification and verification using eigenvoices

(805) 687-0110; fax: (805) 687-2625; email: kuhn, nguyen, . 1. ABSTRACT. Gaussian Mixture Models (GMMs) have been successfully ap- plied to the tasks of speaker ID and verification when a large amount of enrolment data is av

[image: alt]

Visual Tracking in Cluttered Environment Using the ...

methodology into our visual tracking system. Instead of using only the best measurement among the perceived ones and discarding the rest, an alternative approach is to consider multiple measurements at the same time, using the probabilistic data-asso

[image: alt]

Face Verification using Gabor Filtering and Adapted ...

This is a Gaussian whose center is at a distance f from the origin with an angle Î¸ from the horizontal axis. instead fed with Gabor images as inputs. ... of the protocols, enrollment and test data is selected in matching scenarios, that is from

[image: alt]

biometric verification using contour-based hand ...

Salient points: To measure the various hand geometry features, the â€œlandmark pointsâ€� [8] like fingertips. (peaks) and valley points have to be located as shown in.

[image: alt]

Online Signature Verification using PCA and ... - IJRIT

vision based techniques include face recognition, fingerprint recognition, iris scanning and retina scanning and the vision-based ones include voice recognition ...

[image: alt]

Using Conjunctions and Adverbs for Author Verification

Mar 1, 2008 - computer science researchers to look to the problem of author identification from a different perspective. In this work ... Journal of Universal Computer Science, vol. 14, no. 18 (2008), 2967- [Mosteller and Wallace, 1964] Mostell

×
Report The Vn801 Chip Verification Environment Using Verilog ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

