Transcriptome It is the full complement of mRNA molecules produced by the genome  inside the cell.

The methods used for studying the transcriptome are classified under the  term “transcriptomics”

The complexity of the transcriptome is increased by processes such as:  (1) alternative splicing and  (2) RNA Editing

Commonly used methods for Transcriptome Analysis 1. 2. 3. 4. 5. 6. 7.

Northern Blot Analysis Slot Blot Analysis Reverse‐Transcriptase Polymerase Chain Reaction (RT‐PCR) Semi‐ Quantitative Real‐Time Quantitative RT‐PCR Serial Analysis of Gene Expression Massively Parallel Signature Sequencing Expression Arrays (DNA Microarrays) Spotted DNA Array Spotted Nylon Macro Arrays Spotted Glass Micro Arrays In‐Situ Synthesis Platforms (Affymetrix & Nimblegen)

SPOTTED DNA ARRAY Made by transferring (spotting) DNA from clones (or PCR products) obtained  from various sources individually onto a solid support, where they are  immobilized. The technology is the modification /  miniaturization of conventional  hybridization analysis . There are 2 types of spotted DNA arrays: 1.

Spotted nylon macroarrays

2.

Spotted glass microarrays

SPOTTED NYLON MACROARRAYS Cloned cDNAs stored in a matrix format in microtiter plates are transferred to nitrocellulose and nylon membrane in a precise grid pattern, allowing rapid identification of clones corresponding to positive hybridization signals

Size

Dot Frequency

Fabrication

10‐20 cm2

Low feature density  (10‐20 targets /sq. cm)

Robots or  Manual spotting

Advantages 

Easy to manufacture; hence cost‐effective



Simple usage; similar to simple hybridization procedures

Disadvantages  Low feature density limits the number of sequences that can be  interrogated simultaneously  Hybridization must be carried out in a large volume using a radioactive  probe, and the results are obtained by autoradiography.   Chances of misleading results due to inter‐experimental variations. 

Problems with improvisation of nylon macroarrays: Extensive miniaturization of the nylon arrays has been difficult with out  compromising the signal resolution obtained from radioactive probe which is  usually poor.  Arrays with high feature density (~5000 targets/sq. cm) require expensive high  resolution imaging devices. Fluorescent probes have a higher resolution but cannot be used on nylon  membranes as it has a high level background auto‐fluorescence generating a  low signal to noise ratio. Alternatively enzymatic probes may be used to generate a high resolution  signal that can be detected with low cost scanning apparatus but with some  loss of sensitivity.

SPOTTED GLASS MICROARRAYS Consist of glass microscope slides onto  which libraries of PCR products or long  oligonucleotides are printed. 

Spot printing is done using a robot  equipped with nibs and is capable of  wicking up DNA from microtiter plates  and depositing it onto the glass surface  with micron precision.

Some modifications are required to achieve precision and better DNA binding

Glass is an inert substrate, crosslinkers must be used to immobilze DNA on it . Positively charged surface groups are used as cross linking agents which  interact with the negatively charged DNA thereby facilitating its better  adherence on glass slide. 

Strategies used for cross‐linking: i. DNA binding by electrostatic interactions  ‐ binding of DNA molecules to  amine derivatized surfaces by ionic interaction between positively  charged amino group and negatively charged phosphate of DNA  ii.

DNA binding by Schiff base reaction‐ DNA molecule binds to aldehyde derivatized surface via an amino cross linker

iii. DNA binding to epoxy derivatized slides via an amino cross linker

Advantages of Glass Microarrays over Nylon Macroarrays Glass is non porous with  minimal autofluorescence; so fluorescent probes  can be used in very small reaction volumes. Small hybridization volumes also increase the kinetics of the reaction. Since fluorescent probes offer greater resolution, the feature density can be  increased significantly as compared to nylon macroarrays. Different colored fluorophores are available, they can be simultaneously  hybridized to the same array, allowing differential gene expression between  samples to be monitored directly. Automated spotting can be used for manufacture.

Disadvantage of Glass Microarrays High cost of production.  Prefabricated glass arrays are designed for a single use, so a simple  experiment with an appropriate number of replicates can carry a hefty price  tag.  The cost of precision robot for array manufacture is more >$100,000 with  simplest specifications.

SELECTED SOURCES OF CLONE SETS FOR THE MANUFACTURE OF SPOTTED ARRAYS COMPANY

WEBSITE

RESOURCES

Research Genetics

www.resgen.com

‐Human Unigene Collection ‐Mouse Unigene Collection ‐Rat cDNA clone collection ‐Genome‐wide C.elegans partial ORF primers ‐Drosophila cDNA collection ‐Genome wide S.cerevisiae ORF primers ‐Genome wide S.cerevisiae intergenic primers

Incyte Genomics 

www.incyte.com

‐Human Unigene Collection ‐Mouse Unigene Collection ‐8000 A.thaliana cDNA clones ‐C.albicans complete ORF collection

Genosys Biotech

www.genosys.com

‐E.coli complete ORF collection ‐B.subtilis complete ORF collection ‐Partial clone collections of several other bacteria

PRINTING TECHNOLOGIES FOR SPOTTED ARRAYS 1.

CONTACT PRINTING Involves the use of a spotting pin or quill that draws up a defined amount  of liquid from wells in microtiter plate.  The pin is then placed in contact with the array surface , which causes  some liquid to be deposited.  The pin is then washed and dried thoroughly before printing the next  sample.

2.

NON‐CONTACT PRINTING A.

Non‐contact printers can use piezoelectric technology to spray aliquots of solution onto the support matrix and may be used to produce slide or membrane‐based arrays. These methods provide a more uniform spot‐size, reducing the variation between features.

B.

A different approach to noncontact printing uses a solid pin and ring combination (Genetic Micro Systems). This system allows a broader range of sample usage (cell suspensions and particulates), because the printing head cannot be blocked up in the same way as a spray nozzle. Explained in next slide….

Pin and Ring System It consists of a “circular open ring” oriented parallel to the sample solution, with a vertical pin centered over the ring. When the ring is dipped into a solution and lifted, it withdraws an aliquot of sample held by surface tension. To spot the sample, the pin is driven down through the ring and a portion of the solution is transferred to the bottom of the pin. The pin continues to move downward until the pendant drop of solution makes contact with the underlying surface. The pin when is then lifted, the gravity and surface tension cause deposition of the spot.

IN SITU SYNTHESIS PLATFORMS FOR ARRAYS AFFYMETRIX GENE CHIPS It is a high density prefabricated  oligonucleotide chip

The arrays consist of 25‐70 mer single stranded targets  synthesized in‐situ on the  surface of a glass chip.

Probes for chip hybridization are  made from biotinylated cDNA. 

Affymetrix Gene Chips are the most ubiquitous and long‐standing commercial  array platform in use.

The synthesis of these oligonucleotides on GeneChip microarrays are based  on the concept of photolithography.

It involves the use of a glass or silicon wafer that is hydroxylated and silanized so that DNA can be covalently attached to the surface by a simple chemical  reaction.

The covalent binding sites are blocked by a photolabile protecting group.

A Chromium mask is then applied to the surface of chip which determines which areas  would be exposed to UV light.

The mask has specific tiny openings that allow the light to come in contact with the  wafer at specific sections.

Any place where light hits, removes a “protective” group from the strands. 

Free nucleotides are then washed over the chip and the nucleotides will combine with  any strand that had lost its’ protective group in the previous step.

This is then repeated (shine light through a mask, de‐protect the strands, add free nucleotides) numerous times until a each strand built is 25 base pairs long

GENECHIP FABRICATION BY PHOTOLITHOGRAPHY

AFFYMETRIX GENECHIPS Advantages Process is highly accurate Allow the generation of densest arrays. Currently  ~64,000 features/sq.cm  ‐ commercially available; 106  targets/sq.  cm – experimental chips

Disadavantages Physical masks used in the process are quite expensive 

IN SITU SYNTHESIS PLATFORMS FOR ARRAYS‐ NIMBLEGEN NimbleGen manufactures custom, high‐density DNA arrays based on its  proprietary Maskless Array Synthesizer (MAS) technology. Using Digital Micromirror Device (DMD) The DMD creates "virtual masks" that replace the physical chromium masks. “Virtual masks" reflect the desired pattern of UV light with individually  addressable aluminum mirrors controlled by the computer. The UV light then selectively cleaves a UV‐labile protecting group at the  precise location where the next nucleotide will be coupled. The patterns are coordinated with the DNA synthesis chemistry in a parallel,  combinatorial manner such that 385,000 to 2.1 million unique probe  features are synthesized in a single array.

IN SITU SYNTHESIS PLATFORMS FOR ARRAYS NIMBLEGEN

COMPARISON BETWEEN SPOTTED ARRAYS AND GENE CHIPS • both are equal in terms of sensitivity. • Differences  Spotted arrays

GeneChips

Can be generated using anonymous  (non‐annotated clones) from  uncharacterised cDNA libraries and  hence can be used for de novo gene  discovery

Manufacture of oligos relies on pre‐ existing sequence information i.e.  genome sequence data or cDNA or  EST sequences and are advantageous  for expression profiling in organisms  with complete or nearly complete  genomes.

Hybridization specificity is relatively  high due to longer target lengths.

Hybridization specificity is low due to  smaller target lengths

Advantages of using Microarrays: 1.

They are useful in making estimates of the abundance of particular  messages relative to a designated source of mRNA that serves as a  reference point.

2.

Commercial support of this technology has reached a level where it is  feasible for departments or large laboratories to consider setting up their  own cDNA array facility. 

3.

Vast amount of information is obtained that can be later analyzed using  various programs to ascertain the gene groups or clusters that may be  regulated in a particular drug treatment, condition or a disease.

4.

Data once archived can be used / shared by researchers that can help  them design their research strategies.

3 Basic Operations in c‐DNA Microarray Experiment

1st Operation: cDNA Amplification and Printing  Deals with making the cDNA microarray itself. 

Collect an inventory of cDNA bacterial clones that represent the genes whose  message abundance you wish to survey. 

Plasmid templates are made from these clones and used as PCR substrates to  produce DNA representations of the EST inserts. 

The PCR products are then purified and spotted onto poly‐L‐lysine coated  microscope slides. 

2nd operation: RNA Extraction and Labeling RNA is extracted from the cell/ tissue samples, purified and reverse  transcribed in the presence of fluor‐derivatized nucleotides. 

This procedure provides the tagged representations of the mRNA pools of the  samples that will be hybridized to the gene‐specific cDNA detectors  immobilized on the microarray. 

3rd operation: Hybridization and Data Extraction Hybridization: Covers the steps in which fluor-labeled cDNAs hybridize to their complements on the microarray,

Data Extraction: The resulting localized concentrations of fluorescent molecules are detected and quantitated.

Analysis: By using advanced algorithms and methods and making sense out of the extracted data.

Challenges involved in microarrays based expression profiling studies:

Expression profiling studies report only those genes that showed statistically  significant differences under changed experimental conditions. 

This is typically a small fraction of the genome for several reasons.

1.

Different cells & tissues express only a subset of genes as a direct  consequence of cellular differentiation, so most genes usually stay turned  off.

2.

Many genes encode for proteins that are required for survival in very  limited amounts so their expression is not significantly changed. 

3.

Cells use many other mechanisms to regulate proteins in addition to  altering the amount of mRNA, so these genes may stay consistently  expressed even when protein concentrations are rising and falling.

4.

Financial constraints limit expression profiling experiments to a small  number of observations of the same gene under identical conditions,  reducing the statistical power of the experiment, making it impossible  for the experiment to identify important but subtle changes.

5.

It takes a great amount of effort to discuss the biological significance of  each regulated gene, so scientists limit their discussion to a subset.  Newer microarray analysis techniques automate certain aspects of  attaching biological significance to expression profiling results, but this  remains a very difficult problem.

Proteins Arrays 3 Types:  1. Analytical microarrays (Capture Arrays) A library of antibodies is spotted on to a support surface.  They capture antigen molecules from the cell lysate being analyzed  Analysis of the binding reactions provide information about expression of  particular proteins in the sample. They are usually used in comparing protein expression in different solutions.  Ex: Response of the cells to a particular factor, drug or agent or disease state.

2. Functional protein microarrays (also known as target protein arrays) They are constructed by immobilising large numbers of purified entire / bilogically active proteins  They are used to identify protein‐protein, protein‐DNA, protein‐RNA, protein‐ phospholipid, and protein‐small molecule interactions,  They differ from analytical arrays in that functional protein arrays are composed of  arrays containing full‐length functional proteins or protein domains.  These protein chips are used to study the biochemical activities of the entire  proteome in a single experiment.

3. Reverse phase protein microarray (RPA) These arrays involve tissue lysates.  Cells are isolated from various tissues of interest and are lysed and arrayed onto the  microarray  The array is then probed with antibodies against the target protein of interest.  The antibodies are then detected using chemiluminescent, fluorescent methods.  Reference peptides are printed on the slides to allow for protein quantification of the  sample lysates.  RPAs allow for the determination of the presence of altered proteins or other agents  that may be the result of disease.  They are especially useful in detecting proteins that undergo post‐translational  modifications and which are typically altered in disease state.

Transcriptome -

Small hybridization volumes also increase the kinetics of the reaction. Since fluorescent probes offer greater resolution, the feature density can be increased ...

663KB Sizes 0 Downloads 116 Views

Recommend Documents

Myeloid differentiation architecture of leukocyte transcriptome ...
doi:10.1073/pnas.1514249112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1514249112. PNAS Early Edition | 1 of 6. MEDICAL. SCIENC. ES ..... Human Neuroendocrine, Immune, and Transcriptome Parameters. Data came from the Chicago Health, Aging, a

PDF Download Genome Transcriptome and Proteome ...
Download Genome Transcriptome and Proteome Analysis, Download Genome ... molecular genetics the book offers clear explanations of the tools and ...

First insights into the transcriptome and development of ...
A large number of new markers (3334 amplifiable SSRs and 28 236 SNPs) have been identified which should facilitate future population genomics and ..... filtering for low-quality sequences, ~69 million high- quality reads were retained, corresponding

Transcriptome changes in foxtail millet genotypes at ...
a particular class of genes, we associated expression data with functional ..... is compatible with the expression profiling results reported by. Kawasaki et al.

21. UniGene: A Unified View of the Transcriptome - Semantic Scholar
Oct 9, 2002 - introduced the term EST to refer to this new class of sequence, which is .... At present, UniGene focuses on protein-coding genes of the nuclear genome ... query bar and a sidebar providing links to related online resources.