TRENDS IN POWER ELECTRONICS AND DRIVES Dr.V.Kamaraj Professor Electrical and Electronics Engineering SSN College of Engineering

Page: 1

Introduction “Nearly 65% of the total electric energy produced in the USA is consumed by electric motors.” - R. Krishnan, “Electric Motor Drives Modeling, Analysis, and Control” Prentice Hall,Inc.,2001

Page: 2

Some Applications of Electric Drives ‹

Hard Disk Drive, Treadmill, Air conditioner ‹ Pumps, fans, compressors ‹ Spindles and servos ‹ Appliances and power tools ‹ Cement kilns ‹ Paper and pulp mills; textile mills ‹ Automotive applications ‹ Conveyors, elevators, escalators, lifts

Page: 3

Drive System Four distinct elements of a drive system are : 1. The load 2. The motor 3. The Power Electronic Converter 4. The Control Electronics Drive system development challenges: 1. Power Density 2. Performance 3. Energy Efficiency 4. Cost 5. Time to Market Page: 4

DRIVE SYSTEM TECHNOLOGIES I

CONTROL ELECTRONICS

II

SEMICONDUCTOR DEVICES TECHNOLOGY

III

MATERIAL TECHNOLOGY

IV

CAD TECHNOLOGY

Page: 5

I

CONTROL ELECTRONICS

Functions to be implemented by Control Electronics ‹ Monitoring

and Diagnostics

‹ Communication

‹ Real

Interfaces

time PWM Control

‹ Sensing Page: 6

Need for a Controller

Page: 7

System with Controller

Page: 8

Analog Controllers Advantages: 1.Low cost if the controller is simple 2.Easy Interpretation Disadvantages 1.Reconfigurability of the control is not possible without changing the hardware 2.Number of passive components used are more 3.More sensitive to variation in temperature 4.Reliability is low Page: 9

Digital controllers using DSP and Microcontrollers Advantages: 1.Reconfigurability of the control without changing the hardware 2.Less passive components are used 3.Less sensitive to temperature variations Disadvantages: 1.The hardware resources are fixed and it cannot be changed once the particular DSP/Microcontroller is selected 2.Design depends more on the hardware architecture of the processor

Page: 10

FPGA Based Digital Controllers Advantages: 1.Reconfiguarabilty of the hardware 2.The user is independent of the architecture of the device These two advantages makes Digital Controllers with FPGA a better choice

Page: 11

Configuration of Cyclone FPGA

Page: 12

CONTROLLERS USING POWER INTEGRATED CIRCUITS ‹ PWM

CURRENT REGULATING FECILITY

‹ DECODING

‹ HALL

COMMUTATION LOGIC

SENSOR

‹ PROTECTIVE

FEATURES

‹ LM621,MC33034 Page: 13

II SEMICONDUCTOR DEVICES TECHNOLOGY SEMICODUCTOR DEVICES ENHANCES • PERFORMANCE • RELIABILITY • COST EFFECTIVENESS OF DRIVE SYSTEM

Page: 14

SEMICONDUCTOR DEVICE TECHNOLOGY CHALLENGES TERMINAL CHARACTERISTICS

MATERIAL PARAMETERS AND AMBIENT CONDITIONS

DC I-V

GEOMETRY

AC STEADY STATE i,v

ENERGYGAP

TRANSIENT i,v

DOPING MOBILITY LIFETIME DIELECTRIC CONSTANT TEMPARATURE ILLUMINATION Page: 15

ATLAS ATLAS enables device technology engineers to simulate the electrical, optical, and thermal behavior of semiconductor devices. ATLAS provides a physics-based, easy to use, modular, and extensible platform to analyze DC, AC, and time domain responses for all semiconductor based technologies in 2 and 3 dimensions. Page: 16

TECHNOLOGY ENERGY/MATERIAL/INFORMATION

PROCESSING CONDITIONS

PRECISE CONTROL

• HIGH PERFORMANCE PRODUCT

• HIGH RELIABILITY • LOW COST Page: 17

POWER SEMICCONDUCTOR DEVICES ‹ PWM

SWITCHING FREQUENCIES ABOVE THE AUDIBLE FREQUENCIES

‹ CONVERTER

EFFICIENCY AND RELIABILITY

‹ IGBT ‹ DEMISE

OF GTO’S AND SCR’S

‹ SILICON

CARBIDE TECHNOLOGIES Page: 18

III NEW MAGNETIC MATERIALS SMC (Somaloy500) Material Properties Physical

Mechanical Compressive Strength

340 Mpa

Fatigue Strength

23 Mpa

Young’s modulus

117 Gpa

Poisson’s Ratio

0.18

Impact Energy

1J

Damping Factor (1/Q)

Density

7.37 g/cm3

Specific heat

450 J/kg*K

Thermal expansion

11E-6 m/m*K

Resistivity

70 uΩ*m

Magnetic

1.1E-3

Page: 19

B@4000A/m

1.26 T

B@10000A/m

1.51 T

Hc

270 A/m

Soft Magnetic Composite (SMC)

‹

Soft Magnetic Composites (SMC) are composed of surface-insulated iron powder particles.

‹

SMC can be compressed to form uniform isotropic components with complex shapes in a single step.

‹

SMC makes it possible to define a magnetic field in three dimensions, thereby permitting the designer to build an electric motor beyond the restrictions set by the traditional lamination technology.

Electrically Insulated Fe-powder Particles

Typical SMC micro-structure Page: 20

SMC Parts Manufacturing

Page: 21

Soft Magnetic Composite (SMC) Magnetic Property

Technology improvement narrows the gap between steel and SMC. Page: 22

Advantages ‹ ‹ ‹ ‹ ‹ ‹

‹

‹ ‹

Reduced eddy current loss Increased efficiency Reduction in materials Potential for reduced air gap length as a result of the tight tolerances maintained in manufacturing SMC material Potential elimination of the ground wall insulation since the SMC stator itself acts as an insulator Reduced conducted EMI when machine is used with inverter supplies since the stator SMC body acts as an insulator and does not conduct current to ground, Reduced bearing currents in the presence of PWM waveforms again because of the use of SMC which acts as insulation against this type of current flow, Modular construction allows the possibility of easy removal of an individual modular unit for quick repair or replacement, Stator is easily recyclable since the stator can again be compressed back into powered form with pressure and the copper windings readily removed.

Page: 23

Disadvantages

‹ Relatively

high hysterisis loss (low frequency

loss), ‹ Slight penalty a result of smaller saturation flux density, ‹ Relatively brittle material, ‹ Lower relative permeability (700 vs roughly 3000)

Page: 24

IV CAD TECHNOLOGY ‹ Computer

Aided Design is the technology concerned with the use of computer systems in the » » » »

CREATION MODIFICATION ANALYSIS OPTIMIZATION

‹ OBJECTIVES » Improve the performance » Improve the power density » Improve the reliability

Page: 25

CAD ADVANTAGES 1. CAD methods doesn't require assumed flux paths or Empirical factor 2. Complex geometries can be designed 3. Design improvement is possible in the design stage itself. 4.

Weight of the material can be greatly minimized.

5. Design validation without resorting to expensive field tests.

Page: 26

CAD PACKAGES

ORGANIZTION OF A CAD PACKAGE Three identifiable Modules 1.

Preprocessor

2

Solver

3.

Post Processor

Page: 28

PRE-PROCESSING

‹ Modeling ‹ Mesh

Generation ‹ Material Properties Specification ‹ Boundary Condition Application ‹ Excitation ‹ Model Validation

Page: 29

POST PROCESSING

‹ Flux

plots ‹ Numerical values ‹ Animation

Page: 30

MagNet MagNet gives complete and accurate electromagnetic field simulations. Engineers can design, analyze and optimize motors transformers actuators or any electric or electromechanical components regardless of how complex.

Page: 31

MAXWELL ‹ Ansoft

offers the Maxwell SV to help engineering students visualize electromagnetic fields and broaden their understanding of electromagnetic physics. The Maxwell SV is a subset of Ansoft's commercially distributed Maxwell 2D. Students can perform AC/DC electromagnetic and electrostaticfield simulation without limitation

Page: 32

ANSYS ‹ ANSYS

Emag software addresses the analysis needs of the low-frequency electromagnetics industry, including electric motors, relays, solenoids, toroids, induction heating, accelerators,medical instruments and magnet design.

Page: 33

CAD OF SWITCHED RELUCTANCE MACHINE

Page: 34

Torque Ripple

Page: 35

Proposed Method to Reduce Torque Ripple

Page: 36

Acoustic Noise Source of the Problem

Page: 37

Effect of Skewing on Acoustic Noise Geometry

Displacement in μm

Stress Kg/m2

Standard Structure

0.589

Max:31.477 Min :0.233

Skewed rotor structure

0.624

Max:59.845 Min :0.134

Page: 38

A Method to Reduce Acoustic Noise ‹

POWDER MIX

‹

COMPACTION

‹

CURING OR HEAT TREATMENT

‹

NET SHAPE

Page: 39

Future Scenario ‹

‹ ‹ ‹ ‹ ‹

Technology advancement, cost and size reduction are promoting extensive application of drive system in residential, Industrial and Transportation Systems Boost in global industrial automation Higher cost of energy and environmental regulation will promote energy saving by Power Electronics Wide growth of environmentally clean wind and PV Energy Wide growth of Electric and Hybrid Vehicles as fuel cost increases Power Electronics will be a key technology like computers

Page: 40

REFERENCES ‹

‹

‹

‹

‹

‹

M. Balaji, S. Ramkumar and V. Kamaraj "Performance evaluation of switched reluctance machine using finite element analysis" Proceedings of the 2nd National Conference on Cutting Edge Technologies In Power Conversion And Industrial Drives, Sathyamangalam, India, 24 - 25 March, 2006, Paper No. PE72. R.T. Naayagi and V. Kamaraj "Shape optimization of switched reluctance machine for aerospace applications" Proceedings of IECON '05, the 31st Annual Conference of the IEEE Industrial Electronics Society, Raleigh, NC, USA, 6 - 10 November, 2005, pp 1748 - 1751. R.T. Naayagi and V. Kamaraj "Optimum pole arcs for switched reluctance machine with reduced ripple" Proceedings of PEDS '05, the 6th IEEE International Conference on Power Electronics and Drive Systems, Kuala Lumpur, Malaysia, 28 November - 1 December, 2005, Vol. 1, pp 761 - 764. R.T. Naayagi and V. Kamaraj "Minimization of torque ripple in switched reluctance machine for direct drive applications" Proceedings of IEEE Symposium on Emerging Technologies, Islamabad, Pakistan, 17 - 18 September, 2005, pp 388 - 392. R.T. Naayagi and V. Kamaraj "Modeling and design of shape optimized SRM with reduced ripple" Proceedings of the IEEE Symposium on Emerging Technologies, Islamabad, Pakistan, 17 - 18 September, 2005, pp 399 - 404. R.T. Naayagi and V. Kamaraj "Optimal design of switched reluctance machine" Proceedings of ROVISP '05, International Conference on Robotics, Vision, Information and Signal Processing, Penang, Malaysia, 20 - 22 July, 2005, Paper No. B3-5.

Page: 41

References ‹ ‹

‹

‹

‹

‹

‹

‹

R.T. Naayagi and V. Kamaraj "Optimal design of switched reluctance machine using genetic algorithm" Proceedings of EDPE 2005, International Conference on Electrical Drives and Power Electronics, Dubrovnik, Croatia, 26 - 28 September, 2005, Paper No. E05-11. R.T. Naayagi and V. Kamaraj "Optimal design of switched reluctance machine using genetic algorithm" Proceedings of AEE '05, the WEAS 4th International Conference on Applications of Electrical Engineering, Prague, Czech Republic, , 2005. R.T. Naayagi and V. Kamaraj "Torque ripple minimization of switched reluctance machine (3 phase) using genetic algorithm" Proceedings of SOSM 2005, the 15th International Conference on Soft Computing, Optimization, Simulation and Manufacturing Systems, Cancun, Mexico, , 2005. R.T. Naayagi and V. Kamaraj "A comparative study of shape optimization of SRM using genetic algorithm and simulated annealing" Proceedings of INDICON 2005, IEEE India Annual Conference, Chennai, India, 11 - 13 December, 2005, pp 596 - 599. M. Balaji, C.A. Vaithilingam and V. Kamaraj "Torque ripple minimization in switched reluctance motor drives" Proceedings of PEMD '04, the 2nd International Conference on Power Electronics, Machines and Drives, Edinburgh, UK, 31 March - 2 April, 2004, Vol. 1, pp 104 - 107. K. Sivaprasad, P. Naveenkumar, M. Balaji and V. Kamaraj "Performance prediction of switched reluctance machine using multilevel simulation" Proceedings of EPE-PEMC 2004, the 11th International Power Electronics and Motion Control Conference, Riga, Latvia, 2 - 4 September, 2004, CDROM Paper No. A52627. V. Kamaraj and C.A. Vaithilingam "Modeling and simulation of switched reluctance machine (SRM) using MagNet6.0" Proceedings of PEDS '03, the 5th IEEE International Conference on Power Electronics and Drive Systems, Singapore, 17 - 20 November, 2003, Vol. 1, pp 480 - 484.

Page: 42

trends in power electronics and drives

Some Applications of Electric. Drives. ◇ Hard Disk Drive ... Performance. 3. Energy Efficiency. 4. Cost. 5. ... Monitoring and Diagnostics. ◇ Communication ...

397KB Sizes 1 Downloads 102 Views

Recommend Documents

trends in power electronics and drives
... Motor Drives Modeling,. Analysis, and Control” Prentice Hall,Inc.,2001 .... the gap between steel and SMC. Soft Magnetic Composite (SMC) Magnetic Property ...

AITM M.Tech Power Electronics & Electric Drives Sem 1 2014 Power ...
Explain Homology in view of Sir Richard Owen and Alfred Russel Wallace. ... Power Electronics & Electric Drives Sem 1 2014 Power Quality Management.pdf.

Adjustable Speed Drives and Power Quality
malfunction or a process shutdown. These are the electrical disturbances of the public power supply system. Lack of customer knowledge about the number and ...

Power electronics lab.pdf
11. Study of characteristics of SCR, MOSFET & IGBT. 12. Gate firing circuits of SCRs. List of Experiments beyond the Syllabus. S.No. Name of the Experiment. 13. DC Jones Chopper. 14. Three phase fully controlled bridge converter with R & RL loads. Pa