

	
 Home

	 Add Document
	 Sign In
	 Create An Account

	
 Viewer

	
 Transcript

Software Quality Journal, 12, 265–283, 2004 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Requirements Engineering and Process Modelling in Software Quality Management— Towards a Generic Process Metamodel ELENI BERKI Department of Computer Science and Information Systems, University of Jyväskylä, Mattilanniemi Campus, AGORA Building, Jyväskylä, FIN-40014, Finland ELLI GEORGIADOU School of Computing Science, University of Middlesex, Trent Park Campus, Bramley Road, London, N14 4YZ, UK MIKE HOLCOMBE Faculty of Engineering, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK

Abstract. This paper examines the concept of Quality in Software Engineering, its different contexts and its different meanings to various people. It begins with a commentary on quality issues for systems development and various stakeholders’ involvement. It revisits aspects and concepts of systems development methods and highlights the relevance of quality issues to the choice of a process model. A summarised review of some families of methods is presented, where their application domain, lifecycle coverage, strengths and weaknesses are considered. Under the new development era the requirements of software development change; the role of methods and stakeholders change, too. The paper refers to the latest developments in the area of software engineering and emphasises the shift from traditional conceptual modelling to requirements engineering and process metamodelling principles. We provide support for an emerging discipline in the form of a software process metamodel to cover new issues for software quality and process improvement. The widening of the horizons of software engineering both as a ‘communication tool’ and as a ‘scientific discipline’ (and not as a ‘craft’) is needed in order to support both communicative and scientific quality systems properties. In general, we can consider such a discipline as a thinking tool for understanding the generic process and as the origin of combining intuition and quality engineering to transform requirements to adequate human-centred information systems. We conclude with a schematic representation of a Generic Process Metamodel (GPM) indicating facets contributed by Software Engineering, Computer Science, Information Systems, Mathematics, Linguistics, Sociology and Anthropology. Ongoing research and development issues have provided evidence for influence from even more diverse disciplines. Keywords: process metamodelling, method engineering, evaluation, stakeholders, software quality, requirements engineering

1. Introduction In Software Engineering the process for systems development is defined as an activity in different stages of the lifecycle using a suitable process model (method). As a discipline, Software Engineering has seen a growing number of methods, techniques and automated tools designed to assist in the construction of software-intensive information systems, as well as frameworks and metamodels for the evaluation of the process itself (i.e. methods, techniques, tools) and the product (i.e. software system) in various lifecycle stages.

266

BERKI ET AL.

Another way to understand what is meant by Software Engineering is to look at its goals. Broadly speaking, the aims of the systematic application of software engineering are to produce a quality software system, at low cost and on time (Pfleeger, 1998). The last two mean that the system should be produced in a cost-effective manner, delivered on time and within its estimated budget and being reliable and functional. The growth of development methods has expressed a constant search for solutions to these problems, particularly cost saving and product and process quality improvement (Sommerville, 1992). Considering the importance of quality issues, software engineers have come to appreciate the importance of the use of metamodels in requirements engineering as well as in early testing and validating of specifications. This is done in order to ensure that the resulting software artefacts will gain the benefits of reduced maintenance costs, higher software reliability and more user-responsive software. However, this is exactly what is not supported by most of the metamodels and thus the paper concludes by outlining the rationale for this research. This research shares the belief of many in the software engineering community that in order to achieve the previous, a more specialised and generalised framework based on generic specification and providing suitable semantics for re-modelling (and re-engineering while in maintenance) both static and dynamic properties of systems is required. In the following sections, we examine the concept of Quality in Software Engineering, its diverse contexts and its different meanings to various people. In the context of this research we consider the quality attributes of correctness, modifiability, changeability, reliability, maintainability, extensibility, expressability, testability, computability and attributes and concepts relevant to them. Following this pattern of thinking, firstly we examine stakeholders’ views on what the above attributes and concepts might mean as far as quality systems are concerned. People’s views vary and depend on their work tasks as well as on cultural and knowledge backgrounds (Berki et al., 2003). However, what appears to be a common denominator for their interests in quality is that, depending on the stakeholder, quality is either of the final software product—system (mostly for end-users and sponsors) or of the process (mostly for developers). Focussing on the software process, this paper examines what constitutes quality in different process models (or systems development methodologies) and the degree to which they consider particular stakeholders’ involvement, technology and tool support. Examining such issues is a difficult task and the answer cannot be given by just evaluating conceptual modelling empirically. This examination, which can be very demanding sometimes, is considered to be the object of interest of requirements engineering, metamodelling and method engineering. These, as disciplines, use scientific rules and formal evaluation procedures to achieve their aims. 2. Information systems quality: What is it? What is meant by a “quality system”? The answer depends on who is answering the question. While a software system is being developed, and during its use, there are different categories of people to whom good quality software is important, as discussed in

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

267

the next paragraphs. Throughout their lifecycle systems have a multiplicity of people involved. Systems are developed and they have a life, they evolve, adapt and die, hence we use many ‘words to describe’ them, which are relevant to the various stakeholders, namely end-users, developers and sponsors. Availability, reliability, correctness, usability, expandability, maintainability span the views and expectations of a range of people involved (ISO 9001) (Siakas et al., 1997). “We are not concerned with the aesthetic as a static property of things, but with the aesthetic as an energetic component of human activity. For this reason we are not interested in the relation of the aesthetic to other metaphysical principles, such as the true and the good, but in its relation to other motives and goals of human activity and creation. . . . there is not an insurmountable difference between practically and aesthetically oriented activities . . . not even the most ordinary colloquial speech is, in principle, devoid of the aesthetic function. And so it is with all other human activities . . . In brief, we shall find no sphere in which the aesthetic function is essentially absent; potentially it is always present; it can arise at any time. It has no limitation, therefore, and we cannot say that some domains of human activity are in principle devoid of it, while it belongs to others in principle.” (Mukarovsky, 1978). 2.1. Information system’s quality: Who is really interested in it? The customer’s concerns on quality factors are rather different from those of the developer’s and the manager’s. Some quality factors are important to all stakeholders. Customers mainly require correct software, which is easy to use, ready on time and at a price that gives value for money. Quality attributes related to the product are of greater interest to the end-user. Developers are mainly interested in structured software easy to maintain and to reuse. Managers and sponsors are mainly interested in quality attributes that ensure customers’ satisfaction at a low cost. Thus, the developer and the sponsor are concerned about quality attributes regarding the process rather than the product (Siakas et al., 1997). Stakeholders work in synergy, conflict or compromise. Although each of these stakeholders has different criteria for quality, these criteria are not independent. Additionally, the interests of the people involved differ and/or overlap (Berki, 1999). The most common characteristic of their interest is that of reliability (Kopetz, 1979). Systems with high reliability are usually adequate for end-users needs, consistently available and function with correct behaviour. Another important characteristic is that of maintainability (Myers, 1976). Easily maintainable systems result in low costs and high productivity. 2.1.1. Systems stakeholders views on systems development, change and maintenance. According to Ince (1995) maintainability and modifiability of systems are important quality factors. There are different categories of modifications, namely corrective changes, adaptive changes and perfective changes. Corrective changes are changes due to error fixing. Adaptive changes occur as a response to changes in requirements, and perfective changes are changes, which improve a software system

268

BERKI ET AL.

(Pressman, 1994). Obviously it is in the greatest interest of the developer that a software system is easy to be maintained. Many software systems have a very high level of maintenance due to ‘changes in requirements.’ These can happen due to changes in opinions, customer’s external circumstances or because customers (end-users, managers and sponsors) become more demanding. Maintainability is normally only of indirect interest to the customers while modifiability is of direct interest because they definitely want to accommodate changes and adapt their systems to new requirements. However, according to Ince (1995) very few customers include directives about maintenance in their requirements specifications. Maintainability is important to the developer because there is a correlation between maintainability and the degree of rework (Musa et al., 1987). For the same reason it is relevant to the sponsor but in terms of costs. 2.2. How do methods support software quality and process improvement Software Engineering is “the systematic approach to the development, operation, maintenance and retirement of software” (Teasley-Mynatt, 1989). The word Software not only refers to the documentation of the source code; it also includes the specification of the various documents needed for the development, installation, utilisation and maintenance of the system. The word Engineering refers to the “application of a systematic approach based on science and mathematics, towards the production of a structure, machine, product, process or system” (Teasley-Mynatt, 1989). In designing and building these structures, software engineers follow development methods and lifecycle models. 2.2.1. The term ‘methodology’ as used in Software Engineering and in Information Systems. The reason for choosing a set of activities and for structuring these into some coherent form is a question that has to be addressed by methodologies. According to the English Dictionary, ‘methodology’ is a Greek term meaning the ‘study of methods’. However, the term ‘methodology’ is pragmatically well established within the field of information systems to mean the same as ‘method’ (Jayaratna, 1994; Berki, 2001). The following is one definition of methodology in terms of method, taken from the BCS Monograph 1983. “A methodology is a method of developing information systems, with identified phases and sub-phases, recommended techniques to use and recommendations about planning, management, control and evaluation of a development project.” Those who try to develop ‘software-intensive’ systems from a technical perspective, tend to see them as a set of activities that are very much related to what is possible with the use of current advances in computer science and information technology (Jayaratna, 1994). Therefore, a method or methodology for the development of systems is a process model, which defines the steps and gives guidance as to how and in what order these steps should be performed in order to develop and further maintain the required (software-based) information system.

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

269

In order to achieve the latter, methods have techniques and tools (automated techniques), which assist them in the communication and delivery of the appropriate systems specifications. Throughout this work, we adopted this concept of a method, i.e. as a dynamic model of a process, and have supported it with our research questions and outcomes. 2.2.2. How the development process has been supported—a brief historical overview and review of representative methods. Although organisations have dealt with information and information processing long before the proliferation of information technology, it is hard to think of information systems without considering the capabilities of information- and communication-oriented progress. According to Andriole and Freeman, “software-intensive systems, regardless of their application domains, are among the most important, yet hard to create and maintain, artefacts of modern society. . .” (Andriole and Freeman, 1993). Thirty years ago, there were a few large-scale software-intensive systems. Today they exist almost everywhere in the public and private sectors and people live with a system’s infrastructure that sometimes is impossible to understand its functionality and understand the needs of its maintenance. Early computing was mainly associated with scientific applications. Systems development concentrated solely on what we know now as ‘programming’: Assembly language followed by FORTRAN and COBOL using the mainframe and service bureau technology. Hardware became cheaper and more accessible and the technology moved into alternative languages (ALGOL, PASCAL) and the traditional lifecycle (NCC) identifying distinct stages and phases of systems development including analysis and design of software systems. In the early days of computer-based systems there was no formalised methodology. The need for methods was recognised in the late 60s at the same time as the emergence of the term ‘software engineering.’ This came as a result of the whole of human activity (transport, manufacturing, service industry, social services such as health, education, entertainment) being underpinned by the use of computer technology and computerbased systems, which tended to be late, over-budget and unreliable (Pressman, 1994; Sommerville, 1992). The development of methods expressed a constant search for solutions to the problems of the ‘software crisis,’ particularly cost saving and product quality improvement. In fact, the creation of software-intensive systems demands more than what has traditionally been the case in the fields of Computer Science, Systems Science and Information Technology. As a discipline, Computer Science can be considered as being concerned with the exploration of available and suitable computer technology while Information Systems can be seen as dealing with the application of information and communication technology since it is a part of its domain interest. It should be noted, however, that “software systems can be defined as a domain specific function that embraces information technology (considered as a powerful component), information activities (roles, tasks and functions) and organisational activities (context).” (Jayaratna, 1994). 2.2.3. Who compromises the quality of Information Systems? Organisations often spend too much for too little increase in functionality, and what they perceive as qual-

270

BERKI ET AL.

ity. Most of them seem to learn relatively little from their mistakes (Berkman, 2001; Cross and Daveport, 2003). Hence, the persisting underachievement and failures of both projects and information systems throughout the industry. The interest therefore is in improving the development of software-intensive systems. Quality must be built into the system from the very first steps of development. Quality is not a feature that can be added to software after it is created. It must be planned for, checked for and worked on at every single step in the development process (Berki, 2001). Nowadays, the defined software process for both management and engineering activities is documented, standardised, and integrated across organisations (Armenise et al., 1993). The process is visible; that is, it can be examined and improvements can be suggested, sometimes following process improvement models such as the Capability Maturity Model (CMM) (Paulk et al., 1993), and Software Process Improvement and Capability dEtermination (SPICE) (Dorling, 1993). Typically, organisations must establish a software engineering process group to lead the improvement effort, keep management informed on progress, and facilitate the production by introducing other software engineering methods. In other words, a ‘method as a process model’ is a ‘disciplined approach’ to software development, in order to assure software quality. In doing so, it provides a set of techniques, which aim to (at its best use with most of the system’s end-users’ involvement) increase the ability of the system’s developers to cope with complex problems, and aids the production of reliable, correct and efficient software-based solutions within reasonable time scales (Berki et al., 1997). In the following sections we attempt to rather overview (not analyse or compare in detail) the most recent and current use of representative families of methods (process models) of software development from different orientations. A ‘detailed’ comparison would lead to a futile exercise and would definitely need a metamodelling approach for the typology. However, in the conclusive and informative context of this paper, our review summarises basic similarities and differences and highlights some important characteristics that are considered as requirements for software quality, avoiding a high level prescriptive analysis. 2.2.4. A broad classification of process models of software development. There exist different categories of such development methods and each category places emphasis on different aspects of the process activities and those people involved. Graphical notations have been gaining in popularity over natural languages for the obvious reason that pictures convey information quickly and clearly for many people. There are numerous methodologies, which can be classified in many different ways, in current use. Avison and Fitzgerald recognised that there are methodologies based on the systemic (holistic), participative and planning approaches. It has been suggested that methodologies can be broadly classified into ‘hard’ and ‘soft’ (Avison and Fitzgerald, 1995) according to the degree of attention paid to technical and social issues involved and the degree of user involvement and participation. Broadly speaking, most of the IS design approaches have been developed to tackle the problems of capturing, representing and interpreting systems requirements. Initially, the majority of methods concentrated on technical aspects ignoring the organisational structure and culture and often also ignoring the users’ cognitive needs. Nat-

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

271

Figure 1. Thirty five years of information systems development methodologies.

urally, the purely graphical and technology-oriented approaches have not always been effective. Figures 1 and 2 show the main methodologies that have influenced the software engineering community in the last 35 years. Figure 1 shows a ‘chronological evolution’ while Figure 2 is a ‘broad classification’ of the family of methods (Georgiadou, 2001). Both, of course, diagrams are inadequate in classifying methods’ scope and many other approaches have been taken by academics and practitioners to classify methods according to notation, lifecycle coverage, application domain coverage and so on (Avison and Fitzgerald, 1995; Georgiadou and Sadler, 1995). The whole family of Structured Methods, Jackson Systems Development and Formal Methods (Avison and Fitzgerald, 1995) tend to concentrate mainly on technical issues often ignoring ‘people problems’ (Mumford and Weir, 1979). Throughout the early nineties Object-Oriented methods (Graham, 1991; Yourdon and Argila, 1996), were believed to be the answer to all ills in information technology. The Soft Systems Method (SSM) established the principle of the owner’s viewpoint (Weltanschauung) emphasising the importance of human involvement (Checkland and Scholes, 1990). The real exception was provided by the ETHICS methodology (Mumford and Weir, 1979), which stands for Effective Technical and Human Interaction of Computerbased Systems and has a socio-technical emphasis, recognising the importance of knowledge and psychological fit from the developers and most importantly from the end-user’s point of view. It is argued that soft methodologies reject the ‘objectivist view’ for systems development and that they are ‘situation-driven,’ without obeying the rules of a generic process, and therefore without any ‘clear mapping’ to a process model. This research work supports that although soft methodologies need to ’borrow’ techniques from the hard methods for the implementation of solutions, a soft method’s continuous application for system’s development is featured by ‘iteration,’ which is the distinct feature of a process model (Berki, 2001). Observing the product dimension, there is also a current shift to methods such as DSDM (Dynamic Systems Development Method), RAD (Rapid Application Development), JAD (Joint Application Development) and Prototyping, which promote the above quality issues and at the same time facilitate the delivery of the software products on time in an efficient and dynamic way (Stapleton, 1997). 2.2.5. Contingency approaches and hybrid methods. Organisations may choose not to commit themselves to just the ‘one’ methodology. Instead they may have a number of methodologies to choose from for different situations or even a choice of techniques (taken from one methodology) and tools used in an application. Contingency or hybrid approaches to systems development are approaches where the

272

BERKI ET AL.

Figure 2. A classification of families of development methods.

methodology chosen will depend on the particular circumstances where it will be applied. In other words, different methodologies will be used for different situations. Multiview (Wood-Harper et al., 1985) and Euromethod (Jenkins, 1994; CCTA, 1994) are examples of such approaches. The level of uncertainty in a situation often proves to be very critical and political and definitely influential regarding the choice of which process model to follow. Moreover, this choice is definitely affected by the complexity and ill-structuredness of the information system, the current state of flux of the system, the number of users involved, the skills needed and skills possessed and the level of experience and skill of the developers. The methodology, technique or tool adopted, therefore, will be contingent on the particular situation (Berki, 1999). For instance, in situations of high uncertainty a prototyping approach might be adopted. “As Roberto, incredulous, demanded to know what, and how useless, the various methods to find longitudes had been, Father Caspar replied that while all were erroneous when taken one by one, if taken together the various results could achieve a balance and compensate for the individual defects: And this est mathematica!” (Umberto Eco, Chapter “On Divers and Artificious Machines,” from The Island of the Day before.) The Multiview methodology combined techniques from both soft and hard methods in different stages of the development lifecycle. In doing so it incorporated development issues and stakeholders’ participation by utilising SSM and ETHICS, JSD and Structured methods techniques. Euromethod goes even further to establish itself within European Union as an integrating framework of a standard notation for software and information systems development and maintenance. For that particular purpose Euromethod built on the European governmental standards, that is on Structured

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

273

Methods, and extended its functionality by enriching project development with further techniques to support other faces of organisational functionality. The most recent addition to the seemingly endless list of methodologies is a new group of process models for software development, known as Agile Methodologies. They do not fit on the hierarchical (tree-like) classification. Indeed the nearest position would be under Hybrids. Many believe that traditional life cycle models are inadequate and should be replaced by incremental design and rapid prototyping, using one model from concept to code through analysis, design and implementation. In other words design starts while still analysing, and coding starts soon after starting the detailed design. Portions of the design are tested along with implementation (Holcombe et al., 2001). These distinct features are considered by many industries to be the comfortable and scientific answer to ensure software quality properties and improve considerably the modelling of the agile processes. By far the best-known agile methodology is Extreme Programming (XP), which is a promising approach with reported succcess in industry (Larman, 2004) which can be attributed to its emphasis on customer involvement and satisfaction as well as requirements modifiablity (refactoring) (Holcombe et al., 2001). The methodology is designed to deliver the software that the customer needs when it is needed. XP empowers developers to confidently respond to changing customer requirements, even late in the life cycle. XP draws from Soft Methods, RAD, DSDM for the whole of the development cycle and from OO or Formal Methods for the implementation and testing. Thus, if these relationships are shown, the taxonomy tree of Figure 2 becomes a network. It must be noted that some researchers and practitioners argue that hybrid methods lead back to the days when DIY analysts operated, that is to say before information systems development methodologies had been introduced. Additionally, hybrid methods may produce idiosyncratic and unmaintainable systems of variable value. 2.2.6. The first steps for the development of communication technology. The development of methods has been taking place in parallel with the development of automated tools (Pressman, 1994; Sommerville, 1992), particularly CASE and I-CASE (Integrated Computer Assisted Software (or Systems) Engineering) providing the environment for ‘correctness,’ ‘consistency’ and ‘completeness’ of products through the use of central repositories, data dictionaries (Hoffer et al., 1996) and encyclopaedias (Martin and Finkenstein, 1981). Adherence to notational standards and structured procedures enabled the improved allocation of specialised, inexperienced and experienced staff to appropriate tasks and facilitated teamwork. However, the choice of which tool or technique is appropriate is a very skilled job and there is a lack of training for software engineers and IS designers to assimilate these skills nowadays (Georgiadou and Sadler, 1995). Many of these developments reflect similar developments in the manufacturing industry although in information systems development the focus has been primarily placed on product improvement rather than process improvement, which has come about as a by-product. Due to the gradually increasing use of automated CASE tools, another research and development area is becoming to emerge commercially and academically, paying now more attention to the quality of the software process itself: the

274

BERKI ET AL.

integration of methods and CASE tools. The focus now is on the specification and redefinition of the process attributes, in order to understand and therefore handle the process better (Berki, 2001). 3. The continuous search for an improved quality process: From conceptual modelling to requirements engineering The manufacturing industry has long been placing emphasis on process improvement in order to maximise product improvement. In the last thirty-five years software engineers have attempted to learn from the experience of other engineers, by developing the mechanisms for the planning and control of the development process. Numerous systems development methodologies aim to provide the methods, procedures, definitions, principles and policies needed for successful development of information systems. Some of the factors that affect the growth and advancement of software development and information systems nowadays are the following: • “the evolution of implementation technology from centralised mainframe environments towards distributed client-server architectures, embracing the internet and intranet; • changes in the user interface technology from character-based to graphical user interfaces, and multimedia, and the World Wide Web; • changes in applications from transaction processing systems towards systems supporting collaborative work; and • the use of information technology as enabler of business process reengineering and redesign.” (Hirscheim et al., 2000). Methodologies nowadays are called to play an important role by considering our active participation in the evolvement of the software process itself and by counting on our interactions with and perceptions of information technology and software products. Methodologies have always been designed to ensure that systems development projects are completed on time, within budget, and to specifications that have been agreed and signed off by the user organisation. Conceptual modelling (simple use of techniques) is not enough to capture the various dynamic domains needs by itself. On the contrary, this should be extended and be considered as a reasoning part of Requirements Engineering. The speed with which the information society has evolved has created a rapid growth in the development of interfaces and components of systems. Requirements Engineering (RE) as a discipline provides the systems development with conceptual and process models in more advanced automated tools, which are available to model a plethora of multi-users requirements. Furthermore, the role of RE is a complement to SE because it emphasises communication more by mediating between the providers of information technology services and products, and the users and markets of these services and products. Consequently, users are encouraged to identify relevant information and then present it to others in the most appropriate manner, taking into consideration the information content (Bubenko, 1995) and the different cultural (Hofstede, 1991), knowledge

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

275

(Setliff and Rutenbar, 1992) and linguistic (Crystal, 1987) backgrounds of the audience to which is to be addressed. “The development and convergence of computing, telecommunications and multimedia technologies has already led to a revolution . . . The revolution continues and one of its results is that large volumes of information will increasingly be held in a form which is more natural for users than the data presentation formats typical of computer systems of the past.” (TAP, 1998). Furthermore, Requirements Engineering as an approach and as a discipline should be viewed as the antithesis of the unplanned development for rapid changes. Its importance on nowadays rapid industrial and software growth is that it will be a systematic and predictable approach versus the opportunistic and unpredictable development tendencies (Berki, 2001).

3.1. The growth of Requirements Engineering as a discipline and tool to support the quality of the stakeholders’ working life According to Hirscheim, Iivari and Klein “technology changes coupled with changes in organisations and their operating environment, such as the growth of the network and virtual organisation, internationalisation and globalisation of many organisations, intensified global competition, changes in values such as customer orientation (service quality) and Quality of Working Life, have imposed new demands on the development of information systems.” (Hirscheim et al., 2000.) Nowadays, the changing role of the stakeholders such as the emergence of hybrid managers (Skyrme, 1996; Saunders and Georgiadou, 1999) and the consideration of end-users as change agents are amongst the current trends in industry. At the same time, the maturity of the software market and information technology advances, especially Integrated CASE and Meta-CASE indicate that the role of computer specialists is being changed, too. In fact it is being transformed to that of the facilitator for understanding, stating, communicating and engineering requirements better. The central role of computer specialists in RE is really abandoned. Regarding Software and Requirements Engineering new ways of thinking and working emerge (Rolland et al., 1995), which direct towards many changes of methods and their role. These trends also force requirements engineering to expand its role. “A maturing software market will also require a better understanding of the differentiation in market segments for requirements engineering and standardisation of methodologies within these segments.” (Jarke and Pohl, 1994). People have always been inventive in finding efficient ways of solving problems, even when they have not been acquainted with specialised knowledge. People are also good at adopting or rejecting ways to solve problems or they might spontaneously generate their own developing problem-solving methods in some domains and re-apply them for the solution of similar or different problems. Under proper training and thinking tools, people are able to progressively develop and adopt creative and pleasant for them ways of work (Berki, 2001). For instance, metamodels are such thinking tools for abstraction and for the implementation of the previous.

276

BERKI ET AL.

3.2. The use of metamodels as frameworks to further establish scientific quality and the stakeholders participation The use of a framework or metamodel is sometimes a well-structured alternative to contingency approaches. Most frameworks aim to help practitioners mainly to evaluate, compare, select and sometimes construct methods for their particular applications (Berki and Georgiadou, 1998). Regarding the teaching of thinking and analytical skills, a framework is a good comparison and evaluation tool to acquaint oneself with the plethora of methods (Sadler and Kitchenham, 1996). Comparing methods is a difficult task and existing frameworks and metamodels for the comparison and evaluation of methods also vary according to philosophy, models, products and so on. The use of metamodels, i.e. the use of formalised frameworks is an important shift in software development. Metamodelling has been an increasing trend for the last decade to strengthen the rigorous art of software engineering. Metamodels have been considered to be the foundation for data integration in systems development in general, even if they are not always called metamodels. Additionally, the increasing availability of metamodel-driven development methods, technologies and standards is an important reason for the widespread popularity of various metamodels. Earlier-generation CASE tools would usually support only one methodology, later more than one (MetaView website). Meta-CASE and I-CASE tools are tools that can be configured by the user to support whatever metamodel the user has (Marttiin et al., 1993). An important shift to software development is the Component-Based Development (CBD) which is supported by I-CASE tools (Allen and Frost, 1998) for data integration and the Unifying Modelling Language (UML, 1997) that is defined in terms of a metamodel. CDIF, MetaView, MetaPHOR and other metamodelling projects (Sorenson et al., 1988) use MetaCASE tools such as MetaEdit+ (Kelly et al., 1996), and they go even further to support data integration through method and tool interoperability based on integrated metametamodels. 4. The need for a Generic Process Metamodel (GPM) In general, metamodels offer a more general (and therefore more agile) level of viewing systems requirements by raising the abstraction level. Thus, by abstracting from lower-level details of integration and interoperability they help to generalise and specialise at the same time the different system’s views and problems. 4.1. The emergence of the Software Engineering Science (SES) Considering the changing nature of systems and their application domains, the choice and the application of a particular method to achieve the previous are critical issues and have to be addressed by the use of a generic metamodel.

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

277

Figure 3. The emergence of a new discipline and contribution of other sciences.

For instance, by considering and viewing a method/requirement integration problem into (1) a process metamodel integration problem, (2) a data/specification replication/reuse problem and (3) a human communication problem, we may achieve the following: to solve these problems individually and independently using the same model, and, at the same time to create a general problem-solving pattern; thus, the quality of the management of extensibility and maintainability of the process, service and product will also increase. Figure 3 is a schematic representation of the proposed Generic Process Metamodel (GPM) for Software Engineering Science (SES) initiated by Berki in (Berki, 2001), which indicates the various influences and categories of models contributed by Mathematics, Computer Science, Information Systems, Engineering, Linguistics, Sociology and Anthropology. The new scientific discipline re-integrates the fundamental concepts of empiricism, abstraction, classification and interpretation. In effect, software developers and especially method engineers should try to communicate the correct requirements and assist users from all domains such as business, commerce, engineering, manufacturing, education (Berki, 2001), biology and art (!) (Holcombe, 2000) to take advantage of the available know-how and communication technologies, in order to improve the way they deal with their information and cogni-

278

BERKI ET AL.

tive needs. However, the software engineering process itself has only recently reached a level of maturity, which enables it to be structured formally and hence automated. It is important for information systems designers to combine the use of an appropriate methodology with the suitable life cycle model as well as automated tools in order to achieve higher development productivity, improved software quality and improvement of working life. The establishment and use of a generic process metamodel, which would draw from many disciplines, will populate the software engineering science with improved ways of working and will enhance quality support and systems co-operative modelling. This is so because its process architectural constructs will encapsulate that metacognitive knowledge itself, which can be utilised while metamodelling to support software quality and evaluate and model systems and people’s needs in a scientific and progressive manner. 4.1.1. The CDM-FILTERS—a generic, constructive and holistic metamodel. The process metamodelling facilities offered by the CDM-FILTERS (Computational and Dynamic Metamodel as a Flexible and Integrated Language for the Testing, Expression and Re-engineering of Systems) encapsulate the requirements that are expressed in the previous statements. This systemic metamodel facilitates the choice, formal construction and evaluation of a development method by considering the design process of information systems and its stakeholders in terms of three dynamic activities/constructs. These generic constructs, which are explicitly stated below, form an ‘iterative,’ transformational, explanatory and monitoring process within the software engineering lifecycle (Figure 4). The three dynamic constructs of CDM-FILTERS are: 1. The modelling of the problem situation (application domain), which may be done using the familiar models. 2. The formalisation/transformation process of the previous by remodelling those using generic formal models. 3. The evaluation of the above from the stakeholders’ point of view (this usually involves metamodellers, developers and end-users). All three constructs are desirable and necessary for the design of an information system. This is an important issue because the challenge that exists in the development process and in the IS domain is to capture the user interactions and manage to provide communication channels among the people who are involved in the design and use of IS. These, in turn will provide the appropriate shared language and interaction models to express the requirements correctly, or at least meaningfully and adequately to different cultures and needs (Figure 3). Current design models are not very communicative, and requirements descriptions cannot be fully understood and utilised by users and stakeholders (Berki, 2001; Berki et al., 2003). Moreover, the CDM-FILTERS metamodel has two essential elements that are to be used in two distinct steps in order to achieve comprehension: the element of modelling by using the techniques of familiar methods to capture the requirements, and the element of transformation by using generic formal models as part of an integrated metamodel in order to project the computational properties and achieve integration

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

279

Figure 4. The CDM-FILTERS metamodel.

and understanding of the design notations in current use. The agile transformations of notations to provable and implementable designs bring about semantic richness and flexibility for many cognitive needs to comprehend both the abstraction and the detailed level of a specification. Instantiated metamodels presented in (Berki, 1999, 2001) illustrate the usefulness and applicability of this thinking process by showing how the CDM-FILTERS metamodel can generate a process model that will assure a higher quality process and product, encapsulating computability and testability.

4.2. Total quality management and holistic scientific values The emergence of Requirements Engineering and the shift to the use of Metamodels are indicators for the changes in the roles of stakeholders (empowerment) and of methods (their generalisation rather than their specialisation) in the software process. Integration and improvement of data, methods, tools, services and processes are key issues for human-centred information systems, where even more disciplines such as Systems, Process, Knowledge and Language Engineering, Cognitive and Communication Science will definitely have to offer a lot to systems design and Software Engineering in particular. The most recent demands of organisational and software development focus on the maintenance of traditional (i.e. legacy systems) or the creation of new forms of working life (i.e. virtual communities), and to the meaning of quality issues and properties within these boundaries. Such quality issues examine specification, testing and understandability of technological artefacts, the semiotics of culture they derive from. Furthermore the inadequacy of holistic communication channels (Berki et al., 2003), the non-agile ways of interaction, the genre-based approaches and new domain specific languages require a multidisciplinary approach to software development.

280

BERKI ET AL.

5. Summary and future research and development In recent years the market has been flooded by many advanced technologically tools and methods, each claiming improvements in quality and increase in productivity with the maximum of end-user participation. The utilisation of those in organisations depends mostly on executive personnel who are responsible for the cost and on the information systems engineers, who are responsible for automating the production and dissemination of information in organisations assuring the quality of processes, communication and working life. Quality is an elusive concept the absence of which is easily understood and recognised. Different stakeholders hold different views of what constitutes quality. When software developers are considered as stakeholders, it is the process attributes that dominate. By focussing on the software process, development methodologies have sought to resolve the software crisis but no panaceas have been found. A bug-ridden system will not be reliable. An unreliable system in an organisation will not be functional. A non-functional organisation will not be effective in increasing productivity and trusted for providing job satisfaction, and so on. This interaction of the different quality characteristics of a system makes an important point concerning the creation of a software-based information system: quality is a feature that is ‘built’ in an information system and not added afterwards. Quality as an afterthought comes too late, is too expensive and can even be dangerous. Historically examining the evolution of software engineering, someone could observe that there has been a proven adequacy of the most products and processes to capture the requirements for quality of software development. Inevitably, the cognitive, behavioural and scientific skills that are needed to handle the above issues broaden the range of quality properties. Furthermore, the emergence of Domain and Application Engineering, point to the interdisciplinary and multidisciplinary nature of Software Engineering to be considered as a generic and agile discipline. The new Software Engineering Science (SES) should cater holistically and in an integrated manner for the above and be able to model, resolve, communicate and realise efficiently and within an agile process the complex patterns and infrastructure of information systems.

Acknowledgments The authors would like to thank Prof. Colette Rolland, Department of Informatics and Mathematics, Sorbonne University, Paris-1, France and Prof. Peri Loucopoulos, Department of Computation, Institute of Science and Technology, University of Manchester, UK for their useful comments and critical remarks on this reviewing work. Finally, thanks are due to our reviewers of an earlier version of this paper, which was presented at the SQM 2003 Conference.

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

281

References Allen, P. and Frost, S. 1998. Component-Based Development for Enterprise Systems, Applying the SELECT Perspective. Cambridge University Press. Andriole, S.J. and Freeman, P.A. 1993. Software systems engineering: The case for a new discipline, Software Engineering Journal 8(3). Armenise, P., Bandinelli, S., Ghezzi, C., and Morzenti, A. 1993. A survey and assessment of software process representation formalisms, International Journal of Software Engineering and Knowledge Engineering 3(3): 410–426. Avison, D.E. and Fitzgerald, G. 1995. Information Systems Development: Methodologies, Techniques and Tools. McGraw-Hill. Berki, E. 1999. Systems development method engineering, the formal NEWS: The formal notation for expressing a wide-range of specifications, the construction of a formal specification metamodel, Mphil/PhD Transfer Report, Faculty of Science, Computing and Engineering, University of North London. Berki, E. 2001. Establishing a scientific discipline for capturing the entropy of systems process models: CDMFILTERS—a computational and dynamic metamodel as a flexible and integrating language for the testing, expression and re-engineering of systems, PhD Thesis, Faculty of Science, Computing and Engineering, University of North London. Berki, E. and Georgiadou, E. 1998. A comparison of quantitative frameworks for information systems development methodologies, Proc. of the 12th International Conference of the Israel Society for Quality, Jerusalem, Israel, November–December. Berki, E., Georgiadou, E., and Siakas, K. 1997. A methodology is as strong as the user involvement it supports, Proc. of the International Symposium of Software Engineering in Universities (ISSEU), Rovaniemi, Finland, March. Berki, E., Isomäki, H., and Jäkälä, M. 2003. Holistic communication modelling: Enhancing human-centred design through empowerment, Proceedings of the Human Computer Interaction HCI International Conference, University of Crete, Heraklion, Greece, 22–27 June. Berkman, E. 2001. Knowledge management is a solid concept that fell in with the wrong company: Software companies, to be precise, Darwin Magazine, April. Bubenko, J.A., Jr. 1995. Challenges in requirements engineering. Invited talk at IEEE RE’95, 2nd IEEE International Symposium on Requirements Engineering, York, England, 27–29 March. CCTA. 1994. Euromethod Overview, CCTA. Checkland, P. and Scholes, J. 1990. Soft Systems Methodology in Action. Wiley. Cross, R. and Daveport, T. 2003. The Social Side of Performance. MA, Harvard Business Press. Crystal, D. 1987. The Cambridge Encyclopaedia of Language. UK, Cambridge University Press. Dorling, A. 1993. SPICE: Software process improvement and capacity determination, Information and Software Technology 35(6/7): 404–406. Georgiadou, E. 2001. Software measurement for process and product improvement: Controlled experiments and derivation of reengineering metrics, MPhil Transfer Report, Faculty of Science, Computing and Engineering, University of North London. Georgiadou, E. and Sadler, C. 1995. Achieving quality improvement through understanding and evaluating information systems development methodologies, 3rd International Conference on SQM, Seville, Spain, Vol. 2, pp. 35–46. Graham, I. 1991. Object-Oriented Methods. Reading, MA, Addison-Wesley. Hirscheim, R., Iivari, J. and Klein H.K. 2000. A comparison of five alternative approaches to information systems development. URL: http://www.cba.uh.edu/parks/fis/sad5.htm. Hoffer, J.A., George, J.F. and Valacich, J.S. 1996. Modern Systems Analysis and Design. The Benjamin/ Cummings Publishing Company, Inc. Hofstede, G. 1991. Cultures and Organisations: Software of the Mind. New York, McGraw Hill Book Company. Holcombe, M. 2000. X-machines in computing, biology and art, Proceedings of Grammar Systems 2000, eds. R. Freund and A. Kelemenova, Silesian University at Opava, Czech Republic, pp. 343–346. Holcombe, M., Bogdanov, K., and Gheorghe, M. 2001. Functional test set generation for extreme programming, Proc. of the 2nd International Conference on Extreme Programming and Flexible Processes in Software Engineering (XP2001), Sardinia, Italy, 20–23 May, pp. 109–113. Ince, D. 1995. Software Quality Assurance. McGraw-Hill.

282

BERKI ET AL.

Jackson, M. 1994. Problems, methods and specialisation, Software Engineering Journal. Jarke, M. and Pohl, K. 1994. Requirements engineering in 2001: (virtually) managing a changing reality, Software Engineering Journal. Jayaratna, N. 1994. Understanding and Evaluating Methodologies, NIMSAD: A Systemic Approach. McGrawHill. Jenkins, T. 1994. Report back on the DMSG sponsored UK Euromethod forum ’94, Data Management Bulletin 11(3), Summer issue. Kelly, S., Lyytinen, K., and Rossi, M. 1996. MetaEdit+: A fully configurable multi-user and multi-tool CASE and CAME environment, Advances in Information Systems Engineering, eds. P. Constantopoulos, J. Mylopoulos and Y. Vassiliou, 8th International Conference CAiSE ’96, Heraklion, Crete, Greece, May 20–24, pp. 1–21. Kopetz, H. 1979. Software Reliability. The Macmillan Press Ltd. Koskinen, M. 2000. Process metamodelling: Conceptual foundations and application, Ph.D. Thesis, Jyväskylä Studies in Computing – 7, University of Jyväskylä. Larman, C. 2004. Agile and Iterative Development: A Manager’s Guide, Agile Software Development Series. Pearson Education. Martin, J. and Finkenstein, C. 1981. Information Engineering, Vols. 1 and 2. Englewood Cliffs, NJ, Prentice Hall. Marttiin, P., Rossi, M., Tahvanainen, V.-P., and Lyytinen, K.A. 1993. Comparative review of CASE shells— a preliminary framework and research outcomes, Information and Management 25: 11–31. Mukarovsky. 1978. The Place of the Aesthetic Function among the other Functions, in Structure, Sign and Function, J. Burbank and P. Steiner (ed. and transl.). New Haven, CT, Yale University Press. Mumford, E. and Weir, M. 1979. Computer Systems in Work Design—the ETHICS Method. Associated Business Press. Musa, J.D., Iannino, A. and Okumoto, K. 1987. Software Reliability Measurement, Prediction, Application. New York, McGraw-Hill. Myers, G. 1976. Software Reliability Principles and Practices. Wiley. Paulk, M.C., Curtis, B., Chrissis, M.B. and Weber, C.V. 1993. The capability maturity model: Version 1.1, IEEE Software 18–27. Pfleeger, L.S. 1998. Software Engineering, Theory and Practice. Prentice Hall. Pressman, R. 1994. Software Engineering—a Practitioner’s Approach, Europ. Edition. McGraw-Hill. Rolland, C., Souveyet, C., and Moreno, M. 1995. An approach for defining ways-of-working, Information Systems 20(4): 337–359. Sadler, C. and Kitchenham, B.A. 1996. Evaluating software engineering methods and tools, part 4: The influence of human factors, SIGSOFT, Software Engineering Notes 21(5). Saunders, B. and Georgiadou, E. 1999. Information systems development and the need for a multi-facetted manager, Proc. of the BCS INSPIRE IV Conference: Training and Teaching for the Understanding of Software Quality, eds. C. Hawkins, E. Georgiadou, L. Perivolaropoulos, M. Ross, and G. Staples, University of Crete, Greece, pp. 193–201. Setliff D.E. and Rutenbar, R. 1992. Knowledge representation and reasoning in a software synthesis architecture, IEEE Transactions on Software Engineering 18(6). Siakas, K., Berki, E., Georgiadou, E., and Sadler, C. 1997. The complete alphabet of quality software systems: Conflicts and compromises, World Conference on Total Quality Management, WCTQM, N. Delhi, India, February. Skyrme, D.J. 1996. Information management: The organisational dimension, The Hybrid Manager, pp. 436–456, ed. M.J. Earl, Oxford Univ. Press. Sommerville, I. 1992. Software Engineering. Addison-Wesley. Sorenson, P.G., Tremblay, J.-P. and McAllister, A.J. 1988. The MetaView system for many specification environments, IEEE Software 30(3): 30–38. Stapleton, J. 1997. Dynamic Systems Development Method—the Method in Practice. Harlow, UK, AddisonWesley Longman. TAP. 1998. Telematics Applications Programme (TAP), Language Engineering: Progress and Prospects Report for the European Commission, LINGLINK, Luxemburg, July 1998. Teasley-Mynatt, B. 1989. Software Engineering with Student Project Guidance. UML, 1997. Unified Modeling Language Version 1.0. Santa Clara, CA, UML Partners. Ward, P.T. and Mellor, S.J. 1985. Structured Development for Real-Time Systems. New York, Yourdon Press.

REQUIREMENTS ENGINEERING AND PROCESS MODELLING

283

Wood-Harper, A.T., Antill, L., and Avison, D.E. 1985. Information Systems Definition: The Multiview Approach. Blackwell. Yourdon, E. 1997. Modern Structured Analysis. Englewood Cliffs, NJ, Prentice Hall. Yourdon, E. and Argila, C. 1996. Case Studies in Object Oriented Analysis and Design, Yourdon Press Computing Series.

Towards a Generic Process Metamodel - Springer Link

Generic Process Model Structures: Towards a ...

A Process Semantics for BPMN - Springer Link

A Process Semantics for BPMN - Springer Link

Towards a 'red list' for crop plant species - Springer Link

Towards a NeuroimagiNg Biomarker of depressioN ... - Springer Link

On the Meaning of Screens: Towards a ... - Springer Link

Towards tailored physical activity health intervention ... - Springer Link

Tinospora crispa - Springer Link

Chloraea alpina - Springer Link

GOODMAN'S - Springer Link

Bubo bubo - Springer Link

Quantum Programming - Springer Link

BMC Bioinformatics - Springer Link

Thoughts of a reviewer - Springer Link

Candidate quality - Springer Link

Mathematical Biology - Springer Link

Artificial Emotions - Springer Link

Bayesian optimism - Springer Link

Contents - Springer Link

(Tursiops sp.)? - Springer Link

Fickle consent - Springer Link

Towards a Generic Process Metamodel - Springer Link

these problems, particularly cost saving and product and process quality improvement ... demanding sometimes, is considered to be the object of interest of ...

 Download PDF

 114KB Sizes
 0 Downloads
 377 Views

 Report

Recommend Documents

Towards a Generic Process Metamodel - Springer Link

In Software Engineering the process for systems development is defined as an activity ... specialised and generalised framework based on generic specification and providing user interfaces, and multimedia, and the World Wide Web;.

Generic Process Model Structures: Towards a ...

Oct 2, 2007 - Keywords. Reusable process models, process model repositories. ... data is still through the use of databases, e.g. student records in a university or ... publications that describe the approach [8, 9] the authors use object-oriented co

A Process Semantics for BPMN - Springer Link

Business Process Modelling Notation (BPMN), developed by the Business In this paper we call both sequence flows and exception flows 'transitions'; states are linked International Conference on Integrated Formal Methods, pp. 77â€“96 ...

A Process Semantics for BPMN - Springer Link

to formally analyse and compare BPMN diagrams. A simple example of a ... assist the development process of complex software systems has become increas-.

Towards a 'red list' for crop plant species - Springer Link

Environmental Science Research Institute,Tehran, Iran; *Author for correspondence (e-mail: Khammer@ an intensive investigation in its possible area of.

Towards a NeuroimagiNg Biomarker of depressioN ... - Springer Link

2Department of Psychiatry, University of Toronto. 250 College Street,. Toronto, Ontario, M5T 1R8, Canada. 3Centre for Addiction and Mental Health.

On the Meaning of Screens: Towards a ... - Springer Link

(E-mail: ). Abstract. This paper presents a Heideggerian phenomenological analysis of screens. In a world and an epoch where screens ...

Towards tailored physical activity health intervention ... - Springer Link

May 28, 2014 - monitoring and feedback provision of a person's physical ... activity monitor, computer (or website service), and e-mail, aiming at finding out the ...

Tinospora crispa - Springer Link

naturally free from side effects are still in use by diabetic patients, especially in Third For the perifusion studies, data from rat islets are presented as mean absolute treated animals showed signs of recovery in body weight gains, reach

Chloraea alpina - Springer Link

Many floral characters influence not only pollen receipt and seed set but also pollen export and the number of seeds sired in the inserted by natural agents were not included in the final data set. Data were analysed with a Ashman, T.L. an

GOODMAN'S - Springer Link

relation (evidential support) in â€œgrueâ€� contexts, not a logical relation (the Fitelson, B.: The paradox of confirmation, Philosophy Compass, in B. Weatherson.

Bubo bubo - Springer Link

a local spatial-scale analysis. JoaquÄ±n Ortego Ã† Pedro J. Cordero. Received: 16 March 2009 / Accepted: 17 August 2009 / Published online: 4 September 2009. Ã“ Springer Science+Business Media B.V. 2009. Abstract Knowledge of the factors influencing

Quantum Programming - Springer Link

Abstract. In this paper a programming language, qGCL, is presented for the expression of quantum algorithms. It contains the features re- quired to program a 'universal' quantum computer (including initiali- sation and observation), has a formal sema

BMC Bioinformatics - Springer Link

Apr 11, 2008 - Abstract. Background: This paper describes the design of an event ontology being developed for application in the machine understanding of infectious disease-related events reported in natural language text. This event ontology is desi

Thoughts of a reviewer - Springer Link

or usefulness of new diagnostic tools or of new therapy. 3. They may disclose new developments in clinical sci- ence such as epidemics, or new diseases, or may provide a unique insight into the pathophysiology of disease. In recent years much has bee

Candidate quality - Springer Link

didate quality when the campaigning costs are sufficiently high. Keywords Politicians' competence . Career concerns . Campaigning costs . Rewards for elected ...

Mathematical Biology - Springer Link

Here Ï† is the general form of free energy density. ... surfaces. Î³ is the edge energy density on the boundary. According to the conventional Green theorem.

Artificial Emotions - Springer Link

Department of Computer Engineering and Industrial Automation. School of ... researchers in Computer Science and Artificial Intelligence (AI). It is believed that ...

Bayesian optimism - Springer Link

Jun 17, 2017 - also use the convention that for any f, g âˆˆ F and E âˆˆ , the act f Eg and ESEM 2016 (Geneva) for helpful conversations and comments.

Contents - Springer Link

Dec 31, 2010 - Value-at-risk: The new benchmark for managing financial risk (3rd ed.). New. York: McGraw-Hill. 6. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77â€“91. 7. Reilly, F., & Brown, K. (2002). Investment analysis & port

(Tursiops sp.)? - Springer Link

Michael R. Heithaus & Janet Mann ... differences in foraging tactics, including possible tool use sponges is associated with variation in apparent tool use.

Fickle consent - Springer Link

Tom Dougherty. Published online: 10 November 2013. Ã“ Springer Science+Business Media Dordrecht 2013. Abstract Why is consent revocable? In other words, why must we respect someone's present dissent at the expense of her past consent? This essay argu

×
Report Towards a Generic Process Metamodel - Springer Link

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

