

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Threads and Shared Variables in C++0x Hans-J. Boehm HP Labs

5/19/2011

1

Disclaimers: • This describes the work of many people. • Major contributors to work on the memory model and atomic operations: Sarita Adve, Lawrence Crowl, Paul McKenney, Clark Nelson, Herb Sutter, … • The threads API is almost entirely the work of others; I’m likely to have gotten some small things wrong. • C++0x is a misnomer. It’s likely to be C++11.

2

19 May 2011

Outline • • • • • •

Overview Threads API Basic memory model A note on detached threads Basic atomic objects Performance consequences – and how to avoid them

5/19/2011

3

What are threads? • Multiple instruction streams (programs) that share memory. • Static variables, and everything they point to, are shared between them. • Each thread has its own stack and thread-local variables.

5/19/2011

4

Why threads? • A convenient way to process multiple event streams. • The dominant way to take advantage of multiple cores for a single application.

5

19 May 2011

Naive threads programming model (Sequential Consistency) • Threads behave as though their operations were simply interleaved. (Sequential consistency) Thread 1 x = 1; z = 3;

Thread 2 y = 2;

– might be executed as x = 1; y = 2; z = 3;

5/19/2011

6

Threads in C++0x • Threads are finally part of the language! (C1x, too) • Threads API – Thread creation, synchronization, … – Evolved from Boost.Thread.

• Memory model – What exactly do shared variables mean? • Not quite the naïve sequential consistency model.

– When does thread a see an update by thread b? – When is it OK to simultaneously access variables from different threads?

• Atomic operations • thread_local variables, parallel constructor execution, thread-safe function-local statics 5/19/2011

7

Outline • • • • • •

Overview Threads API Basic memory model A note on detached threads Basic atomic objects Performance consequences – and how to avoid them

5/19/2011

8

Threads API: Thread creation class thread { public: class id; // movable, not copyable template thread(F&& f, Args&&... args); bool joinable() const; void join(); void detach(); id get_id() const; … static unsigned hardware_concurrency(); // + native handles, swap(), … };

9

19 May 2011

Thread creation example: int fib(int n) { if (n

10

19 May 2011

Potential Boost threads gotcha: Detached threads are hazardous! int fib(int n) { if (n

• What if parent call to fib throws? – In Boost, if fib2 computation throws, thread t is detached. Thread t contiinues to run independentaly.

– Thread t will still write to fib1, which will be long gone.

• In C++0x, destroying a joinable thread calls terminate()! • Always join! • More on detach() later … 11

19 May 2011

A safer way to write parallel fib() int fib(int n) { if (n

12

19 May 2011

Mutual Exclusion • Real multi-threaded programs usually need to access shared data from multiple threads. • For example, incrementing a counter in multiple threads: x = x + 1; • Unsafe if run from multiple threads: tmp = x; // 17 tmp = x;

x = tmp + 1; // 18

// 17

x = tmp + 1; // 18

13

19 May 2011

Mutual Exclusion (contd) • Standard solution: – Limit shared variable access to one thread at a time, using locks. – Only one thread can be holding lock at a time.

14

19 May 2011

Mutexes restrict interleavings Thread 1

Thread 2

m.lock(); r1 = x; x = r1+1; m.unlock();

m.lock(); r2 = x; x = r2+1; m.unlock();

– can only be executed as m.lock(); r1 = x; x = r1+1; m.unlock(); m.lock(); r2 = x; x = r2+1; m.unlock();

or m.lock(); r2 = x; x = r2+1; m.unlock(); m.lock(); r1 = x; x = r1+1; m.unlock(); since second m.lock() must follow first m.unlock() 5/19/2011

15

C++0x Mutexes class mutex { public: mutex(); ~mutex(); mutex(const mutex&) = delete; mutex& operator=(const mutex&) = delete; void lock(); bool try_lock(); // may fail even if lock available! void unlock(); …

}; • Class recursive_mutex is similar:

– allows same thread to acquire mutex mutiple times.

16

19 May 2011

Counter with a mutex mutex m; void increment() { m.lock(); x = x + 1; m.unlock(); }

• Lock not released if critical section throws. 17

19 May 2011

Lock_guard template class lock_guard { public: typedef Mutex mutex_type; explicit lock_guard(mutex_type& m); lock_guard(mutex_type& m, adopt_lock_t); ~lock_guard(); lock_guard(lock_guard const&) = delete; lock_guard& operator=(lock_guard const&) = delete;

private: mutex_type& pm; // for exposition only

}; 18

19 May 2011

Counter with a lock_guard mutex m; void increment() { lock_guard _(m); x = x + 1; }

• Lock is released in destructor. • unique_lock. 19

19 May 2011

Condition variables: Waiting on shared state to change class condition_variable { public: … void notify_one(); void notify_all(); void wait(unique_lock& lock); template void wait(unique_lock& lock, Predicate pred); template bool timed_wait(unique_lock& lock, const Duration& rel_time); };

• class condition_variable_any deals with arbitrary mutex types.

20

19 May 2011

Outline • • • • • •

Overview Threads API Basic memory model A note on detached threads Basic atomic objects Performance consequences – and how to avoid them

5/19/2011

21

Let’s look back more carefully at shared variables • So far threads are executed as though thread steps were just interleaved. – Sequential consistency

• But this provides expensive guarantees that reasonable code can’t take advantage of.

5/19/2011

22

Limits reordering and other hardware/compiler transformations • “Dekker’s” example (everything initially zero) should allow r1 = r2 = 0: Thread 1 x = 1; r1 = y;

Thread 2 y = 1; r2 = x;

• Compilers like to perform loads early. • Hardware likes to buffer stores.

5/19/2011

23

Sensitive to memory access granularity Thread 1 x = 300;

Thread 2 x = 100;

• If memory is accessed a byte at a time, this may be executed as: x_high = 0; x_high = 1; // x = 256 x_low = 44; // x = 300; x_low = 100; // x = 356;

5/19/2011

24

And this is at too low a level … • And taking advantage of sequential consistency involves reasoning about memory access interleaving: – Much too hard. – Want to reason about larger “atomic” code regions • which can’t be visibly interleaved.

09/08/2010

25

Real threads programming model (1) • Two memory accesses conflict if they – access the same scalar object*, e.g. variable. – at least one access is a store. – E.g. x = 1; and r2 = x; conflict

• Two ordinary memory accesses participate in a data race if they – conflict, and – can occur simultaneously • i.e. appear as adjacent operations by different threads in interleaving.

• A program is data-race-free (on a particular input) if no sequentially consistent execution results in a data race. * or contiguous sequence of bit-fields 09/08/2010

26

Real threads programming model (2) • Sequential consistency only for data-race-free programs! – Avoid anything else.

• Data races are prevented by – locks (or atomic sections) to restrict interleaving – declaring atomic (synchronization) variables • (wait a few slides…)

• In C++0x, there are ways to explicitly relax the sequential consistency guarantee. 09/08/2010

27

Dekker’s example, again: • (everything initially zero): Thread 1 x = 1; r1 = y; // reads 0

Thread 2 y = 1; r2 = x;

// reads 0

• This has a data race: – x and y can be simultaneously read and updated.

• Has undefined behavior. • Unless x and y are declared to have atomic type. – In which case the compiler has to do what it takes to preclude this outcome.

28

19 May 2011

Data races undefined behavior: Very strange things may happen unsigned x; If (x < 3) { … // async x change switch(x) {

case 0: … case 1: … case 2: … }

• Assume switch statement compiled as branch table. • May assume x is in range. • Asynchronous change to x causes wild branch. – Not just wrong value.

} 29

19 May 2011

A note on data race definition • Are defined in terms of sequentially consistent executions. • If x and y are initially zero, this does not have a data race: Thread 1 if (x) y = 1;

5/19/2011

Thread 2 if (y) x = 1;

30

Another note on data race definition • We define it in terms of scalar accesses, but … • Container libraries should ensure that Container accesses don’t race No races on memory locations

• This means – Accesses to hidden shared state (caches, allocation) must be locked by implementation. – User must lock for container-level races.

• This is often the correct library thread-safety condition. 5/19/2011

31

SC for DRF programming model advantages over SC • Supports important hardware & compiler optimizations. • DRF restriction Synchronization-free code sections appear to execute atomically, i.e. without visible interleaving. – If one didn’t:

Thread 1 (not atomic):

Thread 2(observer):

a = 1; if (a == 1 && b == 0) { b = 1; … }

09/08/2010

32

Basic Implementation model • Very restricted reordering of memory operations around synchronization operations: – Compiler either understands these, or treats them as opaque, potentially updating any location. – Synchronization operations include instructions to limit or prevent hardware reordering (“memory fences”).

• Other reordering is invisible: – Only racy programs can tell.

5/19/2011

33

Outline • • • • • •

Overview Threads API Basic memory model A note on detached threads Basic atomic objects Performance consequences – and how to avoid them

5/19/2011

34

A note on detached threads: • C++ static destructors can cause problems: main thread

exit()

static destructors

Detached thread

library shared variable

•

Even standard library is unsafe to use after exit() − except that threads may return after main() calls exit()

35

19 May 2011

Process disappear s

Options for detached threads • Wait for them to terminate, possibly after some sort of shutdown request. – Unfortunately, there is no thread cancellation. – But then why detach?

• Exit without calling static destructors (quick_exit()) • Just don’t call detach(). (My personal favorite.) 5/19/2011

36

Outline • • • • • •

Overview Threads API Basic memory model A note on detached threads Basic atomic objects Performance consequences – and how to avoid them

5/19/2011

37

Synchronization variables • • • • • • •

C++0x: atomic, atomic_int C1x: _Atomic(int), _Atomic int, atomic_int not C++ volatile! Java: volatile, java.util.concurrent.atomic. C# : none, though volatile is closest. Guarantee indivisibility of operations. “Don’t count” in determining whether there is a data race: – Programs with “races” on synchronization variables are still sequentially consistent. – Though there are “escapes” in C++0x.

• Dekker’s algorithm “just works” with synchronization variables. 5/19/2011

38

C++0x atomics template< T > struct atomic { // Greatly simplified, for now constexpr atomic(T) noexcept; atomic(const atomic&) = delete; atomic& operator =(const atomic&) = delete; void store(T) noexcept; T load() noexcept; T operator =(T) noexcept; // similar to store() T operator T () noexcept; // equivalent to load() T exchange(T) noexcept; bool compare_exchange_weak(T&, T) noexcept; bool compare_exchange_strong(T&, T) noexcept; bool is_lock_free() const noexcept; };

39

19 May 2011

C++0x atomics, contd • Integral, pointer specializations add atomic increment operators. • Atomic to atomic assignment intentionally not supported. – But it is in C1x!

5/19/2011

40

Outline • • • • • •

Overview Threads API Basic memory model A note on detached threads Basic atomic objects Performance consequences – and how to avoid them

5/19/2011

41

Performance impact of DRF with sequentially consistent atomics • Some optimization restrictions (compiler and hardware). – But those should have been there all along. – (and maybe some of them were?)

• Sequentially consistent atomic operations must – Ensure that these operations appear to be executed in order fences on all major current architectures. • Possible with a fence for every store on (revised) X86.

– Ensure that ordinary memory operations are not visibly reordered w.r.t. atomic operations. • Free on X86, sometimes requires more fences

• Fence instructions are typically expensive. 5/19/2011

42

New compiler restrictions • Single thread compilers currently may add data races: (PLDI 05) struct {char a; char b} x; x.a = ‘z’;

tmp = x; tmp.a = ‘z’; x = tmp;

– x.a = 1 in parallel with x.b = 1 may fail to update x.b.

• Still broken in gcc in subtle cases involving bitfields. 5/19/2011

43 43

Some restrictions are a bit more annoying: • Compiler may not introduce “speculative” stores: int count; // global, possibly shared … for (p = q; p != 0; p = p -> next) if (p -> data > 0) ++count;

int count; // global, possibly shared … reg = count; for (p = q; p != 0; p = p -> next) if (p -> data > 0) ++reg; count = reg; // may spuriously assign to count

44

19 May 2011

Also some hardware restrictions • Multiprocessors need fast byte stores. • Should be able to implement sequential consistency without locks, e.g. by adding fences. – You might have thought this was obvious … – Took years to confirm for X86, PowerPC!

5/19/2011

45

Performance costs • Compiler restrictions typically minor cost – Assuming sane optimizations to start with.

• Fence costs for sequentially consistent atomics are potentially much larger. – C++0x also allows non-SC atomics. • and even explicit memory fences.

– Double-edged sword: • • • •

5/19/2011

Faster. Especially on some non-X86 architectures. Really hard to use correctly. We don’t generally know how to hide library uses. Initially controversial. Maybe deprecate after hardware adjusts? 46

C++0x explicitly ordered (low-level) atomics • Pairs of atomic operations cannot form a data race. • Operations that do not specify memory_order_seq_cst (the default) are not guaranteed to execute in a single total order. • A memory_order_release store still guarantees memory visibility to memory_order_acquire load that reads the value. atomic flag; Thread 1:

data = 42; flag.store(true, memory_order_release);

Thread 2:

if (flag.load(memory_order_acquire)){ assert (data == 42)

5/19/2011

47

Dekker’s with C++0x low-level atomics atomic x, y; Thread 1:

x.store(1,memory_order_release); r1 = y.load(memory_order_acquire); Thread 2:

y.store(1,memory_order_release); r2 = x.load(memory_order_acquire); • • • •

r1 = r2 = 0 is possible outcome. No acquire operations reads release result no constraints. Same as memory_order_relaxed. Allows ordinary MOV on X86, much cheaper on PowerPC.

5/19/2011

48

Other memory_order options • A memory_order_relaxed operation also drops acquire/release visibility requirement. • But operations on a single variable still behave as though they were interleaved (cache coherent). • A memory_order_consume operation behaves like memory_order_acquire, but only with respect to subsequent data-dependent operations.

5/19/2011

49

Safe uses for low-level atomics • Use memory_order_relaxed if no concurrent access to an atomic is possible. • Use memory_order_relaxed to atomically update variables (e.g. increment counters) that are only read with synchronization. • Use memory_order_release / memory_order_acquire, when it’s OK to ignore the update, at least for some time (?) 5/19/2011

50

C++0x fine-tuned double-checked locking atomic x_init; if (!x_init.load(memory_order_acquire) { l.lock(); if (!x_init.load(memory_order_relaxed) {

initialize x; x_init.store(true, memory_order_release); } l.unlock(); }

use x;

Summary •

C++0x provides APIs to program at three levels: 1. Threads + locks + condition variables. − Traditional threads programming.

2. (1) + atomic operations. − Allows improved performance, occasionally simplification. − Easy (e.g. counters) are straightforward. General lock-free programming is very hard.

3. (2) + low-level (explicitly ordered) atomics − You need to understand more of the memory model (1.10) than I’ve presented here. − Experts only. − And the experts usually get it wrong.

52

19 May 2011

Sequentially consistent (data-race-free)

Questions?

5/19/2011

53

Backup slides

5/19/2011

54

Language spec challenge: • Some really awful code: Thread 1:

?

x = 42; m.lock();

Thread 2:

Don’t try this at home!!

while (m.trylock()==SUCCESS) m.unlock(); assert (x == 42); •

• • • •

Disclaimer: Example requires tweaking to be pthreadscompliant.

Can the assertion fail? Many implementations: Yes Traditional specs: No. C++0x: Yes Trylock() can effectively fail spuriously!

09/08/2010

55 55

Some open source pthread lock implementations (2006):

56

lock()

lock()

unlock()

[technically incorrect] NPTL {Alpha, PowerPC} {mutex, spin}

lock()

lock()

unlock()

unlock()

unlock()

[Correct, slow] NPTL Itanium (&X86) mutex

[Correct] NPTL { Itanium, X86 } spin

[Incorrect] FreeBSD Itanium spin

19 May 2011

But it’s not clear fences are enough! x, y initially zero. Fences between every instruction pair! Thread 1:

Thread 2:

Thread 3:

Thread 4:

x = 1;

y = 1;

r1 = x; (1) fence; r2 = y; (0)

r3 = y; (1) fence; r4 = x; (0)

x set first!

y set first!

This was not clearly disallowed by public X86 hardware manuals. Intel, AMD provided new descriptions (summer 07) that made it possible to avoid this. Atomic operations may have to be compiled differently. 57

19 May 2011

[image: CPack variables - GitHub]
CPack variables - GitHub

[image: ALOJA: a Systematic Study of Hadoop Deployment Variables ... - GitHub]
ALOJA: a Systematic Study of Hadoop Deployment Variables ... - GitHub

[image: Performance Measurement of Processes and Threads Controlling ...]
Performance Measurement of Processes and Threads Controlling ...

[image: Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc]
Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

[image: Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc]
Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

[image: Functions and Equations in Two Variables Functions ...]
Functions and Equations in Two Variables Functions ...

[image: Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc]
Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

[image: 103796670-Papoulis-Probability-Random-Variables-and-Stochastic ...]
103796670-Papoulis-Probability-Random-Variables-and-Stochastic ...

[image: Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc]
Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

[image: 1-1 Variables and Expressions.notebook]
1-1 Variables and Expressions.notebook

[image: pipe threads pdf]
pipe threads pdf

[image: threads room sheet.pdf]
threads room sheet.pdf

[image: Taming Java Threads]
Taming Java Threads

[image: Shared Memory]
Shared Memory

[image: Peeter Joot peeter.joot@gmail.com Change of variables in 2d phase ...]
Peeter Joot Change of variables in 2d phase ...

[image: Functional Programming and Proving in Coq - GitHub]
Functional Programming and Proving in Coq - GitHub

[image: Rolling Up Random Variables in Data Cubes - Research at Google]
Rolling Up Random Variables in Data Cubes - Research at Google

[image: The Role of Distal Variables in Behavior Change]
The Role of Distal Variables in Behavior Change

[image: The Role of Distal Variables in Behavior Change]
The Role of Distal Variables in Behavior Change

[image: Dealing with Integer-valued Variables in Bayesian ...]
Dealing with Integer-valued Variables in Bayesian ...

Threads and Shared Variables in C++0x - GitHub

May 19, 2011 - Performance consequences. â€“ and how ... In C++0x, destroying a joinable thread calls terminate()! Java: volatile, java.util.concurrent.atomic.

 Download PDF

 588KB Sizes
 0 Downloads
 158 Views

 Report

Recommend Documents

[image: alt]

CPack variables - GitHub

2. The directory in which CPack is doing its packaging. If it is not set then this see http://www.debian.org/doc/debian-policy/ch-relationships.html#s-binarydeps.

[image: alt]

ALOJA: a Systematic Study of Hadoop Deployment Variables ... - GitHub

1. A cloud of points for Cost vs. Performance vs. Cloud or On-premise ... SSDs, InfiniBand networks, and Cloud services. HadoopPerformanceTuning.pdf.

[image: alt]

Performance Measurement of Processes and Threads Controlling ...

Performance Measurement of Processes and Threads C ... on Shared-Memory Parallel Processing Approach.pdf. Performance Measurement of Processes and ...

[image: alt]

Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

Moreover viologens find a variety of applications due to their ... a stronger electron-acceptor station than V2, therefore the ring encircles V1 unit, and it is the.

[image: alt]

Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

developed rapidly due to their valuable properties and applications in molecular stacking interactions between the electron deficient pyridinium units of the ...

[image: alt]

Functions and Equations in Two Variables Functions ...

z = f(x, y). Example:Ð°Ð°Evaluate the function for f(4,Ð°Ð½3). f(x, y) = x. 2. + 4y or ... necessary to solve an equation for a variable. ... Pg 486Ð°Ð°585 x 5, 100, 101, 103.

[image: alt]

Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

threads exist in the low energy anti conformation, and the crown ethers adopt the S-shaped rotaxane is cyclized with the use of Grubbs second generation catalyst. In the synthesis of rotaxanes by chloride anion templation, an alternative .

[image: alt]

103796670-Papoulis-Probability-Random-Variables-and-Stochastic ...

Ð¡ Ñ€Ð°Ñ�Ð¿Ð¸Ñ�Ð°Ð½Ð¸ÐµÐ¼ Ñ€Ð°Ð±Ð¾Ñ‚Ñ‹ Ð²Ñ€Ð°Ñ‡ÐµÐ¹ Ð¿Ð¾Ð»Ð¸ÐºÐ»Ð¸Ð½Ð¸ÐºÐ¸ Ð’Ñ‹ Ð¼Ð¾Ð¶ÐµÑ‚Ðµ. Page 3 of 678. 103796670-Papoulis-Probability-Random-Variables-and-Stochastic-Processes.pdf.

[image: alt]

Rotaxanes and pseudorotaxanes with threads containing ... - Arkivoc

a stronger electron-acceptor station than V2, therefore the ring encircles V1 unit, and it is the stable translational The work is a part of the project no. N N209 ...

[image: alt]

1-1 Variables and Expressions.notebook

11 Variables and Expressions.notebook. October 02, 2017. 11 Variables and Expressions. Student Learning Objective: Students will write verbal (written words) expressions for algebraic expressions and algebraic expressions as verbal expressions. Not a

[image: alt]

pipe threads pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. pipe threads pdf.

[image: alt]

threads room sheet.pdf

There was a problem previewing this document. Retrying... Download. Connect more apps... Try one of the apps below to open or edit this item. threads room ...

[image: alt]

Taming Java Threads

Java's Thread Support Is Not Platform Independent from run to run, but here's a typical output (on a 200MHz P5, NT4/SP3, using JDK ver. 1.2.1 and.

[image: alt]

Shared Memory

Algorithm. Server. 1. Initialize size of shared memory shmsize to 27. 2. Initialize key to 2013 (some random value). 3. Create a shared memory segment using shmget with key & IPC_CREAT as parameter. a. If shared memory identifier shmid is -1, then st

[image: alt]

Peeter Joot Change of variables in 2d phase ...

In [1] problem 2.2, it's suggested to try a spherical change of vars to verify explicitly that phase space volume is preserved, and to explore some related ideas. As a first step let's try a similar, but presumably easier change of variables, going f

[image: alt]

Functional Programming and Proving in Coq - GitHub

... (Pierce et al, teaching material, CS-oriented, very accessible). â€¢ Certified Programming with Dependent Types (Chlipala, MIT Press, DTP, Ltac automation)

[image: alt]

Rolling Up Random Variables in Data Cubes - Research at Google

on symbols are extended to âˆ† coordinate-wise, making âˆ† a join-semilattice, like Î£. Thus, for b,c âˆˆ âˆ†: ... By way of illustration, figure 3 shows the roll up in figure 2.

[image: alt]

The Role of Distal Variables in Behavior Change

Jan 1, 2004 - was the strongest predictor of intention for both LRAs and HRAs, the predictive power of attitude was stronger for HRAs (b = .60, p < .001) than ...

[image: alt]

The Role of Distal Variables in Behavior Change

Jan 1, 2004 - The data used in the present study were gathered in middle schools and high schools in ... tiveness of anti-marijuana advertisements. As part of ...

[image: alt]

Dealing with Integer-valued Variables in Bayesian ...

predictive distribution for f(Â·) is given by a Gaussian distribution characterized by a mean. Âµ(x) and a statistics, pages 1189â€“1232, 2001. D. R. Jones, M.

×
Report Threads and Shared Variables in C++0x - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

