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SA-1



Setup, Notation and Basic Assumptions



This Supplemental Appendix is self-contained. We employ the same notation as in the main paper, but we reintroduce the setup and assumption to facilitate cross-referencing herein. Given a random sample {wi , µi }1≤i≤n , we are interested in estimating the population parameter θ 0 , which is defined by the following moment condition: E [m(wi , µi , θ 0 )] = 0,



(E.1)



where m is a known moment function. Recall that {µi }1≤i≤n are not directly observed. Instead, T k we assume the data available to the analyst consists of wi = [yiT , ri , zT i ] , with ri ∈ R and zi ∈ R



always observed, and that the following first-step generated regressors condition holds: + εi ,



E[εi |zi ] = 0



= zT i β + ηi + ε i ,



E[zi ηi ] = 0.



ri = µi



(E.2)



The disturbance εi can be interpreted as a structural error term, or simply the error of conditional expectation decomposition. The only substantive restriction is µi = E[ri |zi ], as explained in the main paper. On the other hand, ηi arises without loss of generality because it captures the misspecification error coming from using the best linear approximation to the unknown conditional expectation. Estimating θ 0 is straightforward via Generalized Method of Moments (GMM), which leads to the following two-step procedure: 2 2 n n 1 1 X X 1/2 ˆ : Ω1/2 ˆ θ m(w , µ ˆ , θ) ≤ inf Ω m(w , µ ˆ , θ) + oP (1), i i i i n n n θ∈Θ n i=1 i=1   X 2 ˆ ˆ ∈ arg min µ ˆ i = zT β ri − zT , i β, i β β



(E.3) (E.4)



i



where Θ ⊂ Rdθ is the parameter space. We use | · | to denote the Euclidean norm, unless otherwise specified. To derive distributional properties, it is common to use the version: "



#T " # n n X 1 1X ∂ ˆ ˆ = oP (1). m(wi , µ ˆi , θ) Ωn √ m(wi , µ ˆi , θ) n ∂θ n i=1



(E.5)



i=1



We will use (E.5) primarily. Next, we discuss basic notation and the main assumptions used throughout this Supplemental Appendix and, sometimes in stronger form, used in the main paper. Throughout, C is used to denote a generic (nonnegative and finite) constant, whose exact definition depends on the specific context. Recall that | · | denotes the Euclidean norm, and other norms will be defined at their



1



first appearance. We omit the subscript n whenever possible, and limits are taken with respect to n → ∞, unless otherwise specified. For two (non-negative) sequences {an }n≥1 and {bn }n≥1 (of numbers or random variables), we follow the convention that an - bn if and only if an ≤ Cn · bn , where Cn = O(1). Similarly, we have an -P bn if instead Cn = OP (1) Assumption A.1 (Setup). A.1(1) There is a random sample {wi }1≤i≤n satisfying (E.1) and (E.2), where θ 0 ∈ Θ is the unique and interior root of (E.1). A.1(2) There exists positive semi-definite weighting matrices {Ωn }n≥1 , such that the probability limit Ωn →P Ω0 is positive definite. A.1(3) µ ˆi is uniformly consistent: max1≤i≤n |ˆ µi − µi | = oP (1). ˆ satisfies (E.3), (E.5) and is tight. A.1(4) θ √ A.1(5) The approximation error ηi in (E.2) satisfies max1≤i≤n |ηi | = oP (1/ n).



y



The next set of assumptions impose smoothness and bounded moments on various quantities. For simplicity, we denote by mi = m(wi , µi , θ 0 ), and make the following definitions: A random variable is said to be in BM` (bounded moments) if its `-th moment is finite, and in BCM` (bounded conditional moments) if its `-th conditional (on zi ) moment is bounded uniformly by a finite constant. We also define the transformation Hα,δ (mi ) =



sup (|µ−µi |+|θ−θ 0 |)α ≤δ



|m(wi , µ, θ) − m(wi , µi , θ 0 )| . (|µ − µi | + |θ − θ 0 |)α



Equivalently, it is true that |m(wi , µ, θ) − m(wi , µi , θ 0 )| ≤ Hα,δ (mi ) · (|µ − µi | + |θ − θ 0 |)α in a small neighborhood. The same transformations are also applied to derivatives of m. Assumption A.2 (Smoothness and Bounded Moments). Let 0 < δ, α, C < ∞ be some fixed constants. And A.2(1) Hα,δ (mi ) ∈ BM1 . A.2(2) m is continuously differentiable in θ with Hα,δ (∂mi /∂θ) ∈ BM1 . Further, the matrix M0 = E [∂mi /∂θ] has full (column) rank dθ . ˙ and m, ¨ respecA.2(3) m is twice continuously differentiable in µ, with derivatives denoted by m tively. ˙ i εi |, |m ¨ i |ε2i , |Hα,δ (m)|ε ¨ 2i ∈ BCM2 . ˙ i, m ¨ i , Hα,δ (m ¨ i ), ε2i , |m A.2(4) mi , m
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SA-2



Primitive Conditions for First-Step Estimation



One critical assumption used in this paper is the uniform consistency of the first step estimate, A.1(3). We discuss primitive conditions in this section. Recall that the design matrix is Z = [z1 , z2 , . . . , zn ]T and the projection matrix is Π = Z(ZT Z)− ZT . First observe that X X X max |ˆ µi − µi | ≤ max |ηi |+ max πij (ηj + εj ) ≤ max |ηi |+ max πij ηj + max πij εj , 1≤i≤n 1≤i≤n 1≤i≤n 1≤i≤n 1≤i≤n 1≤i≤n j j j where recall that πij denotes the (i, j) element of the projection matrix Π. We study each of the terms above to show that max1≤i≤n |ˆ µi − µi | →P 0. We also discuss easy-to-verify primitive conditions for specific types of covariates zi .



SA-2.1



Linear Approximation Error



Using elementary inequalities, we obtain X X 1X max πij ηj ≤ max |ηi | max |πij | = max |ηi | max n |πij | 1≤i≤n 1≤i≤n 1≤i≤n 1≤i≤n n 1≤i≤n j j j s s X 1X 2 2 ≤ max |ηi |n max πij = max |ηi | n max πij 1≤i≤n 1≤i≤n 1≤i≤n 1≤i≤n n j



j



q ≤ max |ηi | n max πii →P 0, 1≤i≤n



1≤i≤n



under the assumptions imposed in the paper. In particular, all it is needed at this point is 2



max |ηi | = oP



1≤i≤n







1 n max1≤i≤n πii



 ,



√ which is implied by the assumption max1≤i≤n |ηi | = oP (1/ n) because max1≤i≤n πii ≤ 1.



SA-2.2



Residual Variability



Note that E[εi |Z] = 0, and this fact can be used to obtain sharp bounds. In particular, we illustrate here the case when the error term εi has (uniform) sub-Gaussian tail. The ψp -norm of a random variable εi is defined as inf{t ≥ 0 : E[exp(εpi /tp )] ≤ 2}, and infimum taken over an empty set is understood to be +∞. Then, Hoeffding’s inequality gives     ! 2 X X Ct πij εj ≥ t Z ≤ n · max 2 exp − P 2 2 P  max πij εj ≥ t Z ≤ n · max P  1≤i≤n 1≤i≤n 1≤i≤n j j j πij Mj   Ct2 = 2 exp − + log(n) , (max1≤i≤n πii )(max1≤i≤n Mi2 ) 3



where Mi = inf{t ≥ 0 : E[exp{ε2i /t2 }|zi ] ≤ 2} is the conditional ψ2 -norm of εi . Then, 



    2 max πii · max Mi = oP



1≤i≤n



1≤i≤n



1 log(n)



 ⇒



  X P  max πij εj ≥ t → 0, 1≤i≤n j



for any t. For the result above, the condition is enough to show that the conditional probability converges to 0 in probability. Since conditional probability is bounded, dominated convergence is used to show that the unconditional probability also converges to 0, which is the desired result. Therefore, the result follows by properties of the possibly many covariates zi through the statistic max1≤i≤n πii . The logic above can also be applied, albeit with different probability inequalities, to cases where the error term εi has thicker tails (e.g., of exponential or even polynomial decay).



SA-2.3



Bounding max1≤i≤n πii



The results above showed that the properties of the first-step estimator are determined by the behavior of the statistic max1≤i≤n πii , which in turn depends on the probabilistic properties of zi . In this section, we study these properties and give concrete examples for specific types of covariates. Let λmin (A) denote the minimum eigenvalue of a matrix A. Then, k ≤ max πii ≤ min 1≤i≤n n







 1 max1≤i≤n |zi |2 , 1 . n λmin (ZT Z/n)



The upper bound can be used to give primitive conditions on different types of covariates zi . Here we focus on bounding max1≤i≤n |zi |2 first, and then deducing the restrictions required on λmin (ZT Z/n). Splines and other series expansions If zi is a Spline expansion, then max πii -P



1≤i≤n



k 1 · . T λmin (Z Z/n) n



In fact, under regularity conditions, λmin (ZT Z/n) will be bounded away from zero with probability approaching one, provided that k log(k)/n → 0. See, e.g., Belloni, Chernozhukov, Chetverikov, and Kato (2015) for a recent review and other examples of series expansions with similar properties. Bounding through higher moments A more general approach controls the higher moments of |zi |2 . For example, letting α > 2,  1/α max |zi |2 -P n1/α · E |zi |2α ,



1≤i≤n



4



which gives max πii -P



1≤i≤n



 1/α 1 1 · n α −1 · E |zi |2α . T λmin (Z Z/n)



Note that a crude bound for the above would be 



2α



E |zi |



1/α



≤



k X



 1/α E |z`,i |2α .



`=1



Bounding by the tail of zi A tighter bound can be obtained provided the tails of zi,` are well-controlled. For example, assume kzi,` kψ2 ≤ C for some C independent of ` or n. Then 



2



|zi | 



ψ1 



X



2 = zi,`



1≤`≤k



ψ1



≤ 



X 



2 



zi,` 1≤`≤k



ψ1



= 



X 



2



zi,` ≤ kC 2 . 1≤`≤k



ψ2



The display above combines triangle inequality and the fact that a random variable is sub-Gaussian if and only if it is sub-exponential. Also we note that whether the random variable is centered does not affect the bound, since Lp norm is bounded by the ψ2 norm up to a constant factor that depends only on p. Then it implies max1≤i≤n |zi |2 -P log(n) · k. Then max πii -P



1≤i≤n



k 1 · log(n) · . T n λmin (Z Z/n)



Regression with dummy variables In empirical work, it is not uncommon to encounter regression specifications including many dummy variables, such as year/region/group specific fixed effects and interactions among them. Here we illustrate how max1≤i≤n πii can be controlled when many dummy variables are included. Let P {zi,` }1≤`≤k be the coordinates of zi , with zi,` ∈ {0, 1} and ` zi,` = 1. Despite the fact that |zi | = 1, hence it must be sub-Gaussian, the coordinates are highly correlated, hence it is very hard to control the ψ2 -norm of the vector. On the other hand, we still have the bound 1 |zi |2 max πii ≤ · = OP 1≤i≤n n λmin (ZT Z/n) Let N` =



P



i zi,`







1 nλmin (ZT Z/n)



 .



be the number of observations for which the `-th dummy variable takes value



1, and pn,` = P[zi,` = 1] and pn = min1≤`≤k pn,` . Since, of course, a dummy variable will not be included for a category with zero observations, we assume without loss of generality that N` > 0.



5



(In practice, this can be justified using a generalized inverse, that is, (ZT Z/n)− .) Therefore, n 1 n = ≤ . T min1≤`≤k {N` : N` > 0} min1≤`≤k N` λmin (Z Z/n) In fact, it is easy to see that, under the conditions given below, P[min1≤`≤k N` > 0] → 1. To see its asymptotic order, consider (for some δ > 0 and t > 0) "



#



 1 1+δ ≥ 1+δ = P min N` ≤ npn P 1≤`≤k min1≤`≤k N` t pn  X    X   k k k X 1 1+δ 1 1+δ 1 δ ≤ ≤ P N` ≤ npn P N` ≤ npn,` = P N` − npn,` ≤ npn,` (pn,` − t) t t t `=1 `=1 `=1 # " k X t−2 n2 p2n,` (pδn,` − t)2 1 (Bernstein’s inequality) ≤ exp − 2 npn,` (1 − pn,` ) + 13 t−1 npn,` |pδn,` − t| `=1 " # k 2 −2 δ X 1 t npn,` (pn,` − t) exp − = , 2 1 − pn,` + 13 t−1 |pδn,` − t| `=1 n



t







which goes to zero for any t, provided that (i) max1≤`≤k pδn,` → 0; and (ii) n min1≤`≤k pn,` / log(k) → ∞. Then, we have 1 = OP λmin (ZT Z/n)



1 min1≤`≤k p1+δ n,`



! .



One example is a balanced design, where for two constants C1 and C2 , C1 k −1 ≤ min1≤`≤k pn,` ≤ √ max1≤`≤k pn,` ≤ C2 k −1 . Then, for α = 1/2, and under the assumption k = O( n), max πii = OP



1≤i≤n



k 3/2 n



!



  = OP n−1/4 .



Of course, the list of examples above is not meant to be exhaustive, nor the bounds given are supposed to be tight. This list nonetheless is useful to illustrates the wide applicability of our results.



SA-2.4



Design Balance



In linear regression with increasing dimensions, the design matrix plays an important role in determining the properties of the estimated coefficients and the linear predictors. We already encountered one notation of design balance in the previous subsection, namely max1≤i≤n πii = OP (rn ) for some rn ↓ 0. Note that we do not impose this assumption in the paper, and instead we make the high-level uniform consistency assumption A.1(3). The reason is simple: in concrete examples, it might be easier to exploit the specific structure of the covariates to justify the uniform consistency assumption, and using design balance can be a detour. There are other concepts of design balance, which we do assume in Section SA-6 to show the 6



validity of the jackknife. Since those conditions are tightly connected to the previous subsection, we give some remarks here, aiming to clarify their connections. Recall the πij is the (i, j)-th element of the projection matrix used in the first step, which is P of rank k with probability approaching one. Then, i πii = k. Intuitively, the “distribution” of P 2 πii should not be too concentrated on any i, and hence i πii = oP (k). This is one notion of design balance; see Section SA-6. Another assumption we make is max1≤i≤n 1/(1 − πii ) = OP (1). Intuitively, this implies that the diagonal elements of the projection matrix do not have probability mass at 1 asymptotically, hence otherwise it would not be possible to “delete one observation”. It is easy to see that max1≤i≤n πii = oP (1) is a stronger notion of design balance, because max πii = oP (1)



1≤i≤n



max πii = oP (1)



1≤i≤n



⇒



X



πii2 = oP (k)



i



⇒



max 1/(1 − πii ) →P 1 = OP (1).



1≤i≤n



However, an interesting question is whether the converse is also true. In the following example we show that the two weaker notions of design balance can hold, even when max1≤i≤n πii 6= oP (1). This example also gives a clear justification of why we do not explicitly assume max1≤i≤n πii = oP (1) anywhere in this paper. Example (Dummies with small cell-probability). Consider the last example introduced in the previous subsection: Regression with dummy variables. We continue to use the same notation given above, and hence let N` be the number of observations such that zi,` takes value 1 (i.e., number of observations in cell `), and pn,` be the cell probability (i.e., pn,` = P[zi,` = 1]). However, we now consider the extreme scenario where the first cell satisfies pn,1 = c/n for some c > 0, while for the rest cells, pn,` = (1 − c/n)/(k − 1), ` ≥ 2. This captures the empirical relevant case where some cells may have very few observations. The problem here, however, is that N1 follows Binomial distribution with (n, c/n), hence has Poisson limiting distribution with mean c. And by the discussion in previous subsection, we have 1 1[P > 0], P



n o max πii = max π11 , max πii



1≤i≤n



2≤i≤n



P ∼ Poisson(c),



since max2≤i≤n πii = oP (1). In reality, one will not include a dummy variable if it is only “on” for one or two observations in the sample. Hence, in our current example, the first covariate is added to the regression if and only if N1 ≥ C, where C ≥ 2 is some pre-specified value. Note that this strategy is legitimate in practice because the model selection is done without referring to the outcome variable. In fact, methods involving recursive partitioning or partitioning by quantiles set a lower limit on the cell size, which corresponds to C, and a low cell probability occurs if the density of the underlying variable is close to zero.
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Therefore, when the first covariate is only included when N1 ≥ C, we have: 1 · 1[P ≥ C], P



n o max πii = max π11 , max πii



1≤i≤n



2≤i≤n



P ∼ Poisson(c).



In this practically relevant case, it follows immediately that max1≤i≤n πii does not vanish, and still max1≤i≤n 1/(1 − πii ) remains bounded in probability. Finally, note that X i



πii2



 k  XX 1 2 1[N` ≥ C]1[zi,` = 1] = N` i `=1  2 k k X X 1 1 = 1[N` ≥ C] = N` 1[N` ≥ C] N` N` `=1



≤



1 1[N1 ≥ C] + N1



`=1



k X `=2



1 = OP (1) + oP (k − 1) = oP (k), N`



where the oP (k − 1) term comes from the discussion in the previous subsection.
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SA-3



The Effect of Including Many Covariates



ˆ The first result is the consistency of θ. Theorem SA.1 (Consistency). ˆ is consistent. That is, |θ ˆ − θ 0 | = oP (1). Assume A.1(1)–A.1(4) and A.2(1) hold. Then θ



y



Next we consider large sample properties of the estimator, based on GMM framework. Assume ˆ is consistent and that θ 0 is an interior point of Θ, we have the following: θ " oP (1) =



MT 0 Ωn



" # #  √  1 X 1X ∂ T ˆ − θ0 . ˜ √ m(wi , µ ˆi , θ 0 ) + M0 Ωn n θ m(wi , µ ˆi , θ) n ∂θ n i



i



For notational convenience and later reference, let  −1 Σ0 = − MT Ω M MT 0 0 0 0 Ω0 . With additional assumptions, we are able to better characterize through Taylor expansion: Lemma SA.2 (First Linearization). Assume A.1 and A.2 hold, then " #    X √  1 ˆ − θ 0 = Σ0 √ n θ m(wi , µ ˆi , θ 0 ) 1 + oP (1) . n



(E.6)



i



y We can further apply Taylor expansion with respect to the first-step estimate µ ˆi , which implies the following: 1 X 1 X √ m(wi , µ ˆi , θ 0 ) = √ m(wi , µi , θ 0 ) n n i i   1 X ˙ +√ m(w ˆ i − µi i , µi , θ 0 ) µ n i  2 1 X1 ¨ i , µi , θ 0 ) µ +√ m(w ˆ i − µi 2 n



(E.7) (E.8) (E.9)



i



+ oP (1). (E.7) is (part of) the usual influence function for parametric GMM problems. To handle (E.8), we first make the following decomposition: X  X  1 X 1 X 1 X ˙ ˙ ˙ (E.8) = √ m(w πij εj + √ m(w πij ηj − √ m(w i , µi , θ 0 ) i , µi , θ 0 ) i , µi , θ 0 )ηi . n n n i



j



i
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j



i



√ Given the assumption that the approximation error ηi is of order oP (1/ n), the last two terms are easily shown to be of order oP (1), hence we have the following lemma: Lemma SA.3 (Term (E.8), 1). Assume A.1 and A.2 hold, then X  1 X √ ˙ (E.8) = m(wi , µi , θ 0 ) πij εj + oP (1). n i



j



y We upgrade Lemma SA.3 to the following result, which characterizes the (linear) bias contribution from over-fitting µ ˆi . Lemma SA.4 (Term (E.8), 2). Assume A.1 and A.2 hold, then   1 X X 1 X ˙ (E.8) = √ b1,i · πii + OP E[m(w j , µj , θ 0 ) |zj ]πij  · εi + √ n n i



i



j



r ! k + oP (1), n



i h ˙ where b1,i = E m(w , µ , θ ) · ε i i 0 i zi .



y



Finally we give conditions under which it is possible to drop the double sum as well as the projection matrix in the variance component, which closes our discussion on Term (E.8). Lemma SA.5 (Variance Simplification). ˙ Assume A.1 and A.2 hold. Further assume E[m(w i , µi , θ 0 ) |zi ] can be well approximated by zi in mean squares: 2 i h ˙ inf E E[m(w →0 i , µi , θ 0 )|zi ] − Γzi Γ



as k → ∞.



Then   X X 1 1 X  √ ˙ ˙ E[m(w E[m(w j , µj , θ 0 ) |zj ]πij  · εi = √ i , µi , θ 0 ) |zi ] · εi + oP (1). n n i



j



i



y Remark (Variance Contribution from the First Step). For problems in which a nuisance parameter has to be estimated in a first step, usually the estimated nuisance parameter contributes to the asymptotic variance. This is well-documented in both the parametric and semi-parametric literature. In the current setting, the variance contribution from estimating µi is represented by
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the term:   X X 1  √ ˙ E[m(w j , µj , θ 0 ) |zj ]πij  · εi . n i



j



˙ Note that when E[m(w ˆi will have no (first-order) impact on the j , µj , θ 0 ) |zj ] = 0, estimating µ ˆ This is also quite intuitive: m is the estimating equation for θ 0 , and m ˙ reprevariability of θ. sents the sensitivity of m with respect to the unobserved variable µi . See Newey (1994) for more discussions. In the semi-parametric estimation literature, zi is a series basis, hence the extra assumption in ˆ has an asymptotic linear representation. Lemma SA.5 is usually invoked to show that θ y Remark (Bias Contribution from Term (E.8)). When there are many covariates in the first step (i.e. when µ ˆi is over-fitted), it also contributes to the asymptotic bias. Part of the bias is represented by b1,i . To see the intuition, note that a first order approximation gives m(wi , µ ˆi , θ 0 ) ≈ P ˙ ˙ m(w µi − µi ) ≈ m(w i , µi , θ 0 )(ˆ i , µi , θ 0 )( j πij εj ). Due to the conditional mean zero property of ˙ εj , the bias can be characterized by m(w i , µi , θ 0 )εi πii . Hence the bias (due to the linear con˙ tribution of µ ˆi ) will be zero if (i) there is no residual variation in the sensitivity measure m: ˙ ˙ is V[m(w i , µi , θ 0 ) |zi ] = 0 almost surely; or (ii) the residual variation in the sensitivity measure m ˙ uncorrelated to the first step error term: Cov[m(w i , µi , θ 0 ), εi |zi ] = 0 almost surely. (i)



Also note that if µi is estimated with a leave-out estimator (that is, using µ ˆi



instead of µ ˆi



in (E.3), the bias (due to the linear contribution of µ ˆi ) will be zero. Later we will quantify the quadratic term, (E.9), and show that it also contributes to the asymptotic bias. Since the bias contribution from (E.9) is quadratic, using a leave-out estimator for µi will not be effective in



y



removing such bias.



Next we consider the quadratic term (E.9) in the expansion. Again we first simplify, and show that the misspecification error ηi does not enter asymptotically. Lemma SA.6 (Term (E.9), 1). Assume A.1 and A.2 hold, then X 2 1 X1 ¨ i , µi , θ 0 ) (E.9) = √ m(w πij εj + oP 2 n i



j



r



! k +1 . n



y Finally we upgrade Lemma SA.6 with conditional expectation and variance calculation. Lemma SA.7 (Term (E.9), 2).
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Assume A.1 and A.2 hold, then r ! k + oP (1), n



1 X 2 (E.9) = √ b2,ij · πij + OP n i,j



i h ¨ i , µi , θ 0 ) · ε2j zi , zj . where b2,ij = 12 E m(w



y



Remark (Bias Contribution from Term (E.9)). In a previous remark, we characterize b1,i as the bias which comes from the linear contribution of µ ˆi . In particular, the bias involving b1,i will not (i)



appear if the leave-out version µ ˆi



is used. In this remark, we characterize the bias that arises



due to the quadratic dependence of m on µ ˆi . Because of the quadratic nature, this bias represents the accumulated estimation error when µ ˆi is over-fitted, and cannot be easily cured with simple (i)



method such as using the leave-out version µ ˆi . 1 2 ¨ i , µi , θ 0 ) · εj |zi , zj ], and when i 6= j (which is the main part of the Recall that b2,ij = 2 E[m(w ¨ i , µi , θ 0 ) |zi ] and E[ε2j |zj ]. The latter is non-zero, hence bias), it reduces to a combination of E[m(w ¨ i , µi , θ 0 ) |zi ] = 0. This fits the intuition quite well: to make b2,ij zero, the only hope is that E[m(w over-fitting the first step does not make quadratic contribution if the estimating equation m is not



y



sensitive to the second order.



The next proposition combines the previous lemmas, and gives an asymptotic representation of ˆ the estimator θ. Theorem SA.8 (Asymptotic Representation). √ Assume A.1 and A.2 hold, and k = O( n). Then   √ B ˆ ¯1 +Ψ ¯ 2 + oP (1), n θ − θ0 − √ =Ψ n where   X X 1 2 B = √ Σ0  b1,i πii + b2,ij πij n i



¯ 1 = √1 Σ0 Ψ n



" X i



i,j



# m(wi , µi , θ 0 )



    X X ¯ 2 = √1 Σ0   ˙ E[m(w Ψ j , µj , θ 0 ) |zj ]πij  · εi  . n i



j



y Remark (Notation). In this Supplemental Appendix, we use the notation B to denote the bias √ √ term. Note that B = OP (k/ n) hence is non-vanishing under the assumption that k ∝ n. The term B should be thought of as the bias of the limiting distribution. In the main paper, we use B ˆ The two terms are connected through the √n-scaling: B = √nB. to denote the bias of θ.
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For the asymptotic representation, we use   X ˙ Ψi = m(wi , µi , θ 0 ) +  E[m(w j , µj , θ 0 ) |zj ]πij  · εi , j



¯1 +Ψ ¯ 2 = Σ0 P Ψi /√n. hence Ψ i



y



Theorem SA.9 (Asymptotic Normality). Under the assumptions of the previous theorem, 



− 1   ¯ 1 |Z]] + V[Ψ ¯1 +Ψ ¯ 2 |Z] 2 Ψ ¯1 +Ψ ¯2 V[E[Ψ



N (0, I),



¯1 + Ψ ¯ 2 |Z] has minimum eigenvalue bounded away from zero with probability provided that V[Ψ



y



approaching one.
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SA-4



Extensions



In this section we consider extensions which arise in empirical applications.



SA-4.1



First Step: Multidimensional Case



Generalizing to vector-valued µi is an easy and natural extension of our results, in the sense that all our proving strategies will go through and all results continue to hold under the same set of assumptions. On the other hand, the notation becomes more delicate/complicated since we keep not only the linear term in the expansion, but also the quadratic term. We first show how asymptotic √ ˆ representation of n(θ − θ 0 ) changes when there are multiple unknowns estimated in the first step. In the next subsection, we illustrate the intuition and (partial) derivation when µi is bivariate, and discuss the nature of the bias due to many covariates. The second step estimating equation takes the following form: h µi = µ1i µ2i · · ·



0 = E[m(wi , µi , θ 0 )],



µdµ i



iT



,



where the vector of unknowns µi has dimension dµ and has to be estimated in the first step. The first step takes the same form, r`i = µ`i =



+ ε`i ,



zT i β`



+ η`i + ε`i ,



1 ≤ ` ≤ dµ ,



with η`i being the approximation error and ε`i being the error from conditional expectation decomposition, i.e. E[zi η`i ] = 0 and E[ε`i |zi ] = 0 for 1 ≤ ` ≤ dµ . Note that when estimating the unknowns µ`i , we do allow different sets of covariates being used in the first step. Alternatively, one can think of zi as a “long vector” which collects jointly the covariates used for estimating µ`i . Both notation and assumptions have to be adjusted in this new setting. Let ` and `0 be two indices, we denote the derivatives of the estimating equation with respect to the unknowns as ∂2 ¨ ``0 (wi , µi , θ 0 ). m(wi , µi , θ 0 ) = m ∂µ` ∂µ`0



∂ ˙ ` (wi , µi , θ 0 ), m(wi , µi , θ 0 ) = m ∂µ`



Modified assumptions are postponed to the end of this section, and we first present the general asymptotic expansion including the influence function and the biases.  X √  ˆ − θ 0 = √1 Σ0 n θ m(wi , µi , θ 0 ) n i   dµ  X 1 XX  √ Σ0 ˙ ` (wj , µj , θ 0 )|zj ]πij · ε`i  + E[m n i



`=1



(E.10)



(E.11)



j



X 1 + √ Σ0 b1,i · πii n i
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(E.12)



X 1 2 + √ Σ0 b2,ij · πij + oP (1). n



(E.13)



i,j



As before, (E.10) represents the influence function had µi been observed, and (E.11) is the variance contribution from estimating µi . The bias terms (E.12) and (E.13) take similar form as before regarding how the projection matrix enters, with b1,i and b2,ij taking the following form



b1,i =



dµ X



˙ ` (wi , µi , θ 0 )ε`i |zi ] E[m



(E.14)



`=1 dµ



b2,ij =



X 1 ¨ ``0 (wi , µi , θ 0 )ε`j ε`0 j |zi , zj ]. E[m 2 0



(E.15)



`,` =1



Here we use i and j to index observations, and ` (and `0 ) to index elements in the unknown vector µi . Overall, we define the following quantities: " # X 1 2 b1,i πii + b2,ij πij B = √ Σ0 n i   " # dµ   X X X X ¯ 1 = √1 Σ0 ¯2 =  √1 Σ0 ˙ ` (wj , µj , θ 0 )|zj ]πij · ε`i  , E[m Ψ m(wi , µi , θ 0 ) Ψ n n i



`=1



i



j



then the analogue of Theorem SA.8 holds. Theorem SA.9 also holds provided that the variance does not vanish asymptotically. We will not repeat the argument for the jackknife or the bootstrap, since there is no difficulty in generalizing them to vector-valued µi . For the bootstrap, however, we make one remark in Section SA-7 to emphasize how the first step is bootstrapped in this setting. Finally, the following adjustments have to be made: Assumption (Vector-Valued µi ). ˆ i − µi | = oP (1). A.1(3) → max1≤i≤n |µ √ A.1(5) → max1≤i≤n |η i | = oP (1/ n). ˙ ` and m ¨ ``0 , A.2(3) → m is twice continuously differentiable in µ, with derivatives denoted by m respectively. ˙ `,i , m ¨ ``0 ,i , Hα,δ (m ¨ ``0 ,i ), |εi |2 , |m ˙ `,i ||εi |, |m ¨ ``0 ,i ||εi |2 , A.2(4) → For all 1 ≤ `, `0 ≤ dµ , mi , m |Hα,δ (m¨``0 )||εi |2 ∈ BCM2 . y SA-4.1.1



Special Case: Bivariate µi



For illustration purpose, we consider µi = [µ1i , µ2i ]T being bivariate. Again we start from the ˆ which yields (this is the analogue of sample estimating equation, and linearize with respect to θ, 15



Lemma SA.2): √



" ˆ − θ 0 ) = Σ0 n(θ



#   1 X √ ˆ i , θ 0 ) 1 + oP (1) , m(wi , µ n i



with 1 X 1 X √ ˆ i , θ0 ) = √ m(wi , µ m(wi , µi , θ 0 ) n n i i   1 X ˙ 1 (wi , µi , θ 0 ) µ +√ m ˆ1i − µ1i n i   1 X ˙ 2 (wi , µi , θ 0 ) µ +√ m ˆ2i − µ2i n i  2 1 X1 ¨ 11 (wi , µi , θ 0 ) µ ˆ1i − µ1i m +√ 2 n i  2 1 X1 ¨ 22 (wi , µi , θ 0 ) µ +√ m ˆ2i − µ2i 2 n i    1 X ¨ 12 (wi , µi , θ 0 ) µ +√ m ˆ1i − µ1i µ ˆ2i − µ2i n



(E.16) (E.17) (E.18) (E.19) (E.20) (E.21)



i



+ oP (1). As before, (E.16) is the influence function if µi were observed; (E.17) and (E.18) represent the linear (leave-in) bias and variance contribution from estimating µi ; and (E.19) and (E.21) are the quadratic biases. In the same spirit as Lemma SA.3 and SA.4, we have the following result on Term (E.17) and (E.18).   X X 1  ˙ 1 (wj , µj , θ 0 )|zj ]πij  · ε1i + (E.17) = √ E[m n i j   X X 1  ˙ 2 (wj , µj , θ 0 )|zj ]πij  · ε2i + E[m (E.18) = √ n i



j



1 X √ b1,1,i πii + oP (1), n i



1 X √ b1,2,i πii + oP (1), n i



˙ 1 (wi , µi , θ 0 )ε1i |zi ] and b1,2,i = E[m ˙ 2 (wi , µi , θ 0 )ε2i |zi ]. And as before, the above where b1,1,i = E[m characterizes two linear contributions from estimating µi : variance contribution and leave-in biases. √ In addition, both the two bias terms are of order O(k/ n) by properties of the projection matrix. Quadratic terms in the previous decomposition, at least (E.19) and (E.20), are handled by Lemma SA.6 and SA.7, yielding the following result. 1 X 2 (E.20) = √ b2,22,ij πij + oP (1), n



1 X 2 (E.19) = √ b2,11,ij πij + oP (1) n i,j



i,j
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¨ 11 (wi , µi , θ 0 ) · ε21j |zi , zj ] and b2,22,ij = 21 E[m ¨ 22 (wi , µi , θ 0 ) · ε22j |zi , zj ]. And as with b2,11,ij = 21 E[m √ before, by appealing to projection matrix properties, the two bias terms are of order O(k/ n). For the new term (E.21), we first note that it has the following crude bound (which gives the √ order k/ n), a fact due to the Cauchy-Schwarz inequality: 1 X ¨ 12 (wi , µi , θ 0 )| · |ˆ |m µ1i − µ1i | · |ˆ µ2i − µ2i | |(E.21)| ≤ √ n i s s X 1 1 X k 2 2 √ ¨ 12 (wi , µi , θ 0 )| · |ˆ ¨ 12 (wi , µi , θ 0 )|2 · |ˆ ≤ √ |m µ1i − µ1i | |m µ2i − µ2i |2 -P √ . n n n i



i



We would like to, however, have more precise characterization of (E.21), and the calculation follows the same strategy to prove Lemma SA.6 and SA.7. Conditional expectation calculation is given in the following, and we omit the conditional variance calculation. First we expand (E.21) as    1 X ¨ 12 (wi , µi , θ 0 ) µ (E.21) = √ m ˆ1i − µ1i µ ˆ2i − µ2i n i X  X  1 X ¨ 12 (wi , µi , θ 0 ) m πij ε1j πij ε2j + oP (1), =√ n i



j



j



where the extra oP (1) corresponds to terms involving the approximation errors η1i and η2i . Then     X X X 1 ¨ 12 (wi , µi , θ 0 ) E √ m πij ε1j πij ε2j Z n i j j h i 1 X ¨ 12 (wi , µi , θ 0 )πij πij 0 ε1j ε2j 0 Z E m =√ n i,j,j 0 i 1 X h 1 X 2 ¨ 12 (wi , µi , θ 0 )πij πij ε1j ε2j zi , zj = √ =√ E m b2,12,ij · πij , n n 



i,j



i,j



¨ 12 (wi , µi , θ 0 )ε1j ε2j |zi , zj ], and we ignored terms with j 6= j 0 from the second where b2,12,ij = E[m to the third line since the conditional expectation is zero. There are some interesting observations regarding this new bias term. First, if the cross derivative has zero conditional mean (i.e. P √ ¨ 12 (wi , µi , θ 0 )|zi ] = 0), this bias will be of order i πii2 / n. One example would be that m is E[m linearly additive in the two unknowns µ1i and µ2i . Second, if correlation between the two error P √ terms is zero (i.e. E[ε1j ε2j |zj ] = 0), bias contribution from this term is again of the order i πii2 / n. To give a concrete example, consider the two unknowns being estimated with independent samples in the first step. In Section SA-6, we will assume



2 i πii



P



= oP (k) for the validity of the jackknife. And under



this additional assumption, the new bias will be negligible if either the cross derivative has zero conditional mean or the error terms have zero conditional correlation.
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SA-4.2



First Step: Partially Linear Case



In this section we consider another generalization where the first step takes partially linear structure. To be more specific, we partition zi ∈ Rdγ +k into z1i ∈ Rdγ and z2i ∈ Rk , and consider the following first step: ri = νi + εi =



zT 1i γ



+ µ i + εi =



zT 1i γ



+



zT 2i β



+ ηi + ε i =



zT i



" # γ β



+ η i + εi ,



with the requirement that E[ηi zi ] = 0 and E[εi |zi ] = 0, so that ηi remains to be the approximation error and εi is the residual from conditional expectation decomposition. Same as before, we assume β has dimension k which increases with the sample size, while γ has dimension dγ which is fixed. (This is why we call it partially linear first step.) A canonical example is µi = µ(˜ zi ) being an unknown function and z2i being series expansion of a collection of covariates. The second step is also modified. First it depends on γ, which has to be estimated in the first step. Second µi enters the second step as a unknown. That is: E[m(wi , µi , γ, θ 0 )] = 0 The real difficulty is not that γ enters the second step. Instead, the unknown that enters the second step now, µi , is no longer a conditional expectation projection (unless γ is known or z1i and z2i are orthogonal). Fortunately we can rewrite the problem as: E[m(wi , νi − zT 1i γ, γ, θ 0 )] = 0, with νi = zT 1i γ +µi = E[ri |zi ], which is a conditional expectation projection. The sample estimating equation becomes  oP



1 √ n



 =



1X ˆ ˆ, γ ˆ , θ), m(wi , νˆi − zT 1i γ n i



ˆ are estimated by linear regression in a first step and are plugged into the above where both νˆi and γ ˆ is obtained. We show in this section that, despite a more estimating equation, from which then θ general model is used, introducing the additional parameter γ in the first step only affects asymptotic variance, but not bias. In particular, our theory on asymptotic bias with many covariates entering the first step remains unchanged with the first step now taking a partially linear form. √ ˆ is n-consistent for γ, and standard Under very weak regularity conditions, one can show that γ ˆ has the following representalinearization technique shows that, after normalization and scaling, θ tion:  X √  ˆ − θ 0 = √1 Σ0 ˆ, γ ˆ , θ 0 ) + oP (1). n θ m(wi , νˆi − zT 1i γ n i
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ˆ is consistent, it is not hard to show the following: Given that γ   X √  √  ˆ − θ 0 = √1 Σ0 ˆ n θ m(wi , νˆi − zT γ, γ, θ ) + Σ Ξ n γ − γ + oP (1), 0 0 0 1i n i



˙ as the first partial derivative of m with respect to µ, and m ¨ the second with (we still use m derivative) h i ∂ T ˙ Ξ0 = E − m(w , µ , γ, θ )z + m(w , µ , γ, θ ) i i 0 1i i i 0 . ∂γ T The next step is to further expand, which gives  X √  ˆ − θ 0 = √1 Σ0 n θ m(wi , µi , γ, θ 0 ) n i  √  ˆ −γ + Σ0 Ξ0 n γ   X 1 ˙ + √ Σ0 m(w ˆi − νi i , µi , γ, θ 0 ) ν n i  2 X1 1 ¨ i , µi , γ, θ 0 ) νˆi − νi + oP (1). m(w + √ Σ0 2 n



(E.22) (E.23) (E.24) (E.25)



i



We note that (E.22) is the influence function had both γ and µi been observed, and (E.23) is the total variance contribution from estimating γ. (E.24) also has variance contribution since νi is estimated. Finally both (E.24) and (E.25) will lead to asymptotic bias under our many covariates assumption. We first consider (E.24) and (E.25). Since νˆi is constructed as linear projection, the same technique developed in Section SA-3 can be applied. To be more specific, let Π = Z(ZT Z)−1 ZT be T T the projection matrix constructed from the “long vector” zi = [zT 1i , z2i ] with Z the n × (dγ + k)



matrix stacking zi , and πij be a generic element of Π. Then, the same regularity conditions are enough to justify the following:  1 (E.24) = √ Σ0 n



X



1 (E.25) = √ Σ0 n



X



 X



 i



j



X 1 ˙ E[m(w b1,i · πii + oP (1), i , µi , γ, θ 0 )|zi ]πij  εi + √ Σ0 n i



2 b2,ij · πij + oP (1),



i,j



1 ˙ ¨ i , µi , γ, θ 0 )ε2j |zi , zj ]. with b1,i = E[m(w i , µi , γ, θ 0 )εi |zi ] and b2,ij = 2 E[m(w



Algebraically, the new term (E.23) can be rewritten as (E.23) = Σ0 Ξ0



1 n



ZT 1 Q2 Z1



−1 1 X  X  √ z1j q2ij εi + oP (1), n i



j



−1 T where Z1 is the n × dγ matrix stacking z1i , Q2 is the n × n annihilator I − Z2 (ZT 2 Z2 ) Z2 to partial
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out z2i with elements denoted by q2ij , and the extra oP (1) arises due to the approximation error ηi . Therefore the extra term can also be shown to be asymptotically normal (under very weak regularity conditions) conditional on Z.



√ Now we briefly mention regularity conditions that are used to justify the n-consistency and ˆ . The main reference is Cattaneo, Jansson, and Newey (2018) conditional asymptotic normality of γ



ˆ in a much more general setting. We provide primitive which establishes asymptotic normality of γ conditions to justify Assumption 1–3 in Cattaneo, Jansson, and Newey (2018), which are sufficient to establish the desired result. We also need to modify the notation of H¨older continuity since now an additional nuisance parameter γ is allowed to enter the moment function directly. Re-define: Hα,δ (mi ) =



sup (|µ−µi |+|γ 0 −γ|+|θ−θ 0 |)α ≤δ



|m(wi , µ, γ 0 , θ) − m(wi , µi , γ, θ 0 )| . (|µ − µi | + |γ 0 − γ| + |θ − θ 0 |)α



The same transformation is also applied to derivatives of the moment function. Then we make the following assumptions. Assumption (Partially Linear First Step). A.PL(1) The minimum eigenvalue of V[z1i |z2i ] is bounded away from zero. A.PL(2) E[|z1i |4 |z2i ] is bounded. A.PL(3) Both ∂mi /∂γ and Hα,δ (∂mi /∂γ) ∈ BM1 have finite mean, for some α, δ > 0.



y



The first requirement is intuitive, which states that, after the high dimensional vector z2i is partialed out, there is residual variation in z1i so that γ is identified (consistently estimable). The second requirement imposes moment conditions. In Cattaneo, Jansson, and Newey (2018), it is also assumed that V[εi |z1i , z2i ] is bounded away ˆ , since otherwise the asymptotic from zero. This is necessary to establish asymptotic normality of γ distribution could be degenerate. This condition, however, is not essential for our purpose. Note ˆ which has the following expansion: that our target parameter is θ, √  B  ˆ − θ0 − √ ¯1 +Ψ ¯ 2 + oP (1), n θ =Ψ n with " # X 1 2 B = √ Σ0 b1,i πii + b2,ij πij n i " # X 1 ¯ 1 = √ Σ0 m(wi , µi , γ, θ 0 ) Ψ n i



¯ 2 = Σ0 Ξ0 Ψ







  −1 1 X  X  X X 1  √ ˙ ZT z1j q2ij εi + √ Σ0 E[m(w i , µi , γ, θ 0 )|zi ]πij  εi . 1 Q2 Z1 n n i



j



i
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j



hence the condition we need is that, with probability approaching one, the minimum eigenvalue of the “overall” variance-covariance matrix being bounded away from zero. See Theorem SA.9.



SA-4.3



Second Step: Additional Many Covariates



It is very difficult, or even impossible, to extend Theorem SA.9 to a two-step problem where both steps are high dimensional in full generality. Given that different asymptotic behaviors will emerge ˆ in cases where the second-step estimating equation includes for the main estimator of interest θ high-dimensional covariates (and hence high-dimensional parameters that need to be estimated), it is natural to restrict the way the high-dimensional covariates enter the second step estimation procedure. In this section we make a first attempt to generalize the problem so that the second step also has increasing dimension by imposing a particular restriction on the estimating equation for θ. Specifically, to make the problem tractable we consider a setting where the first step estimate µ ˆi is regarded as a generated regressor, which is plugged into a high-dimensional semi-linear regression problem. We show that new biases arise as a result of both the two steps having high dimension, and thus showing that the main conclusions of this paper continue to hold in this case. Let yi be a response variable and assume that E[yi |xi , zi , µi ] = f (xi , µi , θ 0 ) + zT i γ 0, where θ 0 is the parameter of interest and f is a known smooth function. We assume xi has fixed √ dimension, and zi has possibly increasing dimension but satisfying k = O( n). Here we assume the same high dimensional vector zi is used in both the first step (to construct µ ˆi ) and the second step (as additional controls). This is only for simplicity and can be relaxed, with the caveat that allowing for different high dimensional vectors in the two steps will make the final result much more cumbersome. Given this setting, and assuming a non-linear least-squares model is considered, we can map this problem into a slight generalization of our framework as follows: " m(wi , µi , θ 0 , γ 0 ) =



#



∂ ∂θ f (xi , µi , θ 0 )



zi







 yi − f (xi , µi , θ 0 ) − zT γ i 0 ,



T T with E[m(wi , µi , θ 0 , γ 0 )] = 0, wi = [yi , xT i , zi ] , where θ 0 continues to be the parameter of inter-



est and now the additional (possibly high-dimensional) parameter γ 0 features in the second-step estimating equation m(·). This setting is a special case of our generic framework in that a nonlinear least squares estimating equation is considered, but is also more general since a possibly high-dimensional vector of covariates is now allowed for in the second step. Some additional notation is needed to state the result. First, let f = ∂f /∂θ be the derivative of f with respect to θ. Second, we use qij = 1{i=j} − πij to denote elements of the annihilator projection matrix Q = I − Π. Third, we use fi = f (xi , µi , θ 0 ) and fi = f (xi , µi , θ 0 ) to simplify exposition. Finally, the “dot” notation is reserved for partial derivatives with respect to µ as done 21



throughout this Supplemental Appendix. Using a result similar to partitioned regression, that is, regressing out the high-dimensional vector ˆ is given by zi , the estimator of interest θ ˆ θ



:



0=



XX i



ˆ qij f (xi , µ ˆi , θ)







 ˆ , yi − f (xi , µ ˆi , θ)



j



where µ ˆi is constructed from projecting ri on zi in a first step as done in our basic framework. Due to the presence of the high-dimensional vector in the second step, the asymptotic expansion becomes much more complicated. The first part of the following additional assumptions is employed to simplify the result; it is not essential to show the presence of asymptotic bias, though the formulas would be even more cumbersome without this approximation assumption. Assumption (High Dimensional Second Step). A.HSS(1) The vector zi can approximate (in the sense of Lemma SA.5) the following: E[fi |zi ], E[f˙i |zi ], E[fi f˙i |zi ] and E[fi |zi ]E[f˙i |zi ]. A.HSS(2) The minimum eigenvalue of E[V[fi |zi ]] is bounded away from zero.



y



We leave the cumbersome computational details to Section SA-10.12. Under the assumptions of Theorem SA.8, A.HSS, and A.3(1), the following holds:   √ B ˆ ¯1 +Ψ ¯ 2 + oP (1), n θ − θ0 − √ =Ψ n with Σ0 = E[V[fi |zi ]]−1 , ui = yi − E[yi |xi , zi , µi ], and



B



  X X X X 1 2 3 = √ Σ0  b1,i πii + b2,ij πij + b3,ij πij + b4,ij` πij πi` πj`  n i



i,j



i,j



i,j,`



b1,i = E[f˙i ui εi |zi ] − Cov[fi , f˙i εi |zi ] 1 b2,ij = E[f˙i |zi ]E[fj εj |zj ] − E[f˙i |zi ]E[uj εj |zj ] − Cov[fi , f¨i |zi ]E[ε2j |zi , zj ] − E[f˙i f˙i |zi ]E[ε2j |zj ] 2 1 ¨ 1 b3,ij = E[fi |zi ]E[fj ε2j |zj ] − E[¨fi |zi ]E[uj ε2j |zj ] + E[f˙i εi |zi ]E[f˙j εj |zj ] 2 2 b4,ij` = E[f˙i |zi ]E[f˙` |z` ]E[ε2j |zj ], and X ¯ 1 = √1 Σ0 Ψ (fi − E[fi |zi ])ui , n



X ¯ 2 = − √1 Σ0 Ψ Cov[fi , f˙i |zi ]εi . n



i



i



This expansion shows that including high-dimensional covariates in the second-step estimation, when entering additively separably, leads to the presence of a many covariates bias of the same order as reported in our main Theorem SA.9. The actual form changes because of the interaction between 22



the first and second step estimation, as now both include high-dimensional covariates. The nonlinearity introduced by the first-step estimate entering the second-step estimating equation plays a crucial role in this result. Because least squares estimators are not linear in covariates, which means the many covariates bias emerges even when µi enters the second step multiplicatively (i.e. f is linear in µi ). See the last remark in this section for an example. On the other hand, it is known that one-step high-dimensional linear least squares estimators will not lead to a many covariates bias as shown in Cattaneo, Jansson, and Newey (2017, 2018), which is due to the intrinsic linearity of that setting. We now discuss a few specialized examples to illustrate some implications of this extension. Remark (The effect of high dimensional second step). Although we only consider a special case of high dimensional second step, one can already see some of its implications. To compare, consider what happens if γ 0 = 0 and the long vector zi is excluded from the second step, i.e., E[yi |xi , zi , µi ] = f (xi , µi , θ 0 ), ˆ the estimator obtained using non-linear least squares. Then, our main Theorem and denote by θ SA.9 applies directly, and gives   √ B ˆ ¯1 +Ψ ¯ 2 + oP (1), n θ − θ0 − √ =Ψ n with Σ0 = E[fi fiT ]−1 , and B



  X X 1 2 = √ Σ0  b1,i πii + b2,ij πij n i



i,j



1 b1,i = E[f˙i ui εi |zi ] − E[fi f˙i εi |zi ], b2,ij = − E[fi f¨i |zi ]E[ε2j |zj ] − E[f˙i f˙i |zi ]E[ε2j |zj ] 2 X X 1 1 ¯ 1 = √ Σ0 ¯ 2 = − √ Σ0 Ψ fi ui , Ψ E[fi f˙i |zi ]εi . n n i



i



Hence including the high dimensional control variables zi in the second step has two effects. First, additional bias terms arise. Second, some conditional expectations in the expansion become conditional covariances, since zi has to be partialed out from f .



y



Remark (Special case 1: high dimensional regression with generated regressor). Assume now that the second step becomes a regression problem: E[yi |xi , zi , µi ] = g(xi , µi ) · θ0 + zT i γ 0, which means f (xi , µi , θ) = g(xi , µi ) · θ. Then we can set f = g and f = θ0 g in earlier results, which



23



implies the following bias and variance formula √



  B ¯1 + Ψ ¯ 2 + oP (1), =Ψ n θˆ − θ0 − √ n



with Σ0 = E[V[gi |zi ]]−1



B



  X X X X 1 2 3 = √ Σ0  b1,i πii + b2,ij πij + b3,ij πij + b4,ij` πij πi` πj`  n i



i,j



i,j



i,j,`



b1,i = E[g˙ i ui εi |zi ] − θ0 Cov[gi , g˙ i εi |zi ] b2,ij = θ0 E[g˙ i |zi ]E[gj εj |zj ] − E[g˙ i |zi ]E[uj εj |zj ] −



θ0 Cov[gi , g¨i |zi ]E[ε2j |zi , zj ] − θ0 E[g˙ i2 |zi ]E[ε2j |zj ] 2



θ0 1 E[¨ gi |zi ]E[gj ε2j |zj ] − E[¨ gi |zi ]E[uj ε2j |zj ] + θ0 E[g˙ i εi |zi ]E[g˙ j εj |zj ] 2 2 = θ0 E[g˙ i |zi ]E[g˙ ` |z` ]E[ε2j |zj ],



b3,ij = b4,ij` and



X ¯ 1 = √1 Σ0 Ψ (gi − E[gi |zi ])ui , n i



X ¯ 2 = − √1 Σ0 Ψ θ0 Cov[gi , g˙ i |zi ]εi . n i



y



Both variance and bias remain essentially the same. Remark (Special case 2: multiplicative µi ). An even more special case is the following E[yi |xi , zi , µi ] = (xi µi ) · θ0 + zT i γ 0,



so that f (xi , µi , θ) = xi µi · θ. Now it seems the asymptotic bias should vanish since the generated regressor µ ˆi enters the second step multiplicatively. Unfortunately, linear regression is not linear in the regressors, and the many covariates bias remains. (Although some of the terms in the expansion do disappear.) Corresponding results can be obtained with (following notation of the previous remark) gi = xi µi , g˙ i = xi and g¨ = 0. Hence √



  B ¯1 + Ψ ¯ 2 + oP (1), n θˆ − θ0 − √ =Ψ n



with Σ0 = E[µ2i V[xi |zi ]]−1 B



  X X X X 1 2 3 = √ Σ0  b1,i πii + b2,ij πij + b3,ij πij + b4,ij` πij πi` πj`  n i



i,j



i,j



i,j,`



b1,i = E[xi ui εi |zi ] − θ0 µi Cov[xi , xi εi |zi ] b2,ij = θ0 µj E[xi |zi ]E[xj εj |zj ] − E[xi |zi ]E[uj εj |zj ] − θ0 E[x2i |zi ]E[ε2j |zj ] b3,ij = θ0 E[xi εi |zi ]E[xj εj |zj ] 24



b4,ij` = θ0 E[xi |zi ]E[x` |z` ]E[ε2j |zj ], and X ¯ 1 = √1 Σ0 Ψ (xi − E[xi |zi ])µi ui , n



X ¯ 2 = − √1 Σ0 Ψ θ0 V[xi |zi ]µi εi . n



i



i



The above result indeed confirms that the many covariates bias remains to be present even in a simple problem where the estimated µ ˆi is used as a regressor.
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SA-5



Examples



Due to the flexibility of the setting (E.1) and (E.2), our results cover a wide range of applications. In this section, we show that overfitting the first-step estimate gives a first order bias contribution for many estimators used in practice. In particular, here we consider several treatment effect and policy evaluation methods, as well as related problems, and give exact formulas of the bias and variance in each case. Within each example it is usually possible to understand the source of the bias better by combining the general bias formula with specific (identification) assumptions used for each estimator. Remark (Notation). To avoid notation conflict, we use uppercase letters to denote random variables, for example Xi , Wi , etc. Random vectors will be denoted by bold upper case letters, such as Xi , Wi , etc. This should be distinguished from matrices, where the latter are not indexed by i, such as A, Z, etc. Greek letters, functions and error terms may not be capitalized, unless necessary.



y SA-5.1



Inverse Probability Weighting



We consider estimation via IPW in a general missing data problem. Our results apply immediately to treatment effect, data combination and measurement error settings, when a conditional independence assumption is imposed. Assume the parameter of interest is given by E[h(Yi (1), Xi , θ 0 )] = 0, where Yi (1) is subject to missing data problem and Xi are covariates of fixed dimension. Let Ti = 1[Yi (1) is observed], then Yi = Ti Yi (1) is the observed vector. Then, under the assumptions given below, the parameter θ 0 is identified by the following estimating equation 



 Ti h(Yi , Xi , θ 0 ) E = 0, Pi and Pi = E[Ti |Zi ] is the propensity score. Without loss of generality, we assume Xi is a subvector of Zi with fixed dimension. One example will be that Zi is the series expansion of Xi , hence conditioning on Zi is the same as conditioning on Xi . Assumption (IPW). A.IPW(1) θ 0 is the unique root of E[h(Yi (1), Xi , θ)]. A.IPW(2) There exists C, such that 0 < C ≤ Pi = E[Ti |Zi ]. A.IPW(3) Conditional on Zi , Ti is independent of Yi (1).



y



To simplify the notation, we also assume that the dimension of h is the same as that of θ, hence the parameter is exactly identified, which implies we do not need to use an extra weighting matrix.
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The estimator is then defined by the two step procedure: 1 X Ti h(Yi , Xi , θ 0 ) √ = 0, n Pˆi i



and Pˆi is the linear projection of Ti on Zi . To match notation so that previous results can be applied, we have T wi = [YiT , XT i , Ti ] , ri = Ti , µi = Pi , zi = Zi



m(wi , µi , θ) = Ti h(Yi , Xi , θ)/Pi . Applying Theorem SA.9, we have the following: Proposition SA.10 (IPW). ˆ is Under the assumptions of Theorem SA.9, and assume A.IPW holds. Then the IPW estimator θ consistent, and admits the following representation: √



  B ˆ − θ0 − √ ¯ + oP (1), n θ =Ψ n



where gi = E[h(Yi (1), Xi , θ 0 )|Zi ], and  1 B = Σ0 √ − n



X i



gi



1 − Pi πii + Pi



X i,j



gi



E[Ti ε2j |Zi , Zj ] Pi3



 2 πij







   X Ti h(Yi (1), Xi , θ 0 ) X gj 1 ¯ = Σ0 √  Ψ − πij  · εi  Pi Pj n i j −1   ∂ h(Yi (1), Xi , θ 0 ) . Σ0 = −E ∂θ h 2 i = o(1), then If, in addition, inf Γ E gi /Pi − ZT Γ i   1 X Ti h(Yi (1), Xi , θ 0 ) gi ¯ √ Ψ = Σ0 − · εi + oP (1). Pi Pi n i



Remark (Bias). The bias will be zero in this example, if either: (i) Pi = 1, which implies there is no missing values in the sample, or (ii) gi = θ 0 , so that Zi does not enter the outcome equation. Neither of these conditions are likely to hold in practice, hence bias will be a concern if IPW methods with overfitted propensity score are used.



y



Remark (Semi-parametric Efficiency). From the above proposition, it becomes clear that two √ assumptions are needed to achieve semiparametric efficiency. First, k = o( n) so that the specification of the propensity score has to be relatively parsimonious. Second, the covariates Zi must 27



y



have good approximation power for gi /Pi .



We provide the following corollary, which specializes the previous conclusion to the special case where only an outcome variable is missing and the goal is to estimate its mean. Thus, we set h(Yi , Xi , θ 0 ) = Yi − θ0 , and θ0 = E[Yi (1)]. Corollary SA.11 (IPW: Estimating Mean of yi (1)). Under the assumptions of Theorem SA.9, and assume A.IPW holds. Then the estimator θˆ is consistent, and admits the following representation: √



  B ˆ ¯ + oP (1), n θ − θ0 − √ =Ψ n



where gi = E[Yi (1)|zi ] − θ0 , and  1 B = √ − n



X (1 − Pi )gi i



Pi







πii +



E[Ti ε2j |Zi , Zj ] 2 πij  gi 3 P i i,j



X



    X X gj ¯ = √1  Ti (Yi (1) − θ0 ) −  Ψ πij  · (Ti − Pi ) . Pi Pj n i



j



h 2 i = o(1), then If, in addition, inf γ E gi /Pi − ZT i γ   1 X Ti (Yi (1) − θ0 ) gi ¯ − (Ti − Pi ) + oP (1). Ψ= √ Pi Pi n i



y SA-5.2



Semiparametric Difference-in-Differences



Consider a simple setup where for each individual (i) two observations are available in two time periods (t1 and t2 ), which we denote by Yi (t1 ) and Yi (t2 ), respectively. We assume at time t2 some individuals receive a treatment, and denote by Ti = 1 the treatment indicator. In a potential outcome framework, we can write the second period outcome as Yi (t2 ) = Yi (1, t2 )Ti +Yi (0, t2 )(1−Ti ), where (Yi (1, t2 ), Yi (0, t2 )) are the potential outcomes in the second period receiving the treatment or not. The parameter of interest is the average treatment on the treated in the second period: θ0 = E[Yi (1, t2 ) − Yi (0, t2 )|Ti = 1]. A classical assumption used to achieve identification in this context is the so-called “parallel trends” assumption. Abadie (2005) relaxes that assumption to “parallel trends conditional on covariates”: Assumption (DiD).
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A.DiD(1) E[Yi (0, t2 ) − Yi (t1 )|Ti = 1, Xi ] = E[Yi (0, t2 ) − Yi (t1 )|Ti = 0, Xi ]. A.DiD(2) There exists 0 < C < 1/2, such that C ≤ P[Ti = 1|Xi ] ≤ 1 − C.



y



With Assumptions A.DiD(1) and A.DiD(2), and regularity conditions such as bounded moments, it is easily to show that   Ti − Pi θ0 = E Yi (t2 ) − Yi (t1 ) , P[Ti = 1] · (1 − Pi ) 



where Pi = P[Ti = 1|Xi ] is the propensity score and the expression is identified from the marginal distribution of the observed quantities. To see this, by conditioning on Xi and separating into two scenarios Ti = 0, 1, we have 



  Ti − Pi E Yi (t2 ) − Yi (t1 ) P[Ti = 1] · (1 − Pi )  n h  i h  io Pi =E E Yi (1, t2 ) − Yi (t1 ) Xi , Ti = 1 − E Yi (0, t2 ) − Yi (t1 ) Xi , Ti = 0 . P[Ti = 1] Then, using Assumption A.DiD(1), we obtain 



n h  i h  io Pi E E Yi (1, t2 ) − Yi (t1 ) Xi , Ti = 1 − E Yi (0, t2 ) − Yi (t1 ) Xi , Ti = 1 P[Ti = 1]  h  i Pi =E E Yi (1, t2 ) − Yi (0, t2 ) Xi , Ti = 1 P[Ti = 1] Z h  i Pi E Yi (1, t2 ) − Yi (0, t2 ) Xi , Ti = 1 P(dXi ) = P[T = 1] Z h i  i = E Yi (1, t2 ) − Yi (0, t2 ) Xi , Ti = 1 P(dXi |Ti = 1) n h  i o = E E Yi (1, t2 ) − Yi (0, t2 ) Xi , Ti = 1 Ti = 1 = θ0 . To estimate θ0 , it suffices to use a two-step procedure, where first the propensity score is estimated. Abadie (2005) proposes to estimate Pi by regressing Ti on a series expansion of Xi , which is coved by our framework. The estimating equation is  0=E ⇒ ⇔



  Ti − Pi  Yi (t2 ) − Yi (t1 ) − Ti θ0 1 − Pi " #  1 X Ti − Pˆi  Yi (t2 ) − Yi (t1 ) − Ti θˆ 0= ˆi n 1 − P i # "  .X X Ti − Pˆi  θˆ = Yi (t2 ) − Yi (t1 ) Ti . 1 − Pˆi i



i



To match notation, we have wi = [Ti , Yi (·)]T , ri = Ti , µi = Pi , zi = series expansion of Xi 29



m(wi , µi , θ) =



 Ti − Pi  Yi (t2 ) − Yi (t1 ) − Ti θ. 1 − Pi



We have the following result, which is Theorem SA.8 specialized to this model. Proposition SA.12 (DiD). Under the assumptions of Theorem SA.9, and assume A.DiD holds. Then the semiparametric difference-in-differences estimator θˆ is consistent, and admits the following representation: √



  B ˆ ¯ + oP (1), =Ψ n θ − θ0 − √ n



where gi = E [ Yi (0, t2 ) − Yi (t1 )| Ti = 1, Xi ] = E [ Yi (0, t2 ) − Yi (t1 )| Ti = 0, Xi ], and   X E[(Tj − Pj )2 |Ti = 0, Xi , Xj ] X Pi 1 2  B=√ gi πii − gi πij 1 − Pi (1 − Pi )2 nP[Ti = 1] i,j i       X X 1 1 ¯ =√  Ti − Pi Yi (t2 ) − Yi (t1 ) − Ti θ0 −  Ψ gj πij  εi  . 1 − Pi 1 − Pj nP[Ti = 1] i



j



 2  1 T If, in addition, inf γ E 1−Pi gi − Zi γ = o(1), where Zi is the series expansion of Xi , then ¯ =√ Ψ



  X  Ti − Pi  1 1 Yi (t2 ) − Yi (t1 ) − Ti θ0 − gi εi + oP (1). 1 − Pi 1 − Pi nP[Ti = 1] i



SA-5.3



Local Average Response Function



This is one of the examples analyzed in the main paper. Here we give further details and related regularity conditions, not discussed in the main paper to conserve space. To re-introduce the results of Abadie (2003), we need the notion of potential outcomes. Let Di ∈ {0, 1} be the (binary) instrumental variable, then the treatment indicator Ti ∈ {0, 1} is a combination of two potential outcomes, Ti = Di Ti (1) + (1 − Di )Ti (0). And let Yi be the observed outcome, it will be the combination of four potential outcomes, corresponding to different values taken by the instrumental variable and the treatment indicator: Yi = Ti Di Yi (1, 1)+Ti (1−Di )Yi (1, 0)+(1−Ti )Di Yi (0, 1)+(1− Ti )(1 − Di )Yi (0, 0). That is, the first argument of Yi (·, ·) corresponds to the treatment status, and the second corresponds to the value of the instrument. For identification, we rely on the following assumptions, where Zi are some additional covariates. Assumption (LARF). A.LARF(1) P[Yi (0, 0) = Yi (0, 1)|Zi ] = 1 and P[Yi (1, 0) = Yi (1, 1)|Zi ] = 1. A.LARF(2) Conditional on Zi , (Ti (0), Ti (1), Yi (0), Yi (1)) are independent of Di . A.LARF(3) C < P[Di = 1|Zi ] < 1 − C for 0 < C < 1, and P[Ti (1) = 1|Zi ] > P[Ti (0) = 1|Zi ]. 30



y



A.LARF(4) P[Ti (1) ≥ Ti (0)|Zi ] = 1.



Assumption A.LARF(1) states that the instrumental variable Di does not affect the outcome directly, hence it makes sense to use notation Yi (0), Yi (1) and Yi = Ti Yi (1) + (1 − Ti )Yi (0) almost surely conditional on Zi . The second assumption, A.LARF(2) simply states the exogeneity of the instrument, which is standard in the literature. Assumption A.LARF(3) requires, after conditioning on Zi , there is variation in the instrument, which in turn indices variation in the treatment status. Finally, A.LARF(4) is typically referred as the monotonicity assumption, and it rules out defiers. Let g(Yi , Ti , Zi ) be a measurable function with finite first moment, Abadie (2003) showed the following identification result: h i h i h i E g(Yi , Ti , Zi ) Ti (1) > Ti (0) · P Ti (1) > Ti (0) = E κi · g(Yi , Ti , Zi ) , κi = 1 −



Ti (1 − Di ) (1 − Ti )Di − , 1 − Pi Pi



and as before, Pi = E[Di |Zi ] = P[Di = 1|Zi ]. To see the usefulness of the above result, note that in practice, it is not possible to identify the compliers. Although one can identify the local average treatment effect, it is not obvious how it should be connected to other treatment parameters, such as the average treatment effect or the treatment effect on the treated, since the compliers can have very different characteristics. With the above method, any characteristics depending only on the joint distribution of Yi , Ti and Zi can be identified for compliers, hence it is possible to give summary statistics for the compliers. The previous result has another important empirical application: it allows one to fit a model for the outcome variable Yi with prespecified functional form. For simplicity, let Xi be a subvector of Zi with fixed dimension dx , and assume one is interested in the conditional expectation function E[Yi |Ti , Xi , Ti (1) > Ti (0)]. In general it will be nonlinear and can only be identified nonparametrically. To avoid the curse of dimensionality and ensure the result being interpretable, it is common to fit a best linear approximation to the conditional expectation function. That is, " θ0 =



γ0



#



φ0



h 2 i T = arg min E Yi − Ti γ0 − Xi φ0 Ti (1) > Ti (0) . γ0 ,φ0



We will take a slightly more general approach. Let e be a known link function which is smooth, we define the parameter of interest to be h 2 i θ 0 = arg min E Yi − e(Xi , Ti , θ) Ti (1) > Ti (0) , θ



where the linear model becomes a special case. For simplicity, we assume θ 0 is identified by the following moment condition,   i h ∂e E (Xi , Ti , θ) Yi − e(Xi , Ti , θ) Ti (1) > Ti (0) = 0 ∂θ



31



⇔



θ = θ0 .



Despite the simple linear functional form, it is not clear how θ 0 can be identified, since it requires conditioning on the compliers. With the results of Abadie (2003), one has h  i ∂e E κi · (Xi , Ti , θ) Yi − e(Xi , Ti , θ) = 0 ∂θ



⇔



θ = θ0 ,



which will be the (population) estimating equation considered in this subsection. Note that the RHS depends only on observed variables. To match our previous notations, we have T wi = [Yi , Ti , Di , XT i ] , ri = Di , µi = Pi , zi = Zi   ∂e m(wi , µi , θ) = κi · (Xi , Ti , θ) Yi − e(Xi , Ti , θ) . ∂θ



Essentially, the above is a weighted nonlinear least squares problem where the weights have to be estimated. (Also note that the weights can take negative values.) We have the following result, which is essentially Proposition SA.8 specialized to the current context. Proposition SA.13 (LARF). ˆ is consistent, and Under the assumptions of Theorem SA.9, and assume A.LARF holds. Then θ admits the following representation:   √ B ˆ ¯1 +Ψ ¯ 2 + oP (1), n θ − θ0 − √ =Ψ n where   X X 1 2 B = Σ0 √  b1,i · πii + b2,ij · πij n i



¯1 Ψ ¯2 Ψ



i,j



1 X m(wi , µi , θ 0 ) = Σ0 √ n i   X X 1  ˙ = Σ0 √ E [m(w j , µj , θ 0 )|Zi ] · πij  εi , n i



j



and     TD ∂ (1 − Ti )(1 − Di )  i i b1,i = E ei (θ 0 ) · Yi − ei (θ 0 ) · + Zi , Ti (0) = Ti (1) · P[Ti (0) = Ti (1)|Zi ] ∂θ 1 − Pi Pi      (1 − T )D ∂ Ti (1 − Di )  2 i i b2,ij = E − ei (θ 0 ) · Yi − ei (θ 0 ) · + εj Zi , Zj , Ti (0) = Ti (1) ∂θ (1 − Pi )3 Pi3 



· P[Ti (0) = Ti (1)|Zi ] ˙ E [m(w j , µj , θ 0 )|Zj ]      1 − T Tj ∂ j =E ej (θ 0 ) · Yj − ej (θ 0 ) − Zj , Tj (0) = Tj (1) · P [Tj (0) = Tj (1)|Zj ] ∂θ Pj 1 − Pj 32



ei (θ) = e(Xi , Ti , θ)    −1   ∂2 ∂ ∂ Σ0 = −E κi · ei (θ 0 ) Yi − ei (θ 0 ) − ei (θ 0 ) T ei (θ 0 ) . ∂θ ∂θ∂θ T ∂θ



y Remark (Bias and Variance: Beyond Compliers). The bias and the asymptotic representation in the current context take complicated forms, and it is not obvious how those terms can be interpreted intuitively. On the other hand, it is clear that both the bias and the variance (more specificaly, the part of the variance contributed by the first step) are related to quantities averaged over alwaystakes and never-takers. And when there are no always-takers or never-takers (hence by Assumption A.LARF(4), there are only compliers), the bias will be zero, and the estimated first step does not contribute to the variance. This is not surprising, since when there are only compliers, it becomes a text-book linear regression problem, and the weights κi are identically 1.



SA-5.4



y



Marginal Treatment Effect



This is another example analyzed in the main paper, which can be interpreted as a generalization of the local average response function when the instrument is not binary. The marginal treatment effect (MTE) was proposed by Bj¨ orklund and Moffitt (1987), and later developed by Heckman and Vytlacil (2005) and Heckman, Urzua, and Vytlacil (2006). When identified, it is a key parameter to understand the treatment effect heterogeneity, and can also be used to construct other treatment parameters. Assume one has a random sample and let Yi be the outcome variable. We adopt the potential outcome framework, hence Yi = Ti Yi (1) + (1 − Ti )Yi (0), where Ti is the treatment indicator. Given some covariates Xi ∈ Rdx , we decompose the potential outcomes into the conditional expectations and errors, Yi (0) = g0 (Xi ) + U0i ,



Yi (1) = g1 (Xi ) + U1i .



The selection rule is determined by h i Ti = 1 Pi ≥ Vi . and we impose the assumption that vi is uniformly distributed in [0, 1] conditional on Xi . The marginal treatment effect (MTE) is defined as τ (a|x) = E[Yi (1) − Yi (0)|Vi = a, Xi = x]. Heckman and Vytlacil (2005) provides a comprehensive introduction to the interpretation of the marginal treatment effect and its empirical importance in program evaluation. Assumptions A.MTE(1) and A.MTE(2) allow one to identify the MTE based on the following local instrumental variable
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approach: ∂ τ (a|x) = E[Yi |Pi = p, Xi = x] . ∂p p=a To avoid the curse of dimensionality, we adopt the following parametrization: E[Yi |Pi = a, Xi = x] = e(x, a, θ 0 ),



∂ e(x, p, θ 0 ) , τ (a|x) = ∂p p=a



where e is known function up to the unknown parameter θ 0 . Another complication is that Pi (a.k.a. the propensity score), is not observed, and has to be estimated in a first step. To make it more concrete, consider Pi = E[Ti |Zi ].



Ti = Pi + εi ,



where we assume there are some instruments observed by the analyst, denoted by Zi , which can be used as the covariates to estimate the propensity score. Again we defer the identification assumptions. Now the problem can be reframed into the general model, and we state it as a Z-estimation:  E



  ∂ e(Xi , Pi , θ) Yi − e(Xi , Pi , θ) = 0 ∂θ



Or equivalently, m(wi , µi , θ) =



∂ ∂θ e(Xi , Pi , θ)







⇔



θ = θ0 ,



 Yi − e(Xi , Pi , θ) . Usually the parameter of interest



is not θ 0 , but the MTE curve, or a weighted average of the MTE. Note that once we establish the ˆ we can rely on the delta method to infer the properties of the estimate asymptotic theory of θ, ˆ MTE curve or its weighted average. Therefore we will devote this subsection to the theories of θ. Following are the identification assumptions: Assumption (MTE). A.MTE(1) Xi ⊂ Zi ; and conditional on Xi , Pi (and Zi ) are nondegenerate and independent of (U1i , U0i , Vi ).



y



A.MTE(2) 0 < P[Ti = 1|Xi ] < 1. To save the notation, we use the following: ei (θ) = e(Xi , Pi , θ),



e˙ i (θ) =



∂ e(Xi , p, θ) , ∂p p=Pi



e¨i (θ) =



∂2 e(X , p, θ) . i ∂p2 p=Pi



And to match notation, let T wi = [Yi , XT i ] , ri = Ti , µi = Pi , zi = Zi   ∂ m(wi , µi , θ) = e(Xi , Pi , θ) Yi − e(Xi , Pi , θ) . ∂θ
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Then one has Proposition SA.14 (MTE). ˆ is consistent, and Under the assumptions of Theorem SA.9, and assume A.MTE holds. Then θ admits the following representation: √



  1 ˆ − θ0 − √ B = Ψ ¯1 +Ψ ¯ 2 + oP (1), n θ n



where B ¯1 Ψ ¯2 Ψ



  X X 1 2 = Σ0 √  b1,i · πii + b2,ij · πij n i i,j   X ∂ 1 √ ei (θ 0 ) Yi − ei (θ 0 ) = Σ0 ∂θ n i   X X −1 ∂  = Σ0 √ ej (θ 0 ) · e˙ j (θ 0 ) · πij  εi , ∂θ n i



j



and h i ∂ e˙ i (θ 0 ) (1 − Pi ) · E[Ti Yi (1)|Zi ] − Pi · E[(1 − Ti )Yi (0)|Zi ] ∂θ  1 ∂ ∂ b2,ij = − 2 e˙ i (θ 0 ) · e˙ i (θ 0 ) + ei (θ 0 ) · e¨i (θ 0 ) Pj (1 − Pj ) 2 ∂θ ∂θ   −1 ∂ ∂ Σ0 = E ei (θ 0 ) T ei (θ 0 ) . ∂θ ∂θ b1,i =



y Remark (Bias). To understand the implications of the above theorem, we consider the bias terms. Note that b1,i essentially captures treatment effect heterogeneity (in the outcome equation) and self-selection. To make it zero, one needs to assume there is no heterogeneous treatment effect and the agents do not act on idiosyncratic characteristics that are unobservable to the analyst. For the second bias term b2,ij , note that e˙ i (θ 0 ) is simply the MTE and e¨i (θ 0 ) is its curvature. Hence the second bias is related not only to treatment effect heterogeneity captured through the shape of the MTE, but also to the “level” of the MTE. As as consequence, the many instruments bias will not be zero unless there is no self-selection and the treatment effect is homogeneous and zero.



SA-5.5



y



Control Function: Linear Case (2SLS)



Loosely speaking, control functions are special covariates that can help to eliminate endogeneity issues when added to the estimation problem. Usually the control function approach requires a first-step estimation and excluded instruments. For a recent review of the control function approach see Wooldridge (2015). 35



Due to its population in applied work, we will focus on the 2SLS estimator in this subsection, and frame it as a linear control function approach (we discuss the non-linear case further below). We illustrate how overfitting the first-step estimate leads to bias in this context. Note that in the “many instruments” literature, it is assumed that k/n → C < 1, and the 2SLS estimator √ is inconsistent. Here we assume k = O( n), and the 2SLS estimator is consistent, while the distributional approximation is invalid. The result obtained in this section also sheds light on why the JIVE proposed by Imbens, Angrist, and Krueger (1999) is able to remove the bias, where the special linear structure is key. The next subsection will be devoted to the control function approach in a non-linear setting, where in order to remove the first order bias the jackknife bias correction technique proposed in Section SA-6 is needed, because using JIVE will not suffice. Consider a simple regression problem with one endogenous regressor Xi and no intercept: Yi = Xi θ0 + ui , and an auxiliary regression Xi = ZT i β + εi ,



E[εi |Zi ] = 0.



As before, we denote µi = ZT i β (note that we simply assumed there is no “misspecification error”). To identify the parameter θ0 , we assume E[µ2i ] 6= 0 and E[ui |zi ] = 0 (and other moment conditions). The problem can be framed as a control function approach, where the first-step residual is pluggedin as an additional regressor in the second step (hence, a control function approach). Numerically, it is equivalent to the 2SLS approach: E [µi (Yi − Xi θ)] = 0



⇔



θ = θ0 .



Equivalently, wi = [Yi , Xi ]T , ri = Xi , zi = Zi ,



m(wi , µi , θ) = µi (Yi − Xi θ).



Remark (Using conditional expectation). The above framework encompasses an important case, ˜ i ∈ Rdz are available, which are assumed to be strongly exogenous: where some raw instruments Z ˜i ⊥ ˜ i linearly, and Z ⊥ ui . Of course, it is still possible to project the endogenous regressor Xi onto Z the problem will be parametric. On the other hand, it seems natural to exploit the independence to ˜ i ) is found, which explains most of the variation in Xi . It improve efficiency. That is, a function µ(Z ˜ i ) is the conditional expectation of Xi given Zi . This is particularly relevant is easy to see that µ(Z ˜ i , and µi is if the endogenous regressor is binary. In this case, Zi will be a series expansion of Z ˜ i are categorical. Then the essentially a nuisance functional parameter. This is also relevant if Z ˜ i , the number of cells can average of Xi in each cell is computed, and depending on the nature of Z be nontrivial compared with the sample size, and the bias could be a serious concern. (Although asymptotically it is a parametric problem since the number of cells is assumed to be fixed.) 36



y



Due to the linear structure, the estimator is  √  n θˆ2SLS − θ0 =



1X µ ˆi Xi n



!−1



i



=



1X µi Xi n



i



!−1



i



=



1X µi Xi n



1 X √ µ ˆi ui n



!−1



i



1 X √ µ ˆi ui + oP (1) n i " # X 1 X √ µi ui + (ˆ µi − µi )ui + oP (1), n i



i



where Assumption A.1(3) is used to justify the second line. An alternative estimator is the JIVE proposed by Imbens, Angrist, and Krueger (1999), which modifies the first step slightly: instead of (i)



using µ ˆ, the JIVE uses a leave-one-out version µ ˆi =  √  n θˆJIVE − θ0 =



=



µ ˆi 1−πii



−



πii Xi 1−πii ,



which gives



!−1 1 X (i) 1 X (i) √ µ ˆi Xi µ ˆi ui n n i i " !−1  # X µ 1X 1 X πii Xi ˆi √ µi Xi µi ui + − µi − ui + oP (1). n 1 − πii 1 − πii n i



i



i



Using previous results, it is easy to show that the bias of the 2SLS estimator is B2SLS



X X 1 1 √ =√ E [(ˆ µ − µ )u |Z ] = E [ui εi |Zi ] · πii = OP i i i i nE[µ2i ] i nE[µ2i ] i







k √ n



 ,



provided that E[ε4i |Zi ] and E[u2i ε2i |Zi ] are bounded. On the other hand, the JIVE has the bias (provided that max1≤i≤n (1 − πii )−1 = OP (1), a necessary condition to “leave-one-out” in the first step): BJIVE



  X  µ ˆi 1 πii Xi =√ E − µi − ui Zi 2 1 − πii 1 − πii nE[µi ] i  X E[ui εi |Zi ]πii E[ui εi |Zi ]πii  1 =√ − = 0, 1 − πii 1 − πii nE[µ2i ] i



which shows why the JIVE is able to remove the first order bias. The above result should not be surprising: since the estimating equation is linear in the unobserved quantity µi , only the linear bias term (i.e. b1,i ) is non-zero. The linear bias term is essentially a leave-in bias, hence using a leave-one-out estimator for the first step successfully removes the bias. In the next subsection, we will consider the control function approach in a nonlinear context. There, the estimating equation will depend on the unobserved quantity µi linearly and quadratically, and simply leaving-one-out in the first step (i.e. the JIVE) will not suffice.
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SA-5.6



Control Function: Nonlinear Case



To illustrate why the JIVE fails to correct the many instruments bias in a nonlinear setting, we consider the model of Wooldridge (2015): Yi = 1 [Xi · δ0 ≥ ui ] Xi = ZT i β + εi , where (ui , εi ) ⊥ ⊥ Zi , and has a bivariate normal distribution N (0, Σ). Then, the estimating equation is based on the following conditional expectation: E[Yi |Xi , Zi ] = P [Yi = 1|Xi , Zi ] = P [ui ≤ Xi δ0 |Xi , εi ]   = Φ Xi δ˜0 − (Xi − ZT β)γ , 0 i where Φ is the standard normal c.d.f.,  −1/2 σ2 δ˜0 = δ0 σuu − uε , σεε



γ0 =



σuε σεε



 −1/2 σ2 σuu − uε , σεε



and σuε = E[ui ε], σuu = E[u2i ] and σεε = E[ε2i ]. T ˜ To show the results in a more general context, let µi = ZT i β, θ 0 = [δ0 , −γ0 ] , and we consider



wi = [Yi , Xi ]T , ri = Xi , zi = Zi " #    Xi m(wi , µi , θ 0 ) = L0 [Xi , Xi − µi ]θ 0 Yi − L([Xi , Xi − µi ]θ 0 ) , Xi − µi where L is some prespecified link function. To save notation, let Xi = [Xi , Xi − µi ]T , then h  i T E[m(wi , µi , θ 0 )] = E Xi L0 (XT θ ) Y − L(X θ ) = 0, i i 0 i 0



(E.26)



which is essentially the estimating equation for nonlinear least squares. Other exogenous regressors or nonlinear transformations of Xi − µi in Xi can also be included, which would not change our main conclusion. Assume θ 0 is identified, which in turn requires that the control function εi = Xi −µi is degenerate and not perfectly collinear with Xi , and the link function is chosen so that E[Yi |Xi , Zi ] = L(XT i θ 0 ). Then, under standard regularity conditions,    X √  ˆ − θ 0 = −Σ−1 √1 ˆ i L0 (X ˆ T θ 0 ) Yi − L(X ˆ T θ 0 ) + oP (1), n θ X i i 0 n i



with



" ˆi = X



Xi Xi − µ ˆi



# ,



h i 0 T 2 Σ0 = E Xi XT L (X θ ) , 0 i i
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which is highly nonlinear in the generate regressor µ ˆi . We summarize the assumptions for this model in the following, in addition to other regularity conditions provided in Section SA-1. Assumption (Control Function). A.CF(1) θ 0 is the unique root of the estimating equation (E.26), with some known link function L such that E[Yi |Xi , Zi ] = L(XT i θ 0 ).



y



A.CF(2) εi ⊥ ⊥ Zi .



Remark. Technically we do not need to assume L is the conditional expectation of Yi , neither the independence assumption A.CF(2), as long as one takes (E.26) as the estimating equation and θ 0 defined thereof as the parameter of interest. Of course, by dropping those assumptions, θ 0 no longer has structural interpretation. We maintain those assumptions to simplify the formula of the



y



bias and variance. Proposition SA.15 (Control Function).



ˆ is consistent, and admits Under the assumptions of Theorem SA.9, and assume A.CF holds. Then θ the following representation: √



  1 ˆ ¯1 +Ψ ¯ 2 + oP (1), n θ − θ0 − √ B = Ψ n



where B ¯1 Ψ ¯2 Ψ



  X 1 X 2 b1,i · πii + b2,ij · πij = Σ0 √ n i i,j   X 1 T = Σ0 √ Xi L0 (XT θ ) Y − L(X θ ) 0 i 0 i i n i   −1 X X 2  εi , = Σ0 √ E[γ0 Xj L0 (XT j θ 0 ) |Zj ] · πij n i



j



and 2 b1,i = −E[γ0 Xi L0 (XT i θ 0 ) εi |Zi ]   γ0 γ02 0 T 2 2 00 T 0 T 2 2 00 T 2 b2,ij = E e2 L (Xi θ 0 ) εj − Xi L (Xi θ 0 )L (Xi θ 0 )εj − γ0 Xi L (Xi θ 0 )εj Zi , Zj 2 2  h i−1 0 T 2 Σ0 = E Xi XT . i L (Xi θ 0 )



Remark (Exogenous Xi ). If the regressor Xi is in fact exogenous, then σuε = 0, which means γ0 = 0. In this case, the two bias terms will be zero, and the first step has no contribution to the asymptotic variance either. This is not surprising, since then the generated regressor is redundant. 39



In general, however, neither the bias (b1,i and b2,ij ) nor the variance contribution term (σ 2 ) will be zero. (Recall that Xi contains both Xi and εi , hence is correlated with εi and is not mean zero.)



y Remark (JIVE). Due to the presence of the second bias term, b2,ij , the JIVE will not be effective



y



in removing the bias. This is a natural fact in non-linear models.



SA-5.7



Production Function Estimation



In this section we consider the problem of estimating production functions, following the setup of Olley and Pakes (1996). Assume the production function takes Cobb-Douglas form, with four factors entering: labor input Li,t , capital input Ki,t , the effect of aging on production Ai,t , and a productivity factor Wi,t . Hence denote by Yi,t the (log) production of firm i at time t, it is given by Yi,t = βL Li,t + βK Ki,t + βA Ai,t + Wi,t + Ui,t . The error term Ui,t is either measurement error or shock that is unpredictable with time-t information, hence has zero conditional mean. Given that the productivity factor is unobserved, the above equation cannot be used directly to estimate the production function. Investment decision Ii,t is based on the productivity factor, hence under some identification assumptions, it is possible to invert the relation and write Wi,t as Wi,t = ht (Ii,t , Ki,t , Ai,t ), for some unknown and time-dependent function ht . Therefore the output Yi,t becomes Yi,t = βL Li,t + φt (Ii,t , Ki,t , Ai,t ) + Ui,t ,



φt (Ii,t , Ki,t , Ai,t ) = βK Ki,t + βA Ai,t + ht (Ii,t , Ki,t , Ai,t ).



In what follows, we use φi,t to denote φt (Ii,t , Ki,t , Ai,t ) whenever there is no confusion on the time index. Note that the above display can be used to estimate the labor share βL , but not βK or βA due to the presence of the unknown function ht . Finally by taking conditional expectation of Wi,t+1 on time-t information, and that firm i survives at t + 1, we have the following (note the difference in time indices): Yi,t+1 − βL Li,t+1 = βK Ki,t+1 + βA Ai,t+1 + g(Pi,t , Wi,t = βK Ki,t+1 + βA Ai,t+1 + g(Pi,t , ht (Ii,t , Ki,t , Ai,t )



) + Vi,t+1 + Ui,t+1 ) + Vi,t+1 + Ui,t+1



= βK Ki,t+1 + βA Ai,t+1 + g(Pi,t , φi,t − βK Ki,t − βA Ai,t ) + Vi,t+1 + Ui,t+1 , where the new error term Vi,t+1 is the residual from conditional expectation decomposition of
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Wi,t+1 , and Pi,t is the survival rate, defined as Pi,t = P[firm i remains in business at time t + 1 | Ii,t , Ai,t , Ki,t ] = P[χi,t+1 = 1 | Ii,t , Ai,t , Ki,t ], and χi,t+1 is the indicator of firm in business. Before moving on, we make a remark on the two error terms. The first one, Ui,t+1 , is orthogonal with time-t + 1 information. On the other hand, Vi,t+1 is obtained from expectation conditional on time-t information, hence it is not orthogonal to information at t + 1. For this reason, it is can correlate with labor input decision, Li,t+1 . The term corresponding to labor βL Li,t+1 has been moved to LHS for this reason. On the other hand, neither capital nor aging (i.e. Ki,t+1 and Ai,t+1 ) has contemporaneous correlation with the error terms, since they are both “pre-determined”. Now we explain how the three parameters, βL , βK and βA are estimated. For simplicity, we assume there are only two time periods t ∈ {t1 , t2 }. Then the labor share βL is estimated, together with φi,t1 , in a first step with time t1 data by a partially linear regression. That is, we regress Yi,t1 on Li,t and a series expansion of [Ii,t , Ki,t , Ai,t ]T to obtain βˆL and φˆi,t . In terms of notation, 1



1



1



1



1



we have r1i = Yi,t1 , z11i = Li,t1 , z12i = series expansion of [Ii,t1 , Ki,t1 , Ai,t1 ]T , z1i = [z11i , z12i ]T , ν1i = βL Li,t1 + µ1i = βL Li,t1 + φt (Ii,t1 , Ki,t1 , Ai,t1 ), ε1i = Ui,t1 . Another first step is needed to estimate Pi,t1 . This is done by regressing/projecting the indicator of survival χi,t on a series expansion of [Ii,t , Ki,t , Ai,t ]T , and we denote the estimate by Pˆi,t . We 2



1



1



1



1



have the following to match notation: r2i = χi,t2 , z2i = series expansion of [Ii,t1 , Ki,t1 , Ai,t1 ]T , µ2i = Pi,t1 , ε2i = χi,t2 − Pi,t1 . Finally, βK and βA are estimated by (we assume the function g is known up to a finite dimensional nuisance parameter λ) i2 1 Xh ˆ ˆ ˆ Yi,t2 − βL Li,t2 − βK Ki,t2 − βA Ai,t2 − g(Pi,t1 , φi,t1 − βK Ki,t1 − βA Ai,t1 , λ) , arg min βK ,βA ,λ n i



which is a standard nonlinear least squares problem. Note that three quantities are estimated prior to this second step: the labor share βL and φi,t1 which are jointly estimated in a partially linear first step, and Pi,t1 as linear projection in another first step. Transforming into this form, it becomes clear that all our results apply to this example, with two
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minor generalizations proposed in Section SA-4.1 and SA-4.2. Note that for the two unknowns, ν1i and µ2i , different projection matrices are used. However, we can treat Li,t1 a redundant regressor for estimating Pi,t1 . Let Z be the matrix formed by stacking Li,t1 and series expansion of [Ii,t1 , Ki,t1 , Ai,t1 ], and πij be an element of the projection matrix constructed with Z. Finally we define the parameter θ = [βK , βA , λT ]T , which is solved from the sample moment condition 0=



1X 1X m(wi , µ ˆ1i , µ ˆ2i , γˆ , θ) = m(wi , νˆ1i − z11i γˆ , µ ˆ2i , γˆ , θ) n n i i   Ki,t1 g2 (Pˆi,t1 , φˆi,t1 − βK Ki,t1 − βA Ai,t1 , λ) − Ki,t2 1 X  =  Ai,t2 g2 (Pˆi,t1 , φˆi,t1 − βK Ki,t1 − βA Ai,t1 , λ) − Ai,t2  n i −g3 (Pˆi,t1 , φˆi,t1 − βK Ki,t1 − βA Ai,t1 , λ) h i · Yi,t2 − βˆL Li,t2 − βK Ki,t2 − βA Ai,t2 − g(Pˆi,t1 , φˆi,t1 − βK Ki,t1 − βA Ai,t1 , λ)



with wi = [Yi,t2 , Li,t2 , Ki,t2 , Ai,t2 , Li,t1 , Ki,t1 , Ai,t1 ], γˆ = βˆL . The above corresponds to moment conditions for βK , βL and the nuisance parameter λ. Also we denote by g` the derivative of g with respect to its `-th argument. Same analogy is used for higher order derivatives. Proposition SA.16 (Production Function). Under the assumptions of Theorem SA.9, and assume A.PL holds and



2 i πii



P



ˆ is = oP (k). Then θ



consistent, and admits the following representation: √



  ˆ − θ 0 − √1 B = Ψ ¯1 +Ψ ¯ 2 + oP (1), n θ n



where B



¯1 Ψ



¯2 Ψ



      X X 1 2 = Σ0 √  b1,1,i + b1,2,i πii + b2,11,ij + b2,22,ij + b2,12,ij πij n i i,j   K g − Ki,t2   X  i,t1 2,i,t1 1  = √ Σ0  Ai,t1 g2,i,t1 − Ai,t2  Vi,t2 + Ui,t2 n i −g3,i,t1      Ki,t1 g2,i,t1 − Ki,t2 Ki,t1 g2,i,t1 − Ki,t2       X 1     = − √ Σ0  Ai,t1 g2,i,t1 − Ai,t2  g2,i,t1 Ui,t1 +  Ai,t1 g2,i,t1 − Ai,t2  g1,i,t1 χi,t2 − Pi,t1   n  i  −g3,i,t1 −g3,i,t1  X 1 1 +√ Σ0 Ξ0 Li,t1 − E[Li,t1 |(I, K, A)i,t1 ] Ui,t1 . n EV[Li,t1 |(I, K, A)i,t1 ] i



42



and



b1,1,i



b1,2,i



b2,11,ij



b2,22,ij



b2,12,ij



  Ki,t1 g22,i,t1 i h   =  Ai,t1 g22,i,t1  Cov Vi,t2 , Ui,t1 (L, I, K, A)i,t1 −g23,i,t1   Ki,t1 g12,i,t1 h i   =  Ai,t1 g12,i,t1  Cov Vi,t2 , χi,t2 (L, I, K, A)i,t1 −g13,i,t1       Ki,t1 g2,i,t1 − Ki,t2 Ki,t1 g22,i,t1    h  i 1     =− 2  Ai,t1 g22,i,t1  g2,i,t1 +  Ai,t1 g2,i,t1 − Ai,t2  g22,i,t1 V Uj,t1 (L, I, K, A)j,t1 ,  2   −g3,i,t1 −g23,i,t1       Ki,t1 g2,i,t1 − Ki,t2 Ki,t1 g12,i,t1    h  i 1     2  Ai,t1 g12,i,t1  g1,i,t1 +  Ai,t1 g2,i,t1 − Ai,t2  g11,i,t1 V χj,t2 (L, I, K, A)j,t1 , =−  2   −g3,i,t1 −g13,i,t1         Ki,t1 g22,i,t1 Ki,t1 g12,i,t1 Ki,t1 g2,i,t1 − Ki,t2           = − −  Ai,t1 g22,i,t1  g1,i,t1 −  Ai,t1 g12,i,t1  g2,i,t1 −  Ai,t1 g2,i,t1 − Ai,t2  g12,i,t1     −g23,i,t1 −g13,i,t1 −g3,i,t1 h i Cov Uj,t1 , χj,t2 (L, I, K, A)j,t1 .



y We do not provide formulae for Σ0 and Ξ0 (defined formally in Section SA-4.2), since they are quite long and yet can be derived easily from their definitions. Also we made the additional P assumption that i πii2 = oP (k) to simplify the bias formula. Note that the previous result remains true without this assumption, albeit the biases becomes even more cumbersome. Remark (Bias). Some bias terms can be made to zero with additional assumptions. Assume Ui,t is purely measurement error, then b1,1,i = b2,12,ij = 0. Sometimes it is assumed that all firms survive from t1 to t2 (i.e. there is no sample attrition), or the analyst focuses on a subsample, then



y



χi,t2 = Pi,t1 = 1, hence b1,2,i = b2,22,ij = 0.



SA-5.8



Conditional Moment Restrictions



The 2SLS estimator is closely related to another class of problems, those defined by conditional moment restrictions. In this section we consider the following problem: E[e(Yi , Xi , θ0 )|Zi ] = 0, where Yi is the outcome variable, Xi is the endogenous regressor, and Zi are excluded instruments (or transformations thereof). We can consider more general problems where some covariates are
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also included in the estimating equation, which would not change the general conclusion as long as the dimension of these covariates remains fixed. To transform the above estimating equation into an unconditional form, one can essentially use any function g(Zi ): E[g(Zi )e(Yi , Xi , θ0 )] = 0, provided the parameter remains identified. One particular choice is the following: µi = ZT i β,



E[µi e(Yi , Xi , θ0 )] = 0,



(E.27)



and β is the (population) regression coefficient of Xi on Zi . Note that this reduces to the 2SLS estimator if e(Yi , Xi , θ0 ) = Yi − Xi θ0 . And in fact, this choice will be optimal (in the sense of (Wooldridge, 2010, Section 14.4.3)) under conditional homoskedasticity. Nevertheless, we take the estimating equation (E.27) as given, and investigate how the first-step estimate affects the ˆ which is given by P µ ˆ asymptotic distribution of θ, i ˆ i e(Yi , Xi , θ) = 0. Once again, since the estimator √ (or estimating equation) is linear in the first-step estimator µ ˆi , it is easy to show that n(θˆ − θ0 ) has the following first order bias:   −1 ∂ 1 X √ B = − E µi e(Yi , Xi , θ0 ) E [e(Yi , Xi , θ0 )εi |Zi ] πii , ∂θ n i



√ which has the order OP (k/ n). The same arguments made in the previous subsection holds here: the bias is essentially a leave-in bias, hence a simple JIVE is effective for bias correction. The choice of instrument in (E.27) is arbitrary and is not optimal. A more interesting behavior arises when the optimal instrument, under possible conditional heteroskedasticity, is used. The optimal instrument is given by µ1i E[∂e(Yi , Xi , θ0 )/∂θ|Zi ] , = µ2i V[e(Yi , Xi , θ0 )|Zi ] which requires estimating two unknown functions, µ1i and µ2i (see Section SA-4.1 for this generalization). Note that our results apply directly to this case, though characterizing the leading, many covariates bias is very cumbersome. Depending on the specific context, the JIVE may or may not be effective for bias correction. First consider the homoskedastic case, where the optimal instrument reduces to µ1i = E[∂e(Yi , Xi , θ0 )/∂θ|Zi ], which can still be estimated by a linear projection. In this case, the JIVE is effective since the estimating equation is linear in the (unknown) instrument. Now consider the general (conditional) heteroskedastic case, where the instrument is the ratio of two unknown functions, and the denominator is obtained by regressing e(Yi , Xi , θ0 )2 on Zi . The estimating equation is nonlinear in µ2i , hence the leading bias is no longer a leave-in bias, and the JIVE is not effective. On the other hand, our generic fully data-driven results do apply, and our proposed jackknife bias-correction and bootstrap-based inference can be used directly.
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SA-6



The Jackknife



We show that the jackknife is able to estimate consistently the many instrument bias and the √ asymptotic variance, even when many instruments are used (i.e., k = O( n)). We first describe the data-driven, fully automatic algorithm. Algorithm SA.1 (Jackknife). Step 1. For each observation j = 1, 2, . . . , n estimate µi without using the j-th observation, which (j)



we denote by µ ˆi , and compute the leave-j-out estimator by solving (taking the estimator as a black box, this step simply requires to delete the j-th row from the data matrix) ˆ (j) θ



ˆ (·) = Define θ



1 n



1/2 X (j) m(wi , µ ˆi , θ) . = arg min Ωn θ i,i6=j



P ˆ (j) jθ .



Step 2. The jackknife bias estimator is defined as ˆ = (n − 1) · B



  X √  (j) √  (·) ˆ −θ ˆ = n−1 ˆ −θ ˆ , n θ n θ n



(E.28)



j



ˆ bc = θ ˆ − B/ ˆ √n. and the bias corrected estimator is θ Step 3. The jackknife variance estimator is ˆ = (n − 1) V



X



ˆ (j) − θ ˆ (·) θ



  (j) T ˆ −θ ˆ (·) . θ



(E.29)



j



y ˆ √n, Remark (Notation). To match the notation used in the main paper, note that Bˆ = B/ ˆ Similarly, Vˆ = V/n. ˆ bc = θ ˆ − B. ˆ ˆ and V ˆ is that they are therefore θ The reason we introduce B √ asymptotically non-vanishing, under the assumption that k ∝ n, hence facilitates the state and



y



proof of relevant results.



In addition to being fully automatic, another appealing feature of the jackknife is that it is possible to exploit the specific structure of the problem to reduce computation burden. For example, we (j)



use a linear model to approximate the unobserved quantity µi , the leave-j-out estimate µ ˆi



can



easily be obtained by (j)



µ ˆi



=µ ˆi +



 πij  µ ˆj − rj , 1 − πjj



1 ≤ i ≤ n.



Since re-estimating µi is the most time-consuming step when k is large, the above greatly simplifies (j)



the algorithm and reduces the computing time. To be more specific, obtaining µ ˆi 45



naively in each



jackknife repetition requires constructing (n − 1) × (n − 1) projection matrix n times, which by using the above method, one only has to construct the projection matrix once. To show the validity of the jackknife, we impose the following additional assumption. Assumption A.3 (Design Balance). A.3(1)



2 i πii



P



= oP (k);



y



A.3(2) max1≤i≤n 1/(1 − πii ) = OP (1).



Both A.3(1) and A.3(2) are understood as “design balance”, which states that asymptotically the projection matrix is not “concentrated” on any observation. Both are crucial since otherwise ZT Z becomes singular after deleting that observation. It is weaker than max1≤i≤n πii = oP (1), which is assumed in Mammen (1989) and subsequent work in the area of high-dimensional statistics. In Section SA-2.4, we provide an example in which Assumptions A.3(1) and A.3(2) hold, but max1≤i≤n πii has a nondegenerate limiting distribution. Now we are ready to state the main theorem of this section, concerning validity of the jackknife. Proposition SA.17 (Jackknife Validity).



√ Assume A.1, A.2 and A.3 hold, and k = O( n). Then the jackknife bias correction estimate (E.28)



and variance estimate (E.29) are consistent: ˆ = oP (1), B−B



  ¯ 1 |Z]] + V Ψ ¯1 +Ψ ¯ 2 Z − V ˆ = oP (1). V[E[Ψ



y
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SA-7



The Bootstrap



Although bias correction will not affect the variability of the estimator asymptotically, it is likely to have impact in finite samples. One remedy is to embed the jackknife bias correction into nonparametric bootstraps. To be more specific, one first samples with replacement, and then obtains bias corrected estimator from the bootstrap sample. For nonlinear estimation problems, however, the nonparametric bootstrap may not be appealing, since numerical procedures can fail to converge for the bootstrap data. In this section we propose a new bootstrap procedure, which combines the wild bootstrap and the multiplier bootstrap. Two separate aspects of the bootstrap will be discussed. First we show that the bootstrap can be used to estimate the bias, and provides valid distributional approximation. Second, the jackknife can be embedded into the bootstrap, which allows one to bootstrap the studentised and bias-corrected statistic, and yields better distributional approximation after bias correction.



SA-7.1



Large Sample Properties



First we describe the bootstrap procedure without embedding the jackknife. Let {e?i }1≤i≤n be i.i.d. bootstrap weights orthogonal to the original data, and have zero mean and unit variance (also finite fourth moment). Then we use the wild bootstrap for the first step. More explicitly,  −   X X    µ ˆ?i = zT zj zT zj (ˆ µj + εˆj · e?j ) i j j



j



−   X X    =µ ˆ i + zT zj zT zj εˆj · e?j  , i j 



j



εˆj = rj − µ ˆj .



(E.30)



j



ˆ ? solves the following moment condition (called the multiplier bootstrap): For the second step, θ "



#T " # n X 1X ∂ 1 ? ˆ ˆ ) · (1 + e? ) = oP (1), m(wi , µ ˆi , θ) Ωn √ m(wi , µ ˆ?i , θ i n ∂θ n i=1



(E.31)



i



which is the bootstrap analogue to (E.5). Remark (The Multiplier Bootstrap). In principal, one can also use the multiplier bootstrap for the first step, which gives a more unified treatment, with the first step bootstrap as 0=



X



?



ˆ (1 + e?i ) · zi (ri − zT i β ).



i



To state the above into a two-step procedure, note that one only needs to change the definition T ? − T ? ? of µ ˆ?i in (E.31): µ ˆ?i = zT i (Z E Z) Z E R, where E is a diagonal matrix with diagonal elements
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{1 + e?i }1≤i≤n . There is one drawback, however, of using the multiplier bootstrap for the first 1



step: for each bootstrap repetition, one has to re-compute the QR decomposition of E? 2 Z, which is computationally intensive when k is large. On the other hand, with the first step re-estimated by the wild bootstrap, one only needs to compute the projection matrix Π = Z(ZT Z)− ZT once,



y



hence requiring much less computation.



Remark (Vector-Valued µi ). Nothing changes in the bootstrap procedure when there are multiple unknowns to be estimated in the first step (see Section SA-4.1). To implement the bootstrap, we would like to mention that the same bootstrap weight e?i has to be used for generating µ ˆ?`i :  −   X X    µ ˆ?`i = µ ˆ`i + zT zj zT zj εˆ`j · e?j  , i j j



εˆ`j = r`j − µ ˆ`j ,



j



y



for 1 ≤ ` ≤ dµ . The second step remains the same. The following conditions are useful to establish results using the bootstrap. Assumption A.4 (Bootstrap). ˆ ? is given by (E.30) and (E.31), and is tight. A.4(1) θ A.4(2) µ ˆ?i is uniformly consistent: max1≤i≤n |ˆ µ?i − µi | = oP (1).



y



˙ i /∂θ) ∈ BM1 . A.4(3) For some 0 < α, δ < ∞, Hα,δ (∂ m



Remark (On Assumption A.4(2)). Here we give some primitive conditions that imply Assumption A.4(2). Lemma SA.18 (Primitive Conditions for Assumption A.4(2)). Assume A.1 and A.2 hold. Further assume (i) max1≤i≤n πii = OP (1/ log(n)), and (ii) e?i is bounded



y



and has symmetric distribution. Then max1≤i≤n |ˆ µ?i − µi | = oP (1).



To see the intuition, note that it suffices to prove max1≤i≤n |ˆ µ?i − µ ˆi | = oP (1), which is equivalent P ? to max1≤i≤n | j πij ej εˆj | = oP (1). Then we make the decomposition: max |



1≤i≤n



X j



πij e?j εˆj | ≤ max | 1≤i≤n



X



πij e?j εj | + max | 1≤i≤n



j



X



πij e?j (ˆ µj − µj )|.



j



The second term can be easily handled by Assumption A.1(3) and the condition on max1≤i≤n πii , while for the first term, one needs a reversed symmetrization of (van der Vaart and Wellner, 1996, Lemma 2.3.7). We leave the technical details to the appendix. ˆ ? is very easy to establish: The consistency of θ
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y



Proposition SA.19 (Consistency: Bootstrap). ?



ˆ − θ| ˆ = oP (1). Assume Assumptions A.1(1)–A.1(4) and A.4(1)–A.4(2) hold. Then |θ ˆ?, Given consistency, we are able to linearize the estimating equation (E.31) with respect to θ ˆ around θ: " #    X √  ? 1 ˆ −θ ˆ = Σ0 √ ˆ n θ m? (wi , µ ˆ?i , θ) 1 + oP (1) , n i



where for notational simplicity, we define m? (wi , ·, ·) := (1 + e?i ) · m(wi , ·, ·). We further expand the above with respect to the bootstrapped first step: X 1 X ? ˆ = √1 ˆ √ m (wi , µ ˆ?i , θ) m? (wi , µ ˆi , θ) n n i i   1 X ? ˆ µ ˙ (wi , µ ˆ?i − µ ˆi +√ m ˆi , θ) n i  2 1 X1 ? ˆ µ ¨ (wi , µ +√ m ˜?i , θ) ˆ?i − µ ˆi . 2 n



(E.32) (E.33) (E.34)



i



Analyzing the above terms are similar to Lemma SA.3, SA.4, SA.6 and SA.7, with slightly more delicate arguments. We first consider (E.32): Lemma SA.20 (Term (E.32)).



√ Assume A.1, A.2 and A.4 hold, and k = O( n). Then 1 X ? (E.32) = √ ei · m(wi , µi , θ 0 ) + OP n i



r ! k + oP (1). n



y ˆ?. As expected, (E.32) resembles (E.7) and contributes to the variability of θ For (E.33), we will show that it contributes both to the asymptotic variance as well as the asymptotic bias. Hence it resembles (E.8). Lemma SA.21 (Term (E.33)).



√ Assume A.1, A.2 and A.4 hold, and k = O( n). Then   X X 1 X 1 ?  ˙ (E.33) = √ E [m(w b1,i · πii + oP (1), j , µj , θ 0 )|zj ] πij  εi ei + √ n n i



j



i



y



where b1,i is given in Lemma SA.4. Finally we give the result for (E.34), whose behavior resembles that of (E.9).
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Lemma SA.22 (Term (E.34)).



√ Assume A.1, A.2 and A.4 hold, and k = O( n). Then 1 X 1 X 2 (E.34) = √ b2,ij · πij +√ b2,ii · πii2 · E[e?3 i ] + oP (1), n n i,j



i



y



where b2,ij is given in Lemma SA.7.



Now we state a result that is similar to Proposition SA.8, by combining Lemma SA.20–SA.22. Proposition SA.23 (Asymptotic Representation: Bootstrap). √ Assume A.1, A.2 and A.4 hold, and k = O( n). Then √



  B + B0 ? ˆ ˆ ¯? +Ψ ¯ ? + oP (1), n θ −θ− √ =Ψ 1 2 n



where B is given in Proposition SA.8, and " # X 1 B0 = Σ0 √ b2,ii · πii2 · E[e?3 i ] n i " # X 1 ? ¯ = Σ0 √ Ψ m(wi , µi , θ 0 ) · e?i 1 n i



    X X ? ¯ ? = Σ0 √1   ˙ Ψ E[m(w j , µj , θ 0 ) |zj ]πij  εi · ei  . 2 n i



j



y Finally we note that without bias, bootstrap consistency can be established easily by appealing to Lindeberg-type CLT arguments, by conditional on the original data. On the other hand, the bootstrap is able to replicate the many covariates/instruments bias only under the assumption that B 0 = 0, which can be achieved by using bootstrap weights e?i with zero third moment.



SA-7.2



Bootstrapping Bias-Corrected Estimators



Section SA-6 proposes the jackknife as a method for bias correction and variance estimation. In parˆ is first order equivalent to the B, hence is asymptotically degenerate (i.e. ticular, it is showed that B does not contribute to variance). On the other hand, it should be expected that in finite samples, bias correction injects noise, which will affect the performance of distributional approximations. In this subsection, we combine the bootstrap and the jackknife. More specifically, the jackknife bias correction and variance estimation are embedded into the bootstrap, which makes it possible to bootstrap the bias-corrected and studentised statistic (that is, bootstrap the bias-corrected tstatistic). Algorithm SA.2 (Bootstrapping Bias-Corrected and Studentised Statistics).  −1/2  ˆ− ˆ Step 1. Apply Algorithm SA.1 and construct the bias-corrected t-statistic T = V/n θ  ˆ √n . θ 0 − B/ 50



ˆ ?,(j) as Step 2. Compute θ ˆ θ



?,(j)



ˆ ?,(·) θ



  1/2 X ? ?,(j) = arg min Ωn ei + 1[i 6= j] m(wi , µ ˆi , θ) θ i .X X ˆ ?,(j) = (1 + e?j )θ (1 + e?j ), j



?,(j)



where µ ˆi



j



is obtained by regressing ri? on zi , without using the j-th observation. Then



 √  ?,(·) ˆ ˆ? , ˆ ? = (n − 1) n θ −θ B



ˆ ? = (n − 1) V



X



 ?,(j)   ?,(j) T ˆ ˆ ?,(·) θ ˆ ˆ ?,(·) . (1 + e?j ) θ −θ −θ



j



  ? −1/2  ? ˆ −θ ˆ−B ˆ /n ˆ ? /√n . Then construct T ? = V θ Step 3. Repeat the previous step, and use the empirical distribution of T ? to approximate that



y



of T . Remark (Notation). In the main paper, we use different scaling:  ?,(·)  ˆ ˆ? , Bˆ? = (n − 1) θ −θ



 ?,(j)   ?,(j) T n−1X ˆ ˆ ?,(·) θ ˆ ˆ ?,(·) , (1 + e?j ) θ −θ −θ Vˆ? = n j



 −1/2  ?  ˆ −θ ˆ − Bˆ? . hence equivalently, T ? = Vˆ? θ



y



Remark (Centering the bootstrap distribution). Asymptotically the distribution of T ? is centered ˆ ? /√n is consistent. In finite samples, this may not be at origin, since the bias correction term B  ? −1/2  ? ˆ −B ˆ /n ˆ ? /√n − true, and can be problematic. A practical solution is to use T ? = V θ  ˆ? − B ˆ ? /√n] . E? [θ y Remark (Failure of na¨ıve jackknife). Employing the jackknife on top of the multiplier bootstrap requires reweighting the bias and variance estimators. This is a generic issue for any bootstrap employed in multiplier form, including the standard nonparametric bootstrap. The “na¨ıve” way of implementing the jackknife under the would delete one observation each time in the bootstrap ?,(`) 1/2 Pn ?,(`) ? ˆ ˆi , θ) . This approach does not second step, that is, θ = arg minθ Ωn i=1,i6=` ωi m(wi , µ work in general because the resulting variance estimator is inconsistent. To see this, observe that this na¨ıve jackknife approach (under the multiplier bootstrap distribution) ignores the bootstrap weighting scheme and by deleting observations together with the associated weights, it effectively deletes “blocks of observations”, thereby introducing extra variability, which makes the variance



y



estimator inconsistent.



For the remaining of this section, we consider the properties of the jackknife bias and variance 51



estimator applied to the bootstrapped sample. The techniques we use will be similar to those of Proposition SA.17 and SA.23. Proposition SA.24 (Jackknife Validity with Bootstrapped Sample). √ Assume A.1, A.2, A.3 and A.4 hold, and k = O( n). In addition, assume the bootstrap weights e?i have zero third moment. Then ?



ˆ = oP (1), B + B0 − B



?



?



?



¯ +Ψ ¯ ]−V ˆ = oP (1). V? [Ψ 1 2



y
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SA-8



Numerical Evidence



In this section we provide numerical evidence of the many-covariates bias we found in Section SA3, and demonstrate the jackknife bias correction technique proposed in Section SA-6. For better inference, we bootstrap the bias-corrected test statistic (c.f. Section SA-7). We illustrate with both simulation studies and an empirical exercise, in the context of marginal treatment effects (c.f. Section SA-5.4).



SA-8.1



Monte Carlo Experiments



In this section, we consider three sets of simulations for the marginal treatment effects. The first data generating process consists of a low dimensional and correctly specified propensity score, while we add redundant covariates to the first step and see the consequence. In the second data generating process, the propensity score is nonlinear in the covariates and has moderate dimension, and we consider the pseudo true value of the marginal treatment effect corresponding to a linear approximation to the propensity score. Again we add redundant covariates to the first step to increase the dimension. For the third data generating process, the propensity score is nonlinear with low dimension. We consider using a series approximation, hence in the limit, the propensity score will be correctly specified. Therefore we are able to illustrate two sources of biases: bias due to misspecified propensity score (when k is small), and bias sue to many covariates (when k is large). For each data generating process, we use three methods to conduct inference. The first method relies on the bootstrap only, as we showed that the bootstrap is able to approximate the distribution (including the bias due to many covariates). The second method replies on the jackknife only. While the last method utilizes both the jackknife and the bootstrap. In particular, we bootstrap the jackknife bias-corrected t-statistic. DGP 1. (Table 1–3) Let the potential outcomes be Yi (0) = U0i and Yi (1) = 0.5+U1i . We assume there are many potential covariates Zi = [1, {Z`,i }1≤`≤199 ], with Z`,i ∼ Uniform[0, 0.2] independent across ` and i. To illustrate the bias and size distortion due to many covariates, without being contaminated by misspecifiedh propensity score, the i selection equation is assumed to take a very P4 parsimonious form: Ti = 1 0.1 + `=1 Z`,i ≥ Vi . Finally the error terms are distributed as Vi |Zi ∼ Uniform[0, 1], U0i |Zi , Vi ∼ Uniform[−1, 1] and U1i |Zi , Vi ∼ Uniform[−0.5, 1.5 − 2Vi ]. Note that we do not have any covariates Xi here, and the treatment effect heterogeneity and self-selection are captured by the correlation between U1i and Vi . Then E[Yi |Pi = a] = a −



a2 2



and the MTE



p2 ,



is τMTE (a) = 1 − a. To estimate MTE, set Xi = 1 and φ(p) = and the second step regression 2 ˆ ˆ ˆ ˆ ˆ ˆ becomes E[Yi |Pi ] = θ1 + θ2 · Pi + θ3 · Pi . The estimated MTE is τˆMTE (a) = θˆ2 + 2a · θˆ3 . In simulation, √ we consider the normalized quantity n (ˆ τMTE (a) − τMTE (a)) at a = 0.5, with and without bias correction. The sample sizes are n ∈ {1000, 2000}, and we use 2000 Monte Carlo repetitions. To estimate the propensity score, we regress Ti on a constant term and {Z`,i } for 1 ≤ ` ≤ k − 1, where the number of covariates k ranges from 5 to 200. Note that k = 5 corresponds to the most
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parsimonious model which is correctly specified. In the tables we illustrate the empirical bias (column “bias”), standard deviation (column “sd”), empirical size of a level-0.1 test (columns “size† ” and “size‡ ”), and length of confidence interval (columns “ci† ” and “ci‡ ”). For the empirical size and CI length, we use two approaches to illustrate the effect of bias correction. The first approach ignores the problem of variance estimation. That is, instead of using standard errors, the test statistics are constructed by using the oracle standard error (that is, the standard deviation of the estimator obtained from simulation). Results from this approach correspond to columns “size† ” and “ci† ”. The second approach we take concerns the performance of bias correction in a feasible setting. With the bootstrap, we simply use the empirical distribution to conduct hypothesis testing. And if only the jackknife is used, we rely on the feasible jackknife variance estimator to construct the t-statistic, and the inference is based on normal approximation. Results from the second approach correspond to columns “size‡ ” and “ci‡ ”. Table 1 collects the simulation results when only the bootstrap is used. First it is obvious that without bias correction, the asymptotic bias shows up quickly as k increases, which leads to severe size distortion. Interestingly, the finite sample variance shrinks at the same time. Therefore for this particular DGP, incorporating many not only leads to biased estimates, but also gives the illusion that the MTE is estimated precisely. Recall that the k = 5 model is correctly specified, therefore the variance there reflects the true variability of the estimator. The bootstrap can partially remove the bias and restore the empirical size closer to its nominal level, as the bootstrap distribution captures the many-covariate bias. In Table 2, we only use the jackknife for bias correction and variance estimation. Compared with the bootstrap, the jackknife performs much better in terms of correcting bias, although the bias correction introduces additional noises in finite samples. Finally in Table 3, we combine the jackknife and the bootstrap, since the jackknife delivers excellent bias correction and the bootstrap is able to take into account the additional variation. One can see that the empirical coverage rate remains well-controlled even with 100 covariates used in the first step. Although the focus here is inference and the size distortion issue, it is also important to know how bias correction will affect the mean squared error (MSE), a criterion commonly used to evaluate estimators. Recall that the model is correctly specified with five covariates (i.e. k = 5), hence it should not be surprising that incorporating bias correction there increases the variability of the estimator and the MSE – although the impact is very small. As more covariates are included, however, the MSE increases rapidly without bias correction, while the MSE of the bias corrected estimator remains relatively stable. Therefore the bias-corrected estimator is not only appealing for inference – it also performs better in terms of MSE when the number of covariates is moderate or large. DGP 2. (Table 4–6) To illustrate the implications of using many covariates in a more realistic setting, we make some modifications of the previous process. h data  generating  The iselection equation P49 now depends on many more covariates, Ti = 1 Φ 0.5 `=1 Z`,i − 12.25 ≥ Vi , where Φ is the standard normal c.d.f., and the covariates are i.i.d. uniformly distributed on [0, 1]. Since we do
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not change the joint distribution of the error terms, the marginal treatment effect remains to be τMTE (a) = 1 − a. For estimation, we still fit a linear model for the propensity score. By doing so, the propensity score will be misspecified regardless of the number of covariates used, and the true MTE cannot be recovered. On the other hand, this can be understood as estimating a pseudo-true value, which is defined as the “MTE identified with a linear approximation to the propensity score”. In simulations, we center the test statistic at the pseudo-true MTE, rather than the population MTE, which is obtained from a simulation with 50 covariates and very large sample size (the centering is 0.545 when a = 0.5). Since the pseudo-true MTE is obtained by using 50 covariates, there will be misspecification bias when k < 50. This is indeed confirmed by the simulation. When the number of included covariates is beyond 50, the models can be regarded as correctly specified for the pseudo-true MTE. With large k, however, the many covariates bias will dominate and lead to severe size distortion without bias correction. The bias-corrected estimator, on the other hand, removes most of the bias and the empirical coverage is very close to the nominal level. DGP 3. (Table 7–9) In the final set of simulations, series estimation (see the following table for details) is used to estimate a nonlinear propensity score. We center the test statistic by the true MTE, and the misspecification error will decrease (although never with more covariates h disappear) P  i 5 used. To be more precise, the selection equation is Ti = 1 Φ Z − 3.5 ≥ V i , which `=1 `,i depends nonlinearly on five “raw covariates”, uniformly distributed on [0, 1]. To fit the model flexibly, we gradually include more interactions and higher-order terms of the raw covariates. Note that when k is small, the bias mainly comes from misspecifying the propensity score, while for large k, the many covariates bias will dominate. This is indeed confirmed by the simulation results (the empirical coverage exhibits inverted-V shape without bias correction). With bias correction, the many covariates bias is much better controlled. Moreover, the two estimators exhibit similar MSEs when k is small, while the bias-corrected estimator has much smaller MSE when k is moderate or large. Polynomial Basis Expansion. k sk (Zi )



k



sk (Zi )



6



1 and Zi



61



4 , Z4 , · · · , Z4 ] s56 (Zi ) and [Z1i 2i 5i



11



2 , Z2 , · · · , Z2 ] 1, Zi and [Z1i 2i 5i



126



s61 (Zi ) and 4th -order interactions



21



s11 (Zi ) and 2nd -order interactions



131



5 , Z5 , · · · , Z5 ] s126 (Zi ) and [Z1i 2i 5i



26



3 , Z3 , · · · , Z3 ] s21 (Zi ) and [Z1i 2i 5i



252



s131 (Zi ) and 5th -order interactions



56



s26 (Zi ) and 3rd -order interactions



257



6 , Z6 , · · · , Z6 ] s252 (Zi ) and [Z1i 2i 5i



SA-8.2



Empirical Illustration



In this section we report the marginal returns to college education with the data used in Carneiro, Heckman, and Vytlacil (2011), estimated by the local instrumental variable approach. Moreover, we
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illustrate the importance of employing bias correction, and how it affects the estimated treatment effect heterogeneity. The data consists of a subsample of white males from the 1979 National Longitudinal Survey of Youth (NLSY79), and the sample size is n = 1, 747. The outcome variable, Yi , is the log wage in 1991, and the sample is split according to the treatment variable Ti = 0 (high school dropouts and high school graduates), and Ti = 1 (with some college education or college graduates). Hence the parameter of interest is the return to college education. The dataset includes covariates on individual and family background information, and four “raw” instrumental variables: presence of four-year college, average tuition, local unemployment and wage rate, measured at age 17 of the survey participants. We follow Carneiro, Heckman, and Vytlacil (2011) and normalize the estimates by the difference of average education level between the two groups, so that the estimates are interpreted as return to per year college education. The summary statistics are given in Table 10. Standard linear regression (OLS) yields point estimate 0.072 (standard error 0.007), and twostage least squares (2SLS) using the aforementioned instruments yields 0.155 (standard error 0.048). Argued in Heckman and Vytlacil (2005), the 2SLS estimate is hard to interpret in practice (unless the instrument is binary) for two reasons. First it does not provide information on treatment effect heterogeneity, which is crucial for many economic/policy questions. Second, the 2SLS is a complicated weighted average of the marginal treatment effect, which many not reflect the effect of any policy experiment. We employ the local instrumental variable approach to estimate the marginal treatment effect, as well as the bias correction technique we proposed in this paper. Outcome Equation Following Carneiro, Heckman, and Vytlacil (2011), we make the assumption that the error terms are jointly independent of the covariates and the instruments. Then we have τMTE (a|x) = ∂E[Yi |Pi = a, Xi = x]/∂a, and E[Yi |Pi = a, Xi = x] = xT γ 0 + a · xT δ 0 + φ(a)T θ 0 , where Pi = P[Ti = 1|Zi ] is the propensity score, and φ is some fixed transformation. To be more specific, we use series expansion of the estimated propensity score, with different order of polynomials (note that a linear term of the estimated propensity score is included in a · xT ): p=2



φ(a) = a2



Table 11



p=3



φ(a) = [a2 , a3 ]T



Table 12



p=4



φ(a) = [a2 , a3 , a4 ]T



Table 13



p=5



φ(a) = [a2 , a3 , a4 , a5 ]T



Table 14.



We use the same set of covariates Xi for the outcome equation as in Carneiro, Heckman, and Vytlacil (2011), which includes
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(i) linear and square terms of corrected AFQT score, education of mom, number of siblings, permanent average local unemployment rate and wage rate at age 17; (ii) indicator of urban residency at age 14; (iii) cohort dummy variables; (iv) average local unemployment rate and wage rate in 1991, and linear and square terms of work experience in 1991. Selection Equation The selection equation (i.e. the propensity score) is estimated with either a linear probability model or Logit model, and the dimension of zi varies from 35 to 66. This is comparable to the simulation settings. We evaluate at the average values of the covariates, i.e. we report τˆMTE (a|¯ x) with and without bias correction, for a ∈ {0.2, 0.5, 0.8}. For selection equation, we consider five different specifications for Zi . The first one is most parsimonious, and corresponds to columns (1), (6) and (11) in Table 11–14: (i) as described above; (ii) as described above; (iii) as described above; (v) the four raw instruments: presence of four-year college, average local college tuition at age 17, average local unemployment and wage rate at age 17, as well as their interactions with corrected AFQT score, education of mom and number of siblings. The next specification of Zi include certain linear interactions, and corresponds to columns (2), (7) and (12) in Table 11–14: (i) as described above; (ii) as described above; (iii) as described above; (v) as described above; (vi) interactions among corrected AFQT score, education of mom, number of siblings, permanent average local unemployment rate and wage rate at age 17. Another specification of Zi , corresponding to columns (3), (8) and (13) in Table 11–14, is as follows: (i) as described above; (ii) as described above; 57



(iii) as described above; (v) as described above; (vii) interactions between the cohort dummies and corrected AFQT score, education of mom and number of siblings. The next specification encompasses all above, given in columns (4), (9) and (14) in 11–14: (i) as described above; (ii) as described above; (iii) as described above; (v) as described above; (vi) as described above; (vii) as described above. Finally, for comparison purpose, we also include the specification used in Carneiro, Heckman, and Vytlacil (2011), corresponding to columns (4), (10) and (15) in Table 11–14, where the propensity score is estimated with the following Logit regression: (i) as described above; (ii) as described above; (iii) as described above; (v) the four raw instruments: presence of four-year college, average local college tuition at age 17, average local unemployment and wage rate at age 17, as well as their interactions with corrected AFQT score, education of mom and number of siblings.
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SA-9



Empirical Papers with Possibly Many Covariates



Per request of the Editor and the Reviewers, we document a sample of empirical papers employing two-step estimation strategies where the dimensionality of the covariates used is possibly “large” √ (in the sense that k/ n is large) and therefore our methods could have been used to obtain more robust inference procedures. These papers were found upon searching for the following keywords: “propensity score”, “control function”, and “semiparametric”. We only report those papers that explicitly declare the dimensionality of the first step estimation and exclude those papers that did not provide this information clearly (even though these also appear to be using several covariates and/or transformations thereof). This list is not meant to be systematic or exhaustive, and therefore we did not attempt to conduct a meta-analysis on the topic of many covariates in two-step estimation. 1. Abadie (2003), Journal of Econometrics 113(2): 231–263. Methodology: local average response function method. 86 covariates are used to estimate a √ linear probability model with n = 9, 275; k/ n ≥ 0.89, depending of specification considered. 2. Black and Smith (2004), Journal of Econometrics 121(1): 99–124. Methodology: propensity score matching. More than 30 covariates are used in propensity √ score estimation with n ≈ 350; k/ n ≥ 1.60, depending of specification considered. 3. Brand and Davis (2011), Demography 48(3): 863–887. Methodology: propensity score is estimated with Probit model, which is then used as generated regressor. 20 covariates are used for propensity score estimation with n ≈ 2, 000; √ k/ n ≥ 0.60, depending of specification considered. 4. Brand and Xie (2010), American Sociological Review 75(2): 273–302. Methodology: propensity score is estimated with Logit model, which is then used to formed strata for treatment effect estimation. About 18 covariates are used for propensity score √ estimation with n ≈ 1, 250; k/ n ≥ 0.50, depending of specification considered. 5. Carneiro, Heckman and Vytlacil (2011), American Economic Review 101(6): 2754–2781. Methodology: propensity score is estimated with Logit model and the fitted value is used as generated regressor to estimate a partially linear second step. 35 covariates are used √ to estimate the propensity score with sample size n = 1, 747; k/ n ≥ 0.85, depending of specification considered. 6. Galasso and Schankerman (2014), Quarterly Journal of Economics 130(1): 317–369. Methodology: predicted probability is used as instrument. 51 fixed effects plus other variables √ are used in estimating the conditional probability, with sample size n = 1, 357; k/ n ≥ 1.38, depending of specification considered. 59



7. Helpman, Melitz and Rubinstein (2008), Quarterly Journal of Economics, 123(2): 441–487. Methodology: probability of exports is estimated in the first step and then used as gener√ ated regressor. About 340 covariates are used with sample size n ≈ 24, 700; k/ n ≥ 2.04, depending of specification considered. 8. Jalan and Ravallion (2003), Journal of Econometrics 112(1): 153–173. Methodology: propensity score matching method. 91 covariates are used in propensity score √ matching with n ≈ 30, 000; k/ n ≈ 0.60, depending of specification considered. 9. Lechner (1999), Journal of Business & Economic Statistics 17(1): 74–90. Methodology: propensity score matching. 31 covariates are used with sample size n = 1, 399; √ k/ n ≥ 0.85, depending of specification considered. 10. Lechner and Wunsch (2013), Journal of Econometrics 21: 111–121. Methodology: propensity score is estimated with Probit model, and is used for treatment √ effect estimation (simulation). More than 180 covariates are used with n ≈ 25, 000; k/ n ≥ 1.10, depending of specification considered. 11. Noboa-Hidalgo and Urz´ ua (2012), Journal of Human Capital 6(1): 1–34. Methodology: propensity score is estimated with Probit model, which is then used as generated regressor. About 20 covariates are used for propensity score estimation with n = 469; √ k/ n ≥ 0.90, depending of specification considered. 12. Olley and Pakes (1996), Econometrica 64(6): 1263–1297. Methodology: three-step procedure described in Section SA-5.7. Fourth-order series expan√ sion of three variables are used in the first step (34 covariates), and n ≈ 1, 000; k/ n ≥ 1.00, depending of specification considered. 13. Tsai and Xie (2011), Social Science Research 40(3): 796–810. Methodology: propensity score is estimated with Probit model. 34 covariates are used with √ sample size n ≈ 1, 300; k/ n ≥ 0.85, depending of specification considered. √ In this sample of papers, we found that k/ n is roughly around 1.00. According to our simulations, which employed a very simple data generating process, two-step conventional inference √ procedures constructed using k/ n ≈ 1.00 exhibit an empirical size distortion of about 10 − 15 percentage points. That is, a nominal 95% conventional confidence interval exhibits empirical coverage of about 80 − 85%.
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SA-10



Proofs



In this section we collect the technical proofs of lemmas, theorems and corollaries.



SA-10.1



Properties of Π = Z(ZT Z)− ZT



Recall that Π = Z(ZT Z)− ZT is the projection matrix, with its entries denoted by πij . Then the first conclusion is that tr[Π] = k. And since Π is a projection matrix, one has ΠΠ = Π, which means X πij = πi` πj` . `



Also note that πij = πji , i.e. Π is symmetric, and 0 ≤ πii ≤ 1 from the idempotency of the projection matrix. Next consider the trace of ΠΠ = Π2 : XX 2 X 2 X 2 k = tr[Π2 ] = πij = πii + πij , i



j



i



i,j,j6=i



which implies that X



X



2 πii ≤ k,



i



Next we replace πii by



P



j



2 πij ≤ k.



i,j



2 πij , which gives



! k≥



X



2 πii



=



i



X



X



πii



2 πij



=



i



j



i



XX



2 πii πij ,



j



hence X



X



3 πii ≤ k,



i



2 πii πij ≤ k.



i,j



Now make a further replacement, !2 k≥



X



2 πii



=



i



X X i



2 πij



=



j



X



4 πii +



X



4 πij +



i



i,j,i6=j



4 πij ≤ k,



X



X



2 2 πij πi` .



i,j,`,j6=`



One direct consequence is that X i



4 πii ≤ k,



X i,j



2 2 πij πi` ≤ k.



i,j,`



We summarize the above in the following lemma: Lemma SA.25. Let Π be a projection matrix with rank at most k, then: P (i) Π is symmetric, nonnegative definite, and Π2 = Π, which implies πij = ` πi` πj` . (ii) The diagonal elements satisfy X 0 ≤ πii ≤ 1 ∀i, and πii = tr[Π] ≤ k. i
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(E.35)



(iii) The following higher order summations hold: X 2 X 2 πii ≤ k, πij ≤ k, i



(E.36)



i,j



X



3 πii ≤



X



X



2 πii ≤ k,



i



i



X



4 πii ≤



i



X



2 πii πij ≤



i,j



X



X



2 πii ≤ k,



i



2 πii ≤ k,



(E.37)



i



X



4 πij ≤



i,j



X



2 πii ≤ k,



i



2 2 πij πi` ≤



X



2 πii ≤ k.



(E.38)



i



i,j,`







SA-10.2



Summation Expansion



P We first consider the expansion of ( i,j,i6=j aij )2 , where aij 6= aji . 2



 X



X



aij ai0 j 0



i,j,i0 ,j 0 i6=j, i0 6=j 0



i,j,i6=j



=



X



aij  =







X



aij ai0 j 0 +



i,j,i0 ,j 0 distinct



i,j,j 0 distinct



P



Note that the two terms



X



aij aij 0 +



i,j,i0 distinct



i,j,i0 distinct



aij ai0 i and



X



aij ai0 i +



i,j,j 0 distinct



P



i,j,j 0 distinct



X



aij ajj 0 +



aij ai0 j +



X



i,j,i0 distinct



a2ij +



i,j i6=j



X



aij aji .



i,j i6=j



aij ajj 0 are identical by relabeling, hence



Lemma SA.26. 2



 X 



aij  =



i,j,i6=j



X



X



aij ai0 j 0 +



i,j,i0 ,j 0 distinct



X



aij aij 0 + 2



i,j,j 0 distinct



X



aij ai0 i +



i,j,i0 distinct



aij ai0 j +



i,j,i0 distinct



X



a2ij +



X



i,j i6=j



aij aji .



(E.39)



i,j i6=j



 A special case is when aij = aji so that the two indices are exchangeable. Then Lemma SA.27. 2



 X



(i, j)-exchangeable



aij  =







X 0



i,j,i6=j



X



aij ai0 j 0 + 4 0



aij aii0 + 2



0



i,j,i ,j distinct



i,j,i distinct



X



a2ij .



(E.40)



i,j i6=j



 P Next we consider (



i,j,` distinct



2



ai bij` ) , where bij` = bi`j , i.e. for b the last two indices are exchangeable. For



convenience define the following di =



X



bij` ,



X



ci =



j,`,j6=`



bij` .



j,` j6=i,`6=i,6=`



Then c i = di − 2



X



biij + 2biii = di − 2



j



And the decomposition becomes  2 X   ai bij`  =  i,j,` distinct



X



biij .



j,j6=i



!2 X



ai ci



=



i



X i
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a2i c2i +



X i,i0 ,i6=i0



ai ai0 ci ci0 .



To make further progress, consider 2     2  2  X X X X X c2i = di − 2 biij  =  bij`  + 4  biij  − 4  bij`   bii`0  j,j6=i



X



=



j,`,j6=`



X



bij` bij 0 `0 + 4



j,`,j 0 ,`0 distinct



j,j6=i



bij` bijj 0 + 2



j,`,j 0 distinct



X



b2ij` + 4



j,` j6=`



`0 ,`0 6=i



j,`,j6=`



X



b2iij + 4



j,j6=i



X



X



biij bii` − 4



bij` bii`0 ,



j,`,`0 j6=`,`0 6=i



j,` j6=i,`6=i,j6=`



and  ci ci0 = 



 X



bij`  



j,`,j6=`



 X



bi0 j`  =



j,`,j6=`



X



X



bij` bi0 j 0 `0 + 4



j,`,j 0 ,`0 distinct



bij` bi0 j`0 + 2



j,`,`0 distinct



X



bij` bi0 j` .



j,` j6=`



Therefore we have the following Lemma SA.28. 2  X  (j, `)-exchangeable  ai bij`  



i,j,` distinct



 =



X







j,`,j 0 distinct







 −4



X i



 X a2i  



j,`,`0 j6=`,`0 6=i



X i,i0 ,i6=i0



i



j,` j6=`



j,j6=i



j,` j6=i,`6=i,j6=`



 biij bii`   















X



X X     X  X bij` bii`0  bij` bi0 j 0 `0  bij` bi0 j`0  ai ai0  ai ai0  +  +4   i,i0 ,i6=i0



 +2







X X 2  X 2X 2  X bij` bij 0 `0 + 4 bij` bijj 0 + 2 a2i  bij`  ai  biij +  +4  j,`,j 0 ,`0 distinct



i







j,`,j 0 ,`0 distinct



i,i0 ,i6=i0



j,`,`0 distinct







X  ai ai0  bij` bi0 j`   .



(E.41)



j,` j6=`







SA-10.3



Theorem SA.1



h i ˆ is tight, let K be defined such that P |θ ˆ − θ 0 | ≥ K ≤ η for some η > 0. Then for an arbitrary δ > 0 Since θ h i h i ˆ − θ 0 | ≥ δ ≤ η + P δ ≤ |θ ˆ − θ0 | ≤ K . P |θ P Define G(θ) = G(θ, µ) = |E[m(wi , µi , θ)]| and Gn (θ) = Gn (θ, µ ˆ) = |n−1 i m(wi , µˆi , θ)|, then θ 0 = minθ G(θ), and ˆ ≤ inf θ Gn (θ) + oP (1). Further define ε(δ, K) = inf δ≤|θ−θ |≤K G(θ) − G(θ 0 ), then ε(δ, K) > 0 for all δ > 0 and Gn (θ) 0 K < ∞, since we assumed θ 0 is the unique root and m is continuous in θ. ˆ ˆ ˆ ˆ Note that |θ−θ 0 | ≥ δ and |θ−θ 0 | ≤ K implies that either |G(θ 0 )−Gn (θ 0 )| ≥ ε(δ, K)/3+oP (1), or |G(θ)−Gn (θ)| ≥ ε(δ, K)/3 + oP (1). Therefore " # h i ˆ P δ ≤ |θ − θ 0 | ≤ K ≤ P sup |Gn (θ) − G(θ)| + oP (1) ≥ ε(δ, K)/3 |θ−θ 0 |≤K



  ≤ 1 



 sup |θ−θ 0 |≤K max1≤i≤n |µ0i −µi |≤λ



 |G(θ, µ0 ) − G(θ)| ≥ ε(δ, K)/6 
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 +P







   max |ˆ µi − µi | ≥ λ + P  



1≤i≤n



sup



|θ−θ 0 |≤K max1≤i≤n |µ0i −µi |≤λ



 Gn (θ, µ0 ) − G(θ, µ0 ) + oP (1) ≤ ε(δ, K)/6 . 



By Assumption A.1(3), one has lim supn P [max1≤i≤n |ˆ µi − µi | ≥ λ] = 0 for any (fixed) λ > 0. Further, due to Assumption A.2(1), Theorem 2.7.11 of van der Vaart and Wellner (1996) implies    lim sup P   n



sup |θ−θ 0 |≤K max1≤i≤n |µ0i −µi |≤λ



 Gn (θ, p0 ) − G(θ, p0 ) + oP (1) ≤ ε(δ, K)/6 = 0. 



Therefore  h







i



 ˆ − θ 0 | ≥ δ ≤ η + lim sup 1  lim sup P |θ  n



n



sup



|θ−θ 0 |≤K max1≤i≤n |µ0i −µi |≤λ



 |G(θ, µ0 ) − G(θ)| ≥ ε(δ, K)/6 .



Finally, note that K implicitly depends on η, while the choice of δ, η and λ are mutually independent. Hence we could first let λ ↓ 0, then the indicator function will be identically zero for all n (use the dominated convergence theorem). Then let η ↓ 0, we will have the desired consistency result. 



SA-10.4



Lemma SA.2



We apply Taylor expansion to the GMM problem, which gives " #T 1X ∂ 1 X ˆ ˆ oP (1) = m(wi , µ ˆi , θ) m(w , µ ˆ , θ) Ωn √ i i T n i ∂θ n i " " #T # !  √  1X ∂ 1 X 1X ∂ ˆ ˜ ˆ = m(wi , µ ˆi , θ 0 ) + m(wi , µ ˆi , θ) Ωn √ m(wi , µ ˆi , θ) n θ − θ0 , n i ∂θ T n i ∂θ T n i ˜ is (possibly random) convex combination of θ ˆ and θ 0 . Then we have where θ  X √  ˆ − θ 0 = −(M ˜ Tn )−1 M ˆ Tn Ωn √1 ˆ Tn Ωn M m(wi , µ ˆi , θ 0 ) + oP (1) n θ n i 1 X m(wi , µ ˆi , θ 0 ) + oP (1), = −(MT0 Ω0 MT0 )−1 MT0 Ω0 √ n i where X ∂ ˆ ˆn= 1 M m(wi , µ ˆi , θ), n i ∂θ T



X ∂ ˜ ˜n= 1 M m(wi , µ ˆi , θ). n i ∂θ T



ˆ n and M ˜ n converge in probability We need uniform law of large numbers (locally to µi and θ0 ) to show that both M to M0 . Under our assumption, an application of Theorem 2.7.11 of van der Vaart and Wellner (1996) is enough to show that the bracketing number of m(·) is finite. 



SA-10.5



Lemma SA.3



The following term is easily bounded: 1 X 1 X ˙ ˙ m(w |m(w √ i , µi , θ 0 )ηi ≤ max |ηi | · √ i , µi , θ 0 )| n 1≤i≤n n i i 1X ˙ = oP (1) · |m(w i , µi , θ 0 )| = oP (1), n i
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˙ is integrable. The other term is handled similarly. Note that by Cauchy-Schwarz inequality, since m X  1 X ˙ m(w πij ηj √ i , µi , θ 0 ) n i j 2 !1/2 X X πij ηj i j !1/2 X |ηi |2



!1/2



1 ≤ √ n



X



1 ≤ √ n



X



˙ |m(w i , µi , θ 0 )|



2



˙ |m(w i , µi , θ 0 )|



2



i



!1/2 i



≤ oP (1) ·



1X 2 ˙ |m(w i , µi , θ 0 )| n i



!1/2 = oP (1),



˙ is square integrable. where the last uses the fact that m



SA-10.6



(projection)



i







Lemma SA.4



˙ ˙ ˙ The conclusion will be self-evident after two decompositions. First rewrite m(w i , µi , θ 0 ) = m(w i , µi , θ 0 )−E [m(w i , µi , θ 0 ) |zi ]+ ˙ E [m(w i , µi , θ 0 ) |zi ] as the conditional expectation decomposition. Then ! 1 X X 1 X ˙ (E.8) = √ · εi + √ E[m(w , µ , θ ) |z ]π ui εj πij , j j 0 j ij n i n i,j j ˙ ˙ where we use ui = m(w i , µi , θ 0 ) − E [m(w i , µi , θ 0 ) |zi ] to save notation. Then  " # " #1/2  X 1 X 1 X 1 , √ ui εj πij = E[·|Z] √ ui εj πij + OP V[·|Z] √ ui εj πij n i,j n i,j n i,j where we use E[·|Z] and V[·|Z] to denote the expectation and variance conditional on {zi , µi }1≤i≤n , respectively. Then " # 1 X 1 X E[·|Z] √ ui εj πij = √ b1,i πii , n i,j n i ˙ with b1,i = E[·|Z] [ui εi ] = E[·|Z] [m(w i , µi , θ 0 )εi ], since i 6= j



⇒



E[·|Z] [ui εj ] = E[·|Z] [ui ] · E[·|Z] [εj ] = 0.



Next we estimate the order of the conditional variance. To this end, consider  ! !T  X X 1 1 √ E[·|Z]  √ ui εj πij ui εj πij  n i,j n i,j h i 1 X = E[·|Z] ui uTi0 εj εj 0 πij πi0 j 0 n i,j,i0 ,j 0 h i 1 X = E[·|Z] ui uTi0 εi εi0 πii πi0 i0 n 0



(i = j, i0 = j 0 )



i,i distinct



+



h i 1 X E[·|Z] ui uTi εj εj πij πij n i,j



(i = i0 , j = j 0 )



distinct



h i 1 X + E[·|Z] ui uTj εj εi πij πij n i,j



(i = j 0 , j = i0 )



distinct



h i 1X + E[·|Z] ui uTi εi εi πii πii . n i
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(i = j = i0 = j 0 )



Hence # " 1 X ui εj πij V[·|Z] √ n i,j  ! !T  " # " #T X X X X 1 1 1 1 √ = E[·|Z]  √ ui εj πij ui εj πij  − E[·|Z] √ ui εj πij E[·|Z] √ ui εj πij n i,j n i,j n i,j n i,j h i 1 X h i 1X h i 1X 1 X 2 = E[·|Z] ui uTi εj εj πij πij + E[·|Z] ui uTj εj εi πij πij + E[·|Z] ui uTi εi εi πii πii − b1,i bT1,i πii . n i,j n i,j n i n i distinct



distinct



Due to Assumption A.2(4), the above terms are easily bounded by h i X 1X 2 1 T E[·|Z] ui ui εj εj πij πij πij ≤ n n i,j i,j distinct h i X 1X 2 1 T E[·|Z] ui uj εj εi πij πij πij ≤ n n i,j i,j distinct X h i 1 1X 2 k T E[·|Z] ui ui εi εi πii πii πii ≤ n n n i i X X 1 k 1 2 2 b1,i bT1,i πii πii ≤ , n n n i i



k n



k n



which closes the proof.



SA-10.7







Lemma SA.5



˙ For notational convenience, denote ai = E[m(w i , µi , θ 0 )|zi ]. Then it suffices to give conditions such that i X 1 Xh √ aj πij εi = oP (1). ai − n i j Note that the conditional variance of the LHS is (use Assumption A.2(4)) # " 2 2 h i X X X 1 X 1 X 1 X V[·|Z] √ ai − aj πij εi aj πij = aj πij ai − ai − Γzi + Γzi − n n n i j i i j j ! 2 2 2 2 X X X X X 2 2 2 ≤ aj πij = (aj − Γzj )πij ai − Γzi + Γzi − ai − Γzi + n i n n i i j j 2 4 X ≤ (Projection) ai − Γzi n i = oP (1), where the last line shows why the assumption in Lemma SA.5 is sufficient. Note that by projection, Γzi =



SA-10.8



P



j



Γzj πij . 



Lemma SA.6



¨ i = m(w ¨ i , µi , θ 0 ) for notational convenience. Then For the current proof, we use m  2 1 X ¨i µ (E.9) = √ m ˆi − zTi β + zTi β − µi 2 n i  2 1 X ¨i µ = √ m ˆi − zTi β 2 n i
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(I)



 2 1 X ¨ i zTi β − µi + √ m 2 n i    1 X ¨i µ m ˆi − zTi β zTi β − µi . +√ n i



(II) (III)



It is easy to show that (II) is oP (1) given Assumption A.1(5), A.2(4): |(II)| ≤



√ 1 X ¨ i | = oP (1). |m n max |ηi |2 · 1≤i≤n 2n i



Similar argument applies to (III): 1 X ¨ i ηi (εj + ηj )πij |(III)| = √ m n i,j !1/2 !1/2 X X 1 2 2 ¨ i ηi | ≤ √ |m |εj + ηj | n i i !1/2 !1/2 √ 1X 1X 2 2 ¨ i| ≤ n max |ηi | · |m |εj + ηj | = oP (1). 1≤i≤n n i n i



(projection)



Next we further decompose (I) as  2 1 X √ ¨i µ m ˆi − zTi β 2 n i X 2 1 X ¨i m πij εj = √ 2 n i j X 2 1 X ¨i m πij ηj + √ 2 n i j X  1 X ¨i +√ m εj ηk πij πik . n i j,k



(IV) (V) (VI)



Again we claim that (V) and (VI) are negligible. For (V), ! X X 1 X ¨i πij ηj · √ πij ηj |(V)| ≤ max m 1≤i≤n 2 n j



i



j



! !2 !1/2 !1/2 X X X X 1 2 ¨ i| |m πij ηj ≤ √ πij ηj max 2 n 1≤i≤n j i i j ! !1/2 !1/2 X X X 2 1 2 ¨ i| ≤ √ max πij ηj |m ηi 2 n 1≤i≤n j i i   √ √ 1 n max |ηi | · OP ( n) · oP (1) = oP (1). - √ 1≤i≤n n



(projection)



For (VI), note that |(VI)| ≤



≤



!1/2  2 1 X X ¨i εj πij m n i j



XX i



j



!1/2  2 1 X X ¨ εj πij m i n i j



X



2



≤ oP (1)



!1/2



!1/2 |ηi |



i



!1/2  2 1 X X ¨ m ε π . i j ij n i j
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ηj πij



2



(projection)



Finally, the term in the brackets can be handled with conditional expectation calculation: # "  2 1X k 1 X X 2 ¨ i εj |2 ]πij ¨i εj πij = E[·|Z] [|m - . E[·|Z] m n n n i



j



i,j



Therefore, (VI) = oP



r ! k . n 



SA-10.9



Lemma SA.7



¨ i = m(w ¨ i , µi , θ 0 ) to save notation. For the proof again we consider the expansion Again we define m !2 X 1 X 1 X √ ¨i ¨ i πij πi` εj ε` m πij εj = √ m 2 n i 2 n i,j,` j X 1 ¨ i πij πi` εj ε` = √ m 2 n i,j,`



(I)



distinct



X 1 2 2 ¨ i πij + √ m εj 2 n i,j,i6=j



SA-10.9.1



(II)



X 2 ¨ i πij πii εi εj + √ m 2 n i,j,i6=j



(III)



1 X 2 2 ¨ i πii m εi . + √ 2 n i



(IV)



Expectation



It is easy to see that both (I) and (III) have zero conditional expectation. Hence we consider (II) and (IV). X  1 1 X 2 2 2 ¨ i πij E[·|Z] [(II)] = √ E[·|Z] m εj = √ b2,ij πij . 2 n i,j,i6=j n i,j,i6=j where the last line uses (E.36). And 1 X 2 b2,ii πii . E[·|Z] [(IV)] = √ n i



SA-10.9.2



Variance, Term (I)



¨ i and (ignore the 1/2 in front) bij` = πij πi` εj ε` , and First for (I) we use (E.41) with ai = m 2   X  1   ¨ i πij πi` εj ε`   E[·|Z]  √ m n i,j,` distinct



h i 2X X ¨ Ti m ¨ i b2ij` = E[·|Z] m n i j,`,j6=` h i 4XX ¨ Ti m ¨ i b2iij + E[·|Z] m n i j,j6=i h i 2 X X ¨ Ti m ¨ i0 bij` bi0 jl . + E[·|Z] m n 0 0 i,i ,i6=i j,`,j6=`
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(I.1) (I.2) (I.3)



Next by (E.38), (I.1) -



1X X 2 2 1X 2 k πij πi` ≤ πii ≤ . n i n i n j,`,j6=`



And by (E.37), (I.2) -



1X 2 2 1X 3 k πii πij ≤ πii ≤ . n i,j n i n



And (I.3) = =



2 n



X



h i ¨ Ti m ¨ i0 πij πij 0 πi0 j πi0 j 0 ε2j ε2j 0 E[·|Z] m



X



i,i0 ,i6=i0 j,j 0 ,j6=j 0



h i 2 X ¨ Ti m ¨ i0 πij πij 0 πi0 j πi0 j 0 ε2j ε2j 0 E[·|Z] m n 0 0 i,i ,j,j distinct



+



i 8 X h h i 4 X 2 2 2 ¨ Ti m ¨ i0 πii πii ¨ Ti m ¨ i0 πii πij πii0 πi0 j ε2i ε2j . 0 πi0 i0 εi εi0 + E[·|Z] m E[·|Z] m n n 0 0 i,i distinct



i,i ,j distinct



¨ i |zi ], dj = E[ε2j |zj ], and ei = E[ε2i m ¨ i |zi ], and with (E.41) the above becomes Define ci = E[m (I.3) =



4 X 2 X 8 X T 2 0 πi0 i0 ei ei0 + πij πij 0 πi0 j πi0 j 0 cTi ci0 dj dj 0 + πii πii πii πij πii0 πi0 j eTi ci0 dj n 0 0 n n 0 0 i,i ,j,j distinct



= +



2 n



i,i distinct



X



X



i,i0 ,i6=i0



j,j 0 ,j6=j 0



πij πij 0 πi0 j πi0 j 0 cTi ci0 dj dj 0



 8 X  4 X 2 0 πi0 i0 eTi ei0 − cTi di ci0 di0 + πii πii πii πij πii0 πi0 j (ei − ci di )T ci0 dj n n 0 0 i,i distinct



=



i,i ,j distinct



i,i ,j distinct



2 X πij πij 0 πi0 j πi0 j 0 cTi ci0 dj dj 0 n 0 0 i,i ,j,j   4 X 2 0 πi0 i0 eTi ei0 − cTi di ci0 di0 πii πii + n 0



(I.3.1) (I.3.2)



i,i distinct



+



8 X πii πij πii0 πi0 j (ei − ci di )T ci0 dj n 0



(I.3.3)



2 n



2 2 πij πi0 j cTi ci0 d2j



(I.3.4)



2 XX 2 2 πij πij 0 |ci |2 dj dj 0 . n i 0



(I.3.5)



i,i ,j distinct



− −



X X i,i0 ,i6=i0



j



j,j



Then use (E.36) X 2 X 2 |(I.3.1)| = πij πij 0 πi0 j πi0 j 0 cTi ci0 dj dj 0 = cTi ci0 n 0 0 n 0



!2 !2 2X X T πij πi0 j dj ≤ max |ci ci0 | πij πi0 j dj n 0 1≤i,i0 ≤n j j i,i ,j,j i,i i,i !2 X 2X 2 X T T πij πij 0 dj dj 0 = max |ci ci0 | dj dj 0 πij πij 0 = max |ci ci0 | 1≤i,i0 ≤n 1≤i,i0 ≤n n 0 0 n 0 i i,i ,j,j j,j !2 2X X 2X 2 k T ≤ max |ci ci0 dj dj 0 | πij πij 0 ≤ max |cTi ci0 dj dj 0 | πjj 0 - . 0 0 0 0 1≤i,i ,j,j ≤n 1≤i,i ,j,j ≤n n 0 n n 0 i j,j



X



j,j
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And by (E.37)   4 X 4 X 2 2 0 πi0 i0 0 πi0 i0 eTi ei0 − cTi di ci0 di0 ≤ max |eTi ei0 − cTi di ci0 di0 | πii πii πii πii |(I.3.2)| = 0 1≤i,i ≤n n n i,i0 0 i,i distinct distinct X 4 k 2 0 πi0 i0 ≤ max |eTi ei0 − cTi di ci0 di0 | πii . 1≤i,i0 ≤n n n 0 i,i distinct



And by (E.36) and (E.38) X 8 X X 1 T |(I.3.3)| = πii πij πii0 πi0 j (ei − ci di ) ci0 dj |ci0 dj ||πi0 j | (ei − ci di )πii πij πii0 n i,i0 ,j n i0 ,j,i0 6=j i distinct i6=i0 ,i6=j v 2 u u s u 1 X 2 uX X 0 (e − c d )π π π πi0 j u i i i ii ij ii t n i0 ,j i0 ,j i6=i0i,i6=j √ s X k (ei − ci di )T (ej 0 − cj 0 dj 0 )πii πij πii0 πj 0 j 0 πjj 0 πi0 j 0 n i,i0 ,j,j 0 √ s √ s √ s √ s k X k X k X k X 2 k 2 2 2 πii ≤ . (ei − ci di )T (ej 0 − cj 0 dj 0 )πii πij πii πij πii πij = 0 πj 0 j 0 ≤ 0 ≤ 0 πj 0 j 0 n n n n n 0 0 0 i i,j



i,j



i,j



And by (E.38) 2 |(I.3.4)| = n



X X i,i0 ,i6=i0



j



2 2 2 πij πi0 j cTi ci0 d2j ≤ max |cTi ci0 d2j | 0 ,j≤n 1≤i,i n 



X X i,i0 ,i6=i0



2 2 πij πi0 j -



j



k . n



And by (E.38) XX 2 2 XX 2 2 k 2 2 2 |(I.3.5)| = πij πij 0 |ci | dj dj 0 ≤ max0 ||ci |2 dj dj 0 | πij πij 0 - . 1≤i,j,j ≤n n n n i j,j 0 i j,j 0



SA-10.9.3



Variance, Term (II)



Then for (II), one has (by using (E.39))  2   2 X X   1 1 2 2  2 2  ¨ i πij ¨ i πij E[·|Z]  √ m εj − √ E[·|Z] m εj n i,j,i6=j n i,j,i6=j  2 h i X   1 1 X T 2 2 2 2 2 2 ¨im ¨ i0 πij πi0 j 0 εj εj 0 −  √ ¨ i πij εj  = E[·|Z] m E[·|Z] m n 0 0 n i,j,i6=j



(II.1)



i,i ,j,j distinct



+



  1 X 2 2 ¨ i |2 πij E[·|Z] |m πij 0 ε2j ε2j 0 n 0



(II.2)



h i 2 X 2 2 2 2 ¨ Ti m ¨ i0 πij E[·|Z] m πii0 εi εj n 0



(II.3)



h i 1 X 2 2 ¨ Ti m ¨ i0 πij E[·|Z] m πi0 j ε4j n 0



(II.4)



i,j,j distinct



+



i,i ,j distinct



+



i,i ,j distinct
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 1 X 4 4 ¨ i |2 πij E[·|Z] |m εj n i,j,i6=j h i 1 X 4 2 2 ¨ Ti m ¨ j πij E[·|Z] m εi εj . + n



+



(II.5) (II.6)



i,j,i6=j



With (E.38) is easy to see (together with the uniform bounded moments assumption) that (II.2)–(II.6) are of order P it 2 OP (n−1 i πii ) = OP (k/n), hence asymptotically negligible. As for (II.1), note that (II.1) = −



 T   T    2 X 2 2 1 X 2 2 ¨ i ε2j E[·|Z] m ¨ i ε2j 0 − ¨ i ε2j E[·|Z] m ¨ i0 ε2i πij πij 0 E[·|Z] m πij πii0 E[·|Z] m n n 0 0 i,j,j distinct



−



i,i ,j distinct



 T   1 X 4  2 1 X 2 2 ¨ i ε2j E[·|Z] m ¨ i0 ε2j − ¨ i ε2j πij πij 0 E[·|Z] m πij E[·|Z] m n n 0 i,j,i6=j



i,i ,j distinct



−



 T   1 X 4 ¨ i ε2j E[·|Z] m ¨ j ε2i . πij E[·|Z] m n i,j,i6=j



Therefore we have (II.1) is of order OP (n−1



SA-10.9.4



P



i



2 πii ) = OP (k/n).



Variance, Term (III)



Next we consider (III), and still (E.39) implies 



2  X 2 ¨ i πij πii εj εi   m E[·|Z]  √ n i,j,i6=j



= +



4 n 8 n



X



 2 2 2 2 ¨ i |2 πij E[·|Z] |m πii εi εj



(III.1)



h i 2 ¨ Ti m ¨ j πij E[·|Z] m πii πjj ε2i ε2j .



(III.2)



i,j,distinct



X i,j,distinct



For (III.1) it is bounded by |(III.1)| -



1X 2X 2 1X 3 πii πij = πii , n i n i j6=i



which is bounded by k/n due to (E.37). Similarly |(III.2)| -



1X 1X 2 2 πii πjj πij ≤ πjj πij = O(k/n), n i,j n i,j



due to (E.37) and πii ≤ 1.



SA-10.9.5



Variance, Term (IV)



Finally we consider (IV), and the variance is " !2 # 1 X 2 2 √ ¨ i πii εi E[·|Z] m − n i



 1 X 2 2 √ ¨ i πii E[·|Z] m εi n i



h i 1 X 2 2 2 2 ¨ Ti m ¨ j πii = E[·|Z] m πjj εi εj − n i,j,i6=j



+



 1X 4 4 ¨ i |2 πii E[·|Z] |m εi . n i



!2



 1 X 2 2 √ ¨ i πii E[·|Z] m εi n i



!2 (IV.1) (IV.2)



And both (IV.1) and (IV.2) are bounded by O(k/n).
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The last step is to show that one can essentially replace µ ˜i by µi in (E.9). This is trivial due to Assumption A.2(4), and the consistency assumption A.1(3). 



SA-10.10



Theorem SA.8



p √ By the condition k = O( n), all terms of order OP ( k/n) can be ignored asymptotically. Also the bias term has √ order B = OP (k/ n) = OP (1). In particular, both (E.8) and (E.9) are of order OP (1). By Assumption A.1(3), the remainder term in the quadratic expansion (after (E.9)) has the order oP (|(E.9)|), which is negligible. 



SA-10.11



Theorem SA.9



We first make the following decomposition: ˜ 1 = E[Ψ ¯ 1 |Z], Ψ



˜2 = Ψ ¯ 1 − E[Ψ ¯ 1 |Z] + Ψ ¯ 2. Ψ



˜ 1 is mean zero, and Ψ ˜ 2 is conditionally mean zero (on Z). One special case is that Ψ ˜ 1 = 0 almost Then note that Ψ surely, which will happen if the moment condition for the second step is actually a conditional moment restriction. ˜ 1 is nondegenerate. In what follows, we assume Ψ By the usual central limit theorem, one has  −1/2 ˜ 1] ˜1 V[Ψ Ψ N (0, I). ˜ 2 , which requires triangular array type argument. Let α be a Next we consider the large sample distribution of Ψ generic vector, and consider " # √  1X 2  E[·|Z] (ai + bi ) 1 |ai + bi | > 2ε n , n i where   ai = αT m(wi , µi , θ 0 ) − E[m(wi , µi , θ 0 )|zi ] ,



bi = αT



X



 ˙ E[m(w j , µj , θ 0 )|zj ]πij εi .



j



Note that ! " # " !#   √  √  √  1X 1X 2  2 2 1 |ai | > ε n + 1 |bi | > ε n E[·|Z] (ai + bi ) 1 |ai + bi | > 2ε n E[·|Z] ai + bi , n i n i which is a sum of four terms. The first case is the easiest: " # " # X √  √  1X 1 2  2  E E[·|Z] ai 1 |ai | > ε n = E ai 1 |ai | > ε n → 0, n n i i where the first equality is true since the summands are nonnegative, and the last line comes from the i.i.d.ness of ai . Therefore # " √  1X 2  E[·|Z] ai 1 |ai | > ε n = oP (1). n i For future reference, define ˜bi = αT



P



 ˙ E[ m(w , µ , θ )|z ]π . Then the second case becomes (where we used the j j 0 j ij j



union bound) " # " # " # i h √  √ 1X 1X 1X 2  2 2 ˜ E[·|Z] ai 1 |bi | > ε n ≤ E[·|Z] ai 1 |bi | > ε n/ log(n) + E[·|Z] ai 1 [|εi | > log(n)] . n i n i n i
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the last term in the above display is oP (1) since it has expectation (note that it is nonnegative) " " ## " # 1X 2 2 lim E E[·|Z] ai 1 [|εi | > log(n)] = lim E ai 1 [|εi | > log(n)] n n n i " # = E a2i lim 1 [|εi | > log(n)] n



= 0,



and interchanging limit and expectation is justified by dominated convergence, and the fact that E[a2i ] < ∞. The other terms is handled by the following: " # h i i √ √ 1X 1 X h˜ 2 ˜ E[·|Z] ai 1 |bi | > ε n/ log(n) = 1 |bi | > ε n/ log(n) E[·|Z] [a2i ] n i n i i √ 1 X h˜ 1 |bi | > ε n/ log(n) . n i The first line comes from the fact that ˜bi is constant after conditioning on Z, and the second line is true since E[·|Z] [a2i ] is bounded. We show it is oP (1) again by taking expectation, and the fact that ˜bi is the projection of random variable with finite expectation. The next case is again very simple: " # " # √  √  1 X ˜2 1X 2  2  E[·|Z] bi 1 |ai | > ε n bi E[·|Z] εi 1 |ai | > ε n n i n i " " #! #! √  √  1 X ˜2 2  2  ≤ max E[·|Z] εi 1 |ai | > ε n bi - max E[·|Z] εi 1 |ai | > ε n → 0. 1≤i≤n 1≤i≤n n i The P first inequality comes from the definition of ˜bi ; the second is H¨ older’s inequality; the third inequality uses the fact i ˜b2i = O(n); and the final inequality is true since we assumed bounded conditional moment. Finally, the last case is " # i √  √ 1X 1 X ˜2 h ˜ 2  E[·|Z] bi 1 |bi | > ε n bi 1 |bi | > ε n/ log(n) + oP (1) = oP (1), n i n i since ˜bi comes from projecting a bounded sequence. ˜ 1 converges unconditionally to a multivariate To summarize, we have the following two convergence results: (1) Ψ ˜ normal distribution; and (2) conditional on Z, Ψ2 converges to a multivariate normal distribution (more precisely, ˜ 2 converges to that of a multivariate normal in probability). The conditional on Z the distribution function of Ψ following remark shows how joint convergence can be established (not that it is not true in general that one can conclude joint convergence from marginal convergence) Remark (From marginal convergence to joint convergence). Here we consider one special case where it is possible to deduce joint convergence from marginal convergence. Assume Xn N (0, 1) and Yn |Zn P N (0, 1), and Xn ∈ σ(Zn ), where Yn |Zn P N (0, 1). Then, [Xn , Yn ]T N (0, I). This follows because h i h i P Xn ≤ x, Yn ≤ y = E 1[Xn ≤ x]P[Yn ≤ y|Zn ] h  i h i = E 1[Xn ≤ x] P[Yn ≤ y|Zn ] − Φ(y) + P Xn ≤ x Φ(y) → Φ(x)Φ(y), using the dominated convergence theorem and the assumption that P[Yn ≤ y|Zn ] →P Φ(y). Hence we are able to show    −1/2 ˜ 1] ˜1 V[ Ψ Ψ   −1/2   ˜ ˜ V[Ψ2 |Z] Ψ2
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N



   0 I , 0 0



 0 , I



y



and the desired result follows by considering the linear combination  −1/2  1/2 ˜ 1 ] + V[Ψ ˜ 2 |Z] ˜ 1] V[Ψ V[Ψ ,



 1/2  ˜ 2 |Z] . V[Ψ 



SA-10.12



Additional Details of Section SA-4.3



Given the sample estimating equation, 0=



XX i



ˆ qij f (xj , µ ˆj , θ)



  ˆ , yi − f (xi , µ ˆi , θ)



j



Taylor expansion gives   XX 0= qij f (xj , µ ˆj , θ 0 ) yi − f (xi , µ ˆi , θ 0 ) i



+



j



" " X X i



ˇ qij F(xj , µ ˆj , θ)



  X  ˇ − ˇ f (xi , µ ˇ T yi − f (xi , µ ˆi , θ) qij f (xj , µ ˆj , θ) ˆi , θ)



j



##







 ˆ − θ0 , θ



j



ˇ is some convex combination of θ 0 and θ. ˆ Then we have where θ # "     −1 1 X  X √  ˆ − θ 0 = EV[fi |zi ] √ qij f (xj , µ ˆj , θ 0 ) yi − f (xi , µ ˆi , θ 0 ) + oP (1), n θ n i j which we now analyze. Again we linearize with respect to the first step estimate to the second order:   1 XX √ qij f (xj , µ ˆj , θ 0 ) yi − f (xi , µ ˆi , θ 0 ) n i j   1 XX = √ qij f (xj , µj , θ 0 ) yi − f (xi , µi , θ 0 ) n i j " # X    X    1 X ˙ ˙ f (xi , µi , θ 0 ) qij yj − f (xj , µj , θ 0 ) − qij f (xj , µj , θ 0 ) f (xi , µi , θ 0 ) µ ˆ i − µi +√ n i j j " #       2 X X 1 X1 ¨ ¨ +√ f (xi , µi , θ 0 ) qij yj − f (xj , µj , θ 0 ) − qij f (xj , µj , θ 0 ) f (xi , µi , θ 0 ) µ ˆ i − µi n i 2 j j    1 X˙ ˙ −√ f (xj , µj , θ 0 )f (xi , µi , θ 0 ) µ ˆ i − µi µ ˆj − µj qij n i,j + oP (1)  1 XX = √ qij fj ui n i j " #   X    1 X ˙ X ˙ +√ fi qij uj − qij fj fi µ ˆ i − µi n i j j " #      2 X 1 X1 ¨ X ¨ fi qij uj − qij fj fi µ ˆ i − µi +√ n i 2 j j   1 X˙ ˙ −√ fj fi µ ˆ i − µi µ ˆj − µj qij n i,j + oP (1). Term (I) has the following further expansion: 1 X 1 X 1 X (I) = √ (fi − πij fj )ui = √ fi ui − √ fj ui πij n i,j n i n i,j
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(I)



(II)



(III) (IV)



1 X 1 X 1 X = √ fi ui − √ E[fj |zj ]ui πij − √ (fj − E[fj |zj ])ui πij n i n i,j n i,j 1 X = √ (fi − E[fi |zi ])ui + oP (1). n i The last line uses two facts: first zi can approximate the expectation E[fi |zi ], second ui has zero conditional expectation, so that there is no bias contribution from (I). For (II), we consider the following:  1 X˙  (II) + √ fi ui µ ˆ i − µi (II.1) n i   1 X˙ fi uj πij µ ˆ i − µi (II.2) −√ n i,j  1 X ˙ −√ fi fi µ ˆ i − µi (II.3) n i   1 X ˙ +√ fj fi πij µ ˆ i − µi . (II.4) n i,j Then 1 X ˙ 1 X˙ fi ui εj πij = √ E[fi ui εi |zi ]πii + oP (1), (II.1) = √ n ij n i which is bias contribution. And 1 X˙ 1 X ˙ 2 (II.2) = − √ fi uj εk πij πik = − √ E[fi uj εj |zi , zj ]πij + oP (1), n i,j,k n i,j so that this term has bias contribution. Next 1 X ˙ 1 X 1 X ˙ (II.3) = − √ fi fi εj πij = − √ E[fi f˙i |zi ]εj πij − √ (fi fi − E[fi f˙i |zi ])εj πij n i,j n i,j n i,j 1 X 1 X = −√ E[fi f˙i |zi ]εi − √ E[fi f˙i εi |zi ]πii + oP (1), n i n i hence this term has both variance and bias contribution. Finally 1 X ˙ 1 X 1 X (II.4) = √ fj fi εk πij πik = √ E[fj |zj ]f˙i εk πij πik + √ (fj − E[fj |zj ])f˙i εk πij πik n i,j,k n i,j,k n i,j,k 1 X 1 X = √ E[fi |zi ]f˙i εk πik + √ (fj − E[fj |zj ])f˙i εk πij πik + oP (1) n i,k n i,j,k 1 X 1 X ˙ 1 X 2 E[fi |zi ]E[f˙i |zi ]εi + √ E[fi |zi ]E[f˙i εi |zi ]πii + √ E[fi fj εj |zi , zj ]πij + oP (1), = √ n i n i n i,j so that this term has both variance and bias contribution. Term (III) is again split as 2 1 X 1¨  (III) = √ fi ui µ ˆ i − µi n i 2  2 1 X 1¨ −√ fi uj πij µ ˆ i − µi n i,j 2 2 1 X 1 ¨ −√ fi fi µ ˆ i − µi n i 2 2 1 X1 ¨  fj fi πij µ ˆ i − µi . +√ n i,j 2
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(III.1) (III.2) (III.3) (III.4)



Then first, 1 X1 ¨ 1 X 1¨ 2 fi ui εj εk πij πik = √ E[fi ui εi εi |zi ]πii + oP (1) = oP (1), (III.1) = √ n i,j,k 2 n i 2 due to Assumption A.3(1), hence there is neither variance nor bias contribution from this term. Next, 1 X 1¨ 1 X1 ¨ 3 (III.2) = − √ fi uj εk ε` πij πik πi` = − √ E[fi uj ε2j |zj ]πij + oP (1), n i,j,k,` 2 n i,j 2 which is a bias contribution. Next, 1 X1 1 X1 ¨ 2 fi fi εj εk πij πik = − √ E[fi f¨i ε2j |zi , zj ]πij + oP (1), (III.3) = − √ n i,j,k 2 n i,j 2 which is a bias contribution. Finally, 1 X 1 ¨ (III.4) = √ fj fi εk ε` πij πik πi` n i,j,k,` 2 1 X1 1 X 1 = √ E[fi |zi ]f¨i εk ε` πik πi` + √ (fj − E[fj |zj ])f¨i εk ε` πij πik πi` n i,k,` 2 n i,j,k,` 2 1 X1 1 X1 ¨ 2 2 3 = √ E[fi |zi ]E[f¨i ε2j |zi , zj ]πij +√ E[fi fj εj |zi , zj ]πij + oP (1), n i,j 2 n i,j 2 which is again a bias contribution. Finally for (IV), it is decomposed as 2 1 X˙ ˙ (IV) = − √ fi fi µ ˆ i − µi n i   1 X˙ ˙ fj fi µ +√ ˆ i − µi µ ˆj − µj πij . n i,j



(IV.1) (IV.2)



First, 1 X ˙ ˙ 2 1 X˙ ˙ 2 + oP (1), fi fi εj εk πij πik = − √ E[fi fi εj |zi , zj ]πij (IV.1) = − √ n i,j,k n i,j which is a bias contribution. Then 1 X ˙ ˙ (IV.2) = √ fj fi εk ε` πij πik πj` n i,j,k,` 1 X ˙˙ = √ E[fi fj εi εj |zi , zj ]πij πii πjj n i,j 1 X ˙˙ 3 +√ E[fi fj εi εj |zi , zj ]πij n i,j 1 X ˙˙ 2 +√ [fi fj εk |zi , zj , zk ]πij πik πjk + oP (1) n i,j,k 1 X ˙˙ 3 = √ E[fi fj εi εj |zi , zj ]πij n i,j 1 X +√ E[f˙i f˙j ε2k |zi , zj , zk ]πij πik πjk + oP (1). n i,j,k Here we make a complementary calculation: !2 !1/2



!1/2 X i,j



|πij πii πjj | ≤



X i,j



πii



X X i



πij πjj



j
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(Cauchy-Schwarz)



=



X



1/2 !1/2  X  πii πij πjj πik πkk  =



i



!1/2 X i



i,j,k



πii



!1/2 X



πij πii πjj



.



i,j



Now we collect terms.   1 XX √ qij f (xi , µ ˆi , θ 0 ) yi − f (xi , µ ˆi , θ 0 ) = oP (1) n i j 1 X 1 X +√ (fi − E[fi |zi ])ui − √ Cov[fi , f˙i |zi ]εi n i n i  1 X ˙ +√ E[fi ui εi |zi ] − Cov[fi , f˙i εi |zi ] πii n i  1 X ˙ 1 2 +√ E[fi |zi ]E[fj εj |zj ] − E[f˙i |zi ]E[uj εj |zj ] − Cov[fi , f¨i |zi ]E[ε2j |zi , zj ] − E[f˙i f˙i ε2j |zi , zj ] πij 2 n i,j 1 X +√ E[f˙i |zi ]E[f˙k |zk ]E[ε2j |zj ]πij πik πjk n i,j,k  1 1 X1 ¨ 3 . E[fi |zi ]E[fj ε2j |zj ] − E[¨fi |zi ]E[uj ε2j |zj ] + E[f˙i εi |zi ]E[f˙j εj |zj ] πij +√ 2 n i,j 2
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Proposition SA.10



Here we do some calculations. Note that in this example, wi = [YiT , Ti , XTi ]T , µi = Pi and zi = Zi , and m(wi , µi , θ) =



Ti h(Yi , Xi , θ) , Pi



hence the two derivatives (with respect to µi = Pi ) are ˙ m(w i , µi , θ 0 ) = −



Ti h(Yi , Xi , θ 0 ) , Pi2



Ti h(Yi , Xi , θ 0 ) 1 ¨ i , µi , θ 0 ) = . m(w 2 Pi3



To compute the bias term, we need the following:       Ti h(Yi (1), Xi , θ 0 ) Ti h(Yi , Xi , θ 0 ) Ti ˙ εi Zi = −E εi Zi = −gi E εi Z i E [m(w i , µi , θ 0 )εi |zi ] = −E Pi2 Pi2 Pi2 1 − Pi , = −gi Pi which is b1,i . Similarly, one can show that     Ti h(Yi , Xi , θ 0 ) 2 1 ¨ i , µi , θ 0 )ε2j zi , zj = E b2,ij = E m(w ε Z , Z j j i 2 Pi3   2 E[Ti εj |Zi , Zj ] Ti h(Yi (1), Xi , θ 0 ) 2 =E εj Zi , Zj = gi . 3 Pi Pi3 Finally we consider the variance contribution, which utilizes   Tj h(Yj , Xj , θ 0 ) 1 ˙ E [ m(w j , µi , θ 0 )| zj ] = −E Zj = −gj Pj . Pj2 
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Proposition SA.12



θˆ has the expansion  √  n θˆ − θ0 = √



" #  X Ti − Pˆi  1 Yi (t2 ) − Yi (t1 ) − Ti θ0 + oP (1). nP[Ti = 1] i 1 − Pˆi
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To calculate the bias and variance, note that the estimating equation depends on the first step through (Ti − Pi )/(1 − Pi ), hence it suffices to consider its derivatives with respect to Pi : ) (   Ti − Pi ∂ Ti − 1 1 ∂2 Ti − 1 Ti − Pˆi = , = . ˆ ∂Pi 1 − Pi (1 − Pi )2 2 ∂Pi2 (1 − P i )3 1 − Pi Therefore the first bias term is        Ti − 1  Xi = E Ti − 1 Yi (t2 ) − Yi (t1 ) (Ti − Pi ) Ti = 0, Xi b1,i = E Y (t ) − Y (t ) (T − P ) i 2 i 1 i i (1 − Pi )2 1 − Pi h P   i h i P i i =E Yi (0, t2 ) − Yi (t1 ) Ti = 0, Xi = E Yi (0, t2 ) − Yi (t1 ) Ti = 1, Xi , 1 − Pi 1 − Pi where the last line uses Assumption A.DiD(1). Note that the first bias term essentially reflects the trend component. The second bias term is        Ti − 1  1 2 2 = E − , b2,ij = E Y (t ) − Y (t ) (T − P ) X , X Y (t ) − Y (t ) (T − P ) T = 0, X , X i 2 i 1 j j i j i 2 i 1 j j i i j (1 − Pi )3 (1 − Pi )2 which gives b2,ii = −



Pi2 E [ Yi (0, t2 ) − Yi (t1 )| Ti = 1, Xi ] , (1 − Pi )2



or when i 6= j, b2,ij = −



Pj (1 − Pj ) E [ Yi (0, t2 ) − Yi (t1 )| Ti = 1, Xi ] . (1 − Pi )2



(i 6= j)



And again, this depends on the trend component. To simplify, note that it is b2,ij = −



E[(Tj − Pj )2 |Ti = 0, Xi , Xj ] E [ Yi (0, t2 ) − Yi (t1 )| Ti = 1, Xi ] (1 − Pi )2



Finally, the variance contribution of the first step can be computed with the following:    Tj − 1  Xj = − 1 E [ Yj (0, t2 ) − Yj (t1 )| Tj = 1, Xj ] , Y (t ) − Y (t ) E j 2 j 1 (1 − Pj )2 1 − Pj which gives ¯2 = −√ Ψ



" # X X 1 1 E [ Yj (0, t2 ) − Yj (t1 )| Tj = 1, Xj ] πij εi . 1 − Pj nP[Ti = 1] i j 
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Proposition SA.13



Since the estimating equation depends on the unobserved probability µi = Pi only through κi , we have the partial derivatives (with respect to µi = Pi ) κ˙ i =



(1 − Ti )Di 2(1 − Ti )Di Yi (1 − Di ) 2Ti (1 − Di ) ∂ ∂2 + − κi = − , κ ¨i = κi = − , 2 2 ∂Pi (1 − Pi ) Pi ∂Pi2 (1 − Pi )3 Pi3



hence     T (1 − D ) (1 − Ti )Di ∂ i i ei (θ 0 ) Yi − ei (θ 0 ) − + ∂θ (1 − Pi )2 Pi2     Ti (1 − Di ) (1 − Ti )Di 1 ∂ ¨ i , µi , θ 0 ) = m(w ei (θ 0 ) Yi − ei (θ 0 ) − − . 2 ∂θ (1 − Pi )3 Pi3 ˙ m(w i , µi , θ 0 ) =



To characterize the bias, one has to use more delicate arguments, and we do this for each term separately. Recall that εi = Di − Pi , and by Assumption A.1(5), conditioning on Zi alone will be asymptotically equivalent to conditioning
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on both Zi and Pi . For notational simplicity, define ei,(•) (θ) = e(xi , Ti (•), θ),



• = 0, 1,



for the two potential treatment status. Then observe that   T (0)(1 − D ) ∂ i i ˙ m(w ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) i , µi , θ 0 ) = − ∂θ (1 − Pi )2   (1 − T (1))D ∂ i i ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) , + ∂θ Pi2   Ti (0)(1 − Di ) 1 ∂ ¨ i , µi , θ 0 ) = − m(w ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) 2 ∂θ (1 − Pi )3   (1 − Ti (1))Di ∂ − ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) . ∂θ Pi3 To understand the source of the bias, we first consider one piece:    T (0)(1 − D )  ∂ i i E − ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) εi Zi ∂θ (1 − Pi )2     ∂ Pi =E ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) Ti (0) Zi ∂θ 1 − Pi     ∂ Pi =E ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) Ti (0) Zi , Ti (0) = Ti (1) · P[Ti (0) = Ti (1)|Zi ] ∂θ 1 − Pi     T (0)P ∂ i i =E ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) Zi , Ti (0) = Ti (1) · P[Ti (0) = Ti (1)|Zi ] ∂θ 1 − Pi     TP ∂ i i ei (θ 0 ) Yi − ei (θ 0 ) =E Zi , Ti (0) = Ti (1) · P[Ti (0) = Ti (1)|Zi ], ∂θ 1 − Pi where the second and the fourth line follow from Assumption A.LARF(2), and the third lines uses the fact that there are no defiers, and for compliers, the conditional expectation is zero. Similarly, we can establish the following:    (1 − T (1))D  ∂ i i E ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) εi Zi ∂θ Pi2     ∂ 1 − Pi =E ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) (1 − Ti (1)) Zi ∂θ Pi     1 − Pi ∂ ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) (1 − Ti (1)) Zi , Ti (0) = Ti (1) · P[Ti (0) = Ti (1)|Zi ] =E ∂θ Pi     (1 − T (1))(1 − P ) ∂ i i ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) =E Zi , Ti (0) = Ti (1) · P[Ti (0) = Ti (1)|Zi ] ∂θ Pi     (1 − T )(1 − P ) ∂ i i =E ei (θ 0 ) Yi − ei (θ 0 ) Z , T (0) = T (1) · P[Ti (0) = Ti (1)|Zi ], i i i ∂θ Pi hence the first bias term takes the form:      T P (1 − Ti )(1 − Pi ) ∂ i i ei (θ 0 ) Yi − ei (θ 0 ) + Z , T (0) = T (1) · P[Ti (0) = Ti (1)|Zi ]. b1,i = E i i i ∂θ 1 − Pi Pi For the other two cases, we use essentially the same technique:     T (0)(1 − D ) ∂ i i 2 E − ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) ε Z , Z i j j ∂θ (1 − Pi )3   2   Ti (1 − Di )εj ∂ = E − ei (θ 0 ) Yi − ei (θ 0 ) Z , Z , T (0) = T (1) · P[Ti (0) = Ti (1)|Zi ], i j i i ∂θ (1 − Pi )3 and     (1 − T (1))D ∂ i i 2 E − ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) ε Z , Z i j j ∂θ Pi3
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    (1 − T )D ε2 ∂ i i j Zi , Zj , Ti (0) = Ti (1) · P[Ti (0) = Ti (1)|Zi ], = E − ei (θ 0 ) Yi − ei (θ 0 ) ∂θ Pi3 which gives       (1 − T )D Ti (1 − Di ) ∂ i i 2 b2,ij = E − ei (θ 0 ) Yi − ei (θ 0 ) + ε Z , Z , T (0) = T (1) i j i i j ∂θ Pi3 (1 − Pi )3 · P[Ti (0) = Ti (1)|Zi ]. For the variance, we need the following:     T (0)(1 − D )    T (0)  ∂ ∂ i i i Zi Zi = E − ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) E − ei,(0) (θ 0 ) Yi (1) − ei,(0) (θ 0 ) ∂θ (1 − Pi )2 ∂θ 1 − Pi     T ∂ i Zi , Ti (0) = Ti (1) · P [Ti (0) = Ti (1)|Zi ] , = E − ei (θ 0 ) Yi − ei (θ 0 ) ∂θ 1 − Pi and    (1 − T (1))D    1 − T (1)  ∂ ∂ i i i Zi = E Z ei,(1) (θ 0 ) Yi (0) − ei,(1) (θ 0 ) e (θ ) Y (0) − e (θ ) 0 i 0 i,(1) i,(1) i ∂θ Pi2 ∂θ Pi     ∂ 1 − Ti =E ei (θ 0 ) Yi − ei (θ 0 ) Zi , Ti (0) = Ti (1) · P [Ti (0) = Ti (1)|Zi ] , ∂θ Pi 



E



hence  ˙ E [m(w i , µi , θ 0 )|Zi ] = E



  ∂ ei (θ 0 ) Yi − ei (θ 0 ) ∂θ







  1 − Ti Ti Zi , Ti (0) = Ti (1) · P [Ti (0) = Ti (1)|Zi ] , − Pi 1 − Pi 



which will be part of the asymptotic representation.
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Proposition SA.14



To match the notation used in the general result, note that ri = Ti and µi = Pi , which we will use in the following calculations. The derivation of the bias and variance is pretty straightforward. Note that     ∂ ∂ e(Xi , Pi , θ 0 ) Yi − e(Xi , Pi , θ 0 ) = ei (θ 0 ) Yi − ei (θ 0 ) m(wi , µi , θ 0 ) = ∂θ ∂θ hence   ∂ ∂ e(X ˙ i , Pi , θ 0 ) Yi − e(Xi , Pi , θ 0 ) − e(Xi , Pi , θ 0 ) · e(X ˙ i , Pi , θ 0 ) ∂θ ∂θ   ∂ ∂ e˙ i (θ 0 ) Yi − ei (θ 0 ) − ei (θ 0 ) · e˙ i (θ 0 ) = ∂θ ∂θ   ∂ ∂ ¨ i , µi , θ 0 ) = m(w e¨(Xi , Pi , θ 0 ) Yi − e(Xi , Pi , θ 0 ) − 2 e(X ˙ i , Pi , θ 0 ) · e(X ˙ i , Pi , θ 0 ) ∂θ ∂θ ∂ − e(Xi , Pi , θ 0 ) · e¨(Xi , Pi , θ 0 ) ∂θ   ∂ ∂ ∂ = e¨i (θ 0 ) Yi − ei (θ 0 ) − 2 e˙ i (θ 0 ) · e˙ i (θ 0 ) − ei (θ 0 ) · e¨i (θ 0 ). ∂θ ∂θ ∂θ ˙ m(w i , µi , θ 0 ) =



Then we can compute the bias terms, i hh ∂   i i h ∂ ∂ b1,i = E e˙ i (θ 0 ) Yi − ei (θ 0 ) − ei (θ 0 ) · e˙ i (θ 0 ) εi Zi = E e˙ i (θ 0 )Yi εi Zi ∂θ ∂θ ∂θ i h ∂ =E e˙ i (θ 0 ) [Ti Yi (1) + (1 − Ti )Yi (0)] εi Zi , ∂θ from which one can get the desired result. Similarly we can derive the formula for b2,ij . Note that it suffices to 2 consider the case i 6= j, as the terms involving πii is asymptotically negligible: i i ∂ ∂ 1 hh ei (θ 0 ) · e¨i (θ 0 ) ε2j Zi , Zj b2,ij = E − 2 e˙ i (θ 0 ) · e˙ i (θ 0 ) − 2 ∂θ ∂θ
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=−



1 2



 2



 ∂ ∂ e˙ i (θ 0 ) · e˙ i (θ 0 ) + ei (θ 0 ) · e¨i (θ 0 ) Pi (1 − Pi ). ∂θ ∂θ



Finally, one can also recover the variance term in a similar way.
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Proposition SA.15



To derive the bias and variance, we maintain the “dot” notation to denote the partial derivative with respect to µi , ˙ i = −e2 = [0, −1]T . Hence which has to be estimated in the first step. Then X  o     ∂ n ˙ i L0 (XTi θ 0 ) Yi − L(XTi θ 0 ) + Xi X ˙ Ti θ 0 L00 (XTi θ 0 ) Yi − L(XTi θ 0 ) − Xi X ˙ Ti θ 0 L ˙ Xi L0 (XTi θ 0 ) Yi − L(XTi θ 0 ) =X m(w i , µi , θ 0 ) = ∂µi     = −e2 L0 (XTi θ 0 ) Yi − L(XTi θ 0 ) + γ0 Xi L00 (XTi θ 0 ) Yi − L(XTi θ 0 ) − γ0 Xi L0 (XTi θ 0 )2 . Thanks to Assumption A.CF(1), the first bias component is 0 T 2 ˙ b1,i = E [m(w i , µi , θ 0 )εi |Zi ] = −E[γ0 Xi L (Xi θ 0 ) εi |Zi ],



¯ 2, and for the variance component Ψ 0 T 2 ˙ E[m(w i , µi , θ 0 )|Zi ] = −E[γ0 Xi L (Xi θ 0 ) |Zi ].



Using similar logic, it is not hard to show that the second bias term takes the form:      i 1 1 ∂ h ¨ i , µi , θ 0 )ε2j Zi , Zj = E b2,ij = E m(w −e2 L0 (XTi θ 0 ) Yi − L(XTi θ 0 ) ε2j Zi , Zj 2 2 ∂µi     h  i i 1 ∂ 1 ∂ h +E γ0 Xi L00 (XTi θ 0 ) Yi − L(XTi θ 0 ) ε2j Zi , Zj + E −γ0 Xi L0 (XTi θ 0 )2 ε2j Zi , Zj 2 ∂µi 2 ∂µi   2 γ0 γ 0 T 2 2 00 T 0 T 2 2 00 T 2 0 =E e2 L (Xi θ 0 ) εj − Xi L (Xi θ 0 )L (Xi θ 0 )εj − γ0 Xi L (Xi θ 0 )εj Zi , Zj . 2 2 
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Proposition SA.16



To simplify notation, we let Et1 [·] = E[·|Ii,t1 , Ki,t1 , Ai,t1 ]. Note that it is not the expectation conditional on the full time-t1 information. The first derivatives of m with respect to ν1i and µ2i are     Ki,t1 g2,i,t1 − Ki,t2 Ki,t1 g22,i,t1   ˙ 1 (wi , ν1i − z11i γ, µ2i , γ, θ) =  Ai,t1 g22,i,t1  Vi,t2 + Ui,t2 −  Ai,t1 g2,i,t1 − Ai,t2  g2,i,t1 , m −g3,i,t1 −g23,i,t1 and 



   Ki,t1 g12,i,t1  Ki,t1 g2,i,t1 − Ki,t2  ˙ 2 (wi , ν1i − z11i γ, µ2i , γ, θ) =  Ai,t1 g12,i,t1  Vi,t2 + Ui,t2 −  Ai,t1 g2,i,t1 − Ai,t2  g1,i,t1 . m −g13,i,t1 −g3,i,t1 Then conditional on the corresponding covariates (and note that z1i ⊃ z2i ),   Ki,t1 g2,i,t1 − Ki,t2 ˙ 1 (wi , ν1i − z11i γ, µ2i , γ, θ)|z1i ] = −  Ai,t1 g2,i,t1 − Ai,t2  g2,i,t1 E[m −g3,i,t1   Ki,t1 g2,i,t1 − Ki,t2 ˙ 2 (wi , ν1i − z11i γ, µ2i , γ, θ)|z1i ] = −  Ai,t1 g2,i,t1 − Ai,t2  g1,i,t1 . E[m −g3,i,t1 Note that we can drop the conditional expectation since both Ki,t2 and Ai,t2 are determined by time-t information1 . 1



One example would be Ki,t2 = Ki,t1 + Ii,t1 if there is no depreciation, and Ai,t2 = Ai,t1 + 1 if t2 − t1 = 1 and
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˙ 1 (wi , ν1i − Next we consider the two linear bias terms. First we consider the conditional correlation between m z11i γ, µ2i , γ, θ) and ε1i = Ui,t1 . Since both Ki,t2 and Ai,t2 can be regarded as deterministic functions of time-t variables, it is true that   Ki,t1 g22,i,t1 i i h h ˙ 1 (wi , ν1i − z11i γ, µ2i , γ, θ)ε1i z1i =  Ai,t1 g22,i,t1  E (Vi,t2 + Ui,t2 )Ui,t1 (L, I, K, A)i,t1 b1,1,i = E m −g23,i,t1   Ki,t1 g22,i,t1 i h =  Ai,t1 g22,i,t1  Cov Vi,t2 , Ui,t1 (L, I, K, A)i,t1 . −g23,i,t1 To prove the last line, note that Et1 [Ui,t2 Ui,t1 ] = 0 by applying iterative expectation tp Ui,t . On the other hand, we remark that Vi,t2 may not be orthogonal to time-t2 information, hence it is generally impossible to conclude the last line being zero. With the same logic, we have, for the other linear bias term,   Ki,t1 g12,i,t1 h i ˙ 2 (wi , ν1i − z11i γ, µ2i , γ, θ)ε2i |z1i ] =  Ai,t1 g12,i,t1  Cov Vi,t2 , χi,t2 (L, I, K, A)i,t1 . b1,2,i = E[m −g13,i,t1 And we note the above bias is generally not zero, since both Vi,t2 and χi,t2 depend on time-t2 information. For the quadratic bias term, we compute the second order derivatives ¨ 11 (wi , ν1i − z11i γ, µ2i , γ, θ) m       Ki,t1 g2,i,t1 − Ki,t2 Ki,t1 g22,i,t1 Ki,t2 g222,i,t1   =  Ai,t2 g222,i,t1  Vi,t2 + Ui,t2 − 2  Ai,t1 g22,i,t1  g2,i,t1 −  Ai,t1 g2,i,t1 − Ai,t2  g22,i,t1 , −g3,i,t1 −g23,i,t1 −g223,i,t1 ¨ 22 (wi , ν1i − z11i γ, µ2i , γ, θ) m       Ki,t1 g2,i,t1 − Ki,t2 Ki,t1 g12,i,t1 Ki,t1 g112,i,t1   =  Ai,t1 g112,i,t1  Vi,t2 + Ui,t2 − 2  Ai,t1 g12,i,t1  g1,i,t1 −  Ai,t1 g2,i,t1 − Ai,t2  g11,i,t1 . −g3,i,t1 −g13,i,t1 −g113,i,t1 ¨ 12 (wi , ν1i − z11i γ, µ2i , γ, θ) m         Ki,t1 g2,i,t1 − Ki,t2 Ki,t1 g12,i,t1 Ki,t1 g22,i,t1 Ki,t1 g122,i,t1   =  Ai,t1 g122,i,t1  Vi,t2 + Ui,t2 −  Ai,t1 g22,i,t1  g1,i,t1 −  Ai,t1 g12,i,t1  g2,i,t1 −  Ai,t1 g2,i,t1 − Ai,t2  g12,i,t1 −g3,i,t1 −g13,i,t1 −g23,i,t1 −g123,i,t1 Hence the three bias terms are



b2,11,ij



b2,22,ij



b2,12,ij



      Ki,t1 g2,i,t1 − Ki,t2  Ki,t1 g22,i,t1  h i 1 2  Ai,t1 g22,i,t1  g2,i,t1 +  Ai,t1 g2,i,t1 − Ai,t2  g22,i,t1 V Ui,t1 (L, I, K, A)i,t1 , =−  2 −g23,i,t1 −g3,i,t1       Ki,t1 g2,i,t1 − Ki,t2  Ki,t1 g12,i,t1  h i 1 2  Ai,t1 g12,i,t1  g1,i,t1 +  Ai,t1 g2,i,t1 − Ai,t2  g11,i,t1 V χi, t2 (L, I, K, A)i,t1 , =−  2 −g13,i,t1 −g3,i,t1         Ki,t1 g22,i,t1 Ki,t1 g12,i,t1 Ki,t1 g2,i,t1 − Ki,t2   h i = − −  Ai,t1 g22,i,t1  g1,i,t1 −  Ai,t1 g12,i,t1  g2,i,t1 −  Ai,t1 g2,i,t1 − Ai,t2  g12,i,t1 Cov Ui,t1 , χi,t2 (L, I, K, A)i,t1 .   −g23,i,t1 −g13,i,t1 −g3,i,t1



Again if Ui,t is purely measurement error, the bias b2,12,ij will be zero. The last step is to recover the influence function. Since we use series expansion, it takes relatively simple form. the unit of aging is calendar year.
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¯ 1 , comes from the moment condition, which is The first piece, Ψ    X X Ki,t1 g2,i,t1 − Ki,t2  1 1 ¯ 1 = √ Σ0  Ai,t1 g2,i,t1 − Ai,t2  Vi,t2 + Ui,t2 . Ψ m(wi , µ1i , µ2i , θ 0 ) = √ Σ0 n n i i −g3,i,t1 ¯ 2 , can be decomposed into three, and two of them correspond to contributions of estimating ν1i The second piece, Ψ and µ2i in the first step,   X Ki,t1 g2,i,t1 − Ki,t2 1 ¯ 2,1 = − √ Σ0  Ai,t1 g2,i,t1 − Ai,t2  g2,i,t1 Ui,t1 , Ψ n i −g3,i,t1     X Ki,t1 g2,i,t1 − Ki,t2 1 ¯ 2,2 = − √ Σ0  Ai,t1 g2,i,t1 − Ai,t2  g1,i,t1 χi,t2 − Pi,t1 . Ψ n i −g3,i,t1 The final piece is the contribution of estimating βL in the first step. For this purpose, we use results in Section SA-4.2. Then i X h 1 ˜0 ¯ 2,3 = √1 Ψ Σ E Li,t1 (I, K, A)i,t1 Ui,t1 . n EV[Li,t1 |(I, K, A)i,t1 ] i 
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Proposition SA.17: Part 1



ˆ has the expansion For the ease of exposition we ignore (asymptotic negligible) remainder terms in the proof. Then θ  X √  1 X 1 X ˆ − θ 0 = √1 n θ ai + √ bi (ˆ µi − µi ) + √ ci (ˆ µi − µi ) 2 , n i n i n i where to save notations we used  −1 ai = − MT0 Ω0 M0 MT0 Ω0 m(wi , µi , θ 0 )  −1 ˙ bi = − MT0 Ω0 M0 MT0 Ω0 m(w i , µi , θ 0 )   −1 1 ¨ i , µi , θ 0 ). MT0 Ω0 M0 MT0 Ω0 m(w ci = − 2 (j)



ˆ , it is easy to see that Denote the leave-j-out estimator by θ √ √ √  2   √  (j) n X n X n X  (j) (j) ˆ − θ0 = n θ ai + bi µ ˆ i − µi + ci µ ˆ i − µi . n−1 n−1 n−1 i,i6=j



i,i6=j



i,i6=j



Recall that the jackknife estimator is defined as X (j) ˆ (·) = 1 ˆ , θ θ n j hence  √  (·) ˆ − θ0 = n θ



√



n XX ai n(n − 1) j i,i6=j √ √   2 n XX n X X  (j) (j) bi µ ˆ i − µi + ci µ ˆ i − µi . + n(n − 1) j n(n − 1) j i,i6=j



i,i6=j



To simplify, note that √ √ n XX n XX 1 X ai = ai = √ ai , n(n − 1) j n(n − 1) i n i i,i6=j j,j6=i
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and √   n XX (j) bi µ ˆ i − µi n(n − 1) j i,i6=j  √  X X n πij  bi (ˆ µi − µi ) + µ ˆ j − rj = n(n − 1) j 1 − πjj i,i6=j √  X X X 1 n πij  = √ bi (ˆ µi − µi ) + bi µ ˆ j − rj , n(n − 1) j 1 − πjj n i i,i6=j



and √



2 n X X  (j) ci µ ˆ i − µi n(n − 1) j i,i6=j  √ 2 πij  n XX ci (ˆ µi − µi ) + µ ˆ j − rj = n(n − 1) j 1 − πjj i,i6=j



1 X = √ ci (ˆ µi − µi )2 n i  2  √ 2 n XX πij ci + µ ˆ j − rj n(n − 1) j 1 − πjj i,i6=j √   n XX πij (ˆ µi − µi ) µ ˆ j − rj . ci + n(n − 1) j 1 − πjj i,i6=j



Therefore  √   √  (·) ˆ − θ0 = n θ ˆ − θ0 n θ √  n XX πij  + bi µ ˆ j − rj n(n − 1) j 1 − πjj i,i6=j  2  √ 2 πij n XX + ci µ ˆ j − rj n(n − 1) j 1 − πjj i,i6=j √   X X πij n ci (ˆ µi − µi ) µ ˆ j − rj . + n(n − 1) j 1 − πjj i,i6=j



Or equivalently, (n − 1) ·



  XX √  (·) πij  ˆ −θ ˆ = √1 n θ bi µ ˆ j − rj n j i,i6=j 1 − πjj 2   2 1 XX πij +√ ci µ ˆ j − rj 1 − πjj n j i,i6=j   2 XX πij +√ ci (ˆ µi − µi ) µ ˆ j − rj . 1 − πjj n j



(I)



(II) (III)



i,i6=j



By Assumption A.1(5), we could ignore the approximation error. And (I) becomes  1 XX πij  (I) = √ bi µ ˆ j − µj + µj − r j n j i,i6=j 1 − πjj  1 XX πij  X = √ bi πj` ε` 1 − πjj n j i,i6=j



(I.1)



`



1 XX πij −√ bi εj + oP (1). n j i,i6=j 1 − πjj
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(I.2)



Then we have the following conditional expectations: 2 1 X X πij E[·|Z] [bi εi ] E[·|Z] [(I.1)] = √ n j i,i6=j 1 − πjj



  " # 2 −1 X X πij 1  T 1 X T E[·|Z] [bi εi ]  = −√ M0 Ω0 M0 M0 Ω0 b1,i πii + √ − πii  1 − πjj n n i i j,j6=i E[·|Z] [(I.2)] = 0. To further simplify, note that   2 2 X πij X X πij 1 X 1 √   E[·|Z] [bi εi ] − πii - √ − πii n 1 − π 1 − π n jj jj i i j,j6=i j,j6=i 2 X X πij 1 1 2 2 − πij ≤ √ πii + √n n i,j 1 − πjj i 2 πjj 1 X 2 1 X πij +√ πii = √ n i,j 1 − πjj n i 1 X 2 1 X 2 πij πjj + √ πii -P √ n i,j n i 1 X 2 πii = oP (1). - √ n i



(πii =



P



j



2 πij )



(E.37)



One could conduct variance calculation, which is tedious yet straightforward. Now we consider (II), which has the following expansion:  2  2 1 XX πij (II) = √ µ ˆ j − µj + µj − r j ci 1 − πjj n j i,i6=j  2  2 1 XX πij = √ ci µ ˆ j − µj 1 − πjj n j i,i6=j  2  2 1 XX πij +√ ci µj − r j 1 − πjj n j i,i6=j  2   πij 1 XX ci µ ˆj − µj (µj − rj ) +√ 1 − πjj n j i,i6=j    2 X 1 XX πij  = √ (II.1) ci πj` πjm ε` εm  1 − πjj n j i,i6=j



`,m



 2 1 XX πij +√ ci ε2j 1 − πjj n j i,i6=j  2 2 XX πij −√ ci 1 − πjj n j i,i6=j



(II.2) !



X



πj` ε` εj



+ oP (1).



`



Therefore  2 1 X X  2 π ij 2 E[·|Z] [(II.1)] = √ E c ε π i [·|Z] ` j` n 1 − πjj i,j,i6=j `   2 1 X X πij 2 - √ πj` 1 − πjj n i,j,i6=j



`



1 X X 2 2 -P √ πij πj` n i,j,i6=j `
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(II.3)



1 X 2 ≤ √ πj` πjj = oP (1), n j,`



(E.37)



and 2    1 XX πij E[·|Z] [(II.2)] = √ E[·|Z] ci ε2j 1 − πjj n j i,i6=j  2   1 X πij = √ E[·|Z] ci ε2j + oP (1) 1 − πjj n i,j " # 2 −1 X   πij πjj 1 X 1  T T 2 M0 Ω0 M0 M0 Ω0 b2,ij πij + √ E[·|Z] ci ε2j + oP (1) = −√ (1 − πjj )2 n n i,j i,j " # −1 X 1  T T 2 = −√ M0 Ω0 M0 M0 Ω0 b2,ij πij + oP (1), n i,j



(E.37)



and  2 2 XX  2 π ij E[·|Z] [(II.3)] = √ c ε E π i jj [·|Z] j n 1 − π jj j i,i6=j X 1 2 πij πjj = oP (1). -P √ n i,j



(E.37)



Finally (III) has the expansion:   πij 2 XX (III) = √ ci (ˆ µ i − µi ) µ ˆ j − µj + µj − r j n j i,i6=j 1 − πjj ! X  X πij 2 XX ci πi` ε` πjm εm − εj + oP (1) = √ n j i,i6=j 1 − πjj m `   πij X 2 XX = √ ci πi` πjm ε` εm  n j i,i6=j 1 − πjj `,m ! X πij 2 XX ci πi` ε` εj + oP (1). −√ 1 − πjj n j i,i6=j



`



Again we consider the conditional expectations:   πij πi` πj` 2 XXX E[·|Z] [III.1] = √ E[·|Z] ci ε2` , 1 − πjj n j i,i6=j ` and 2   πij 2 XX E[·|Z] [III.2] = − √ E[·|Z] ci ε2j . 1 − πjj n j i,i6=j



Therefore E[·|Z] [III.1] + E[·|Z] [III.2] 2 X X   = √ E[·|Z] ci ε2` n i,j,i6=j ` 2 X X   = √ E[·|Z] ci ε2` n i,j,i6=j `



2  2  πij πij πi` πj` 2 X −√ E[·|Z] ci εj 1 − πjj 1 − πjj n i,j,i6=j 2  2  πi` 2 X πij πi` πj` −√ E[·|Z] ci ε` 1 − πjj 1 − π`` n i,`,i6=`
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(III.1)



(III.2)



2 = √ n 2 = √ n 2 = √ n 2 = √ n



2  2  πij πi` πj`  2  πi` 2 X + oP (1) −√ E[·|Z] ci ε` E[·|Z] ci ε` 1 − πjj 1 − π`` n i,` i,j,` X  2  πij πi` πj`  2 2 2 X −√ E[·|Z] ci ε` E[·|Z] ci ε` πi` + oP (1) 1 − πjj n i,` i,j,` X  2  πij πi` πj`  2 2 X E[·|Z] ci ε` −√ E[·|Z] ci ε` πij πi` πj` + oP (1) 1 − πjj n i,j,` i,j,` X   πij πi` πj` πjj + oP (1) E[·|Z] ci ε2` 1 − πjj i,j,` v !2 sX u uX X πij πj` πjj 1 2 t -P √ π 1 − πjj n i,` i` i,` j v !2 √ u X X πij πj` πjj ku t = √ 1 − πjj n j i,` √ s k X X πij πj` πjj πij 0 πj 0 ` πj 0 j 0 = √ n i,` 0 (1 − πjj )(1 − πj 0 j 0 ) jj √ v uX 2 πjj πj 0 j 0 πjj 0 ku = √ t (1 − πjj )(1 − πj 0 j 0 ) n jj 0 √ s k X 2 πjj πj 0 j 0 πjj -P √ 0 n 0 jj √ √ k = √ · oP ( k) = oP (1). ((E.37) and πj 0 j 0 ≤ 1) n X



Therefore we showed the desired result.



SA-10.20







Proposition SA.17: Part 2



First note that the jackknife variance estimator takes the form: 2 X  (j) ˆ −θ ˆ (·) , (n − 1) θ j



where for a (column) vector v, we use v2 to denote vvT to save space. Then the variance estimator could be rewritten as   2  2 2 X  (j) X  (j) ˆ −θ ˆ − 1 ˆ −θ ˆ + OP 1 . ˆ = (n − 1) ˆ = (n − 1) V θ B θ n−1 n j j Next recall that   2 1 X 1 X 1 X  (j) (j) ai + bi µ ˆ i − µi + ci µ ˆ i − µi n−1 n−1 n−1 i,i6=j i,i6=j i,i6=j     1 X 1 X πij = ai + bi µ ˆi + µ ˆ j − r j − µi n−1 n−1 1 − πjj i,i6=j i,i6=j  2  πij  1 X + ci µ ˆi + µ ˆ j − r j − µi n−1 1 − πjj i,i6=j  2  1 X 1 X  1 X πij  1 X  = ai + bi µ ˆ i − µi + bi µ ˆ j − rj + ci µ ˆ i − µi n−1 n−1 n−1 1 − πjj n−1



ˆ (j) − θ 0 = θ



i,i6=j



i,i6=j



i,i6=j
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i,i6=j



+



 2  2   πij 2 X 1 X πij  µ ˆ j − rj + ci ci µ ˆ i − µi µ ˆ j − rj . n−1 1 − πjj n−1 1 − πjj i,i6=j



i,i6=j



Equivalently, ˆ (j) − θ ˆ= θ



 1 ˆ θ − θ0 n−1 1 aj − n−1   1 − bj µ ˆ j − µj n−1  2 1 cj µ ˆ j − µj − n−1  1 X πij  + bi µ ˆ j − rj n−1 1 − πjj i,i6=j  2  2 πij 1 X µ ˆ j − rj + ci n−1 1 − πjj i,i6=j   2 X πij  + ci µ ˆ i − µi µ ˆ j − rj . n−1 1 − πjj



(I) (II) (III) (IV) (V)



(VI) (VII)



i,i6=j



Therefore we have to consider the square of each term, as well as their interactions. As the proof is quite tedious, we list the main steps here. First we would like to recover the variance terms in Theorem SA.8 with X ¯ 1 ] + oP (1) (n − 1) (II)2 = V[Ψ j



(n − 1)



X



¯ 1, Ψ ¯ 2 ] + oP (1) (II)(V)T = Cov[·|Z] [Ψ



j



(n − 1)



X



¯ 2 ] + oP (1). (V)2 = V[·|Z] [Ψ



j



Furthermore, all the other square terms and interactions are asymptotically negligible. In the following proof, we use two facts repeatedly, which are collected here. First by the uniform consistency assumption, µ ˆi − µi = oP (1) uniformly in i. Second for two sequences {ui } and {vj }, v s !2 s u X X X sX uX X 2t ui πij vj ≤ ≤ ui πij vj u2i vi2 , i,j



i



i



j



i



i



where the first inequality comes from the Cauchy-Schwarz inequality, and the second inequality comes from the fact that πij are elements of projection matrix. Term (I) is the easiest: 2  2 X 2 1 X ˆ ˆ − θ 0 = oP (1), (n − 1) (I) = θ − θ0  θ n−1 j j by consistency. Then it is also easy to show that for † = II, · · · , VII (n − 1)



X j



(I)(†)T = (I)



1 X T 1 X T (†) = oP (1) · (†) = oP (1), n−1 j n−1 j



since the summands are bounded in probability uniformly in j. Next we consider (II): (n − 1)



X



(II)2 =



j
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1 X 2 aj , n−1 j



¯ 1 ] in Theorem SA.8. Now we consider the interactions: which is asymptotically equivalent to V[Ψ   X 1 X 1 X aj bTj µ ˆj − µj ≤ oP (1) · |aj bTj | = oP (1). (II)(III)T = (n − 1) n − 1 n − 1 j j j Similar techniques can be used to establish the following X (n − 1) (II)(IV)T = oP (1). j



The interactions between (II) and (V), (VI) and (VII) are more involved. We first consider the interaction between (II) and (V): X X 1 X  πij (n − 1) (II)(V)T = − aj µ ˆ j − rj bi n − 1 1 − πjj j j i,i6=j



X πij 1X aj εj bi + oP (1) =− n j 1 − πjj



(Assumption A.1(3))



i,i6=j



=



X X 1X 1X πij πjj a j εj bi πij − aj εj bi + oP (1) n j n j 1 − πjj i,i6=j



i,i6=j



X 1X = a j εj bi πij + oP (1), n j i,i6=j



¯ 1, Ψ ¯ 2 ]. And by symmetry, (n − 1) which is asymptotically equivalent to Cov[·|Z] [Ψ ¯ 2, Ψ ¯ 1 ]. And as a short digression, Cov[·|Z] [Ψ (n − 1)



X j



P



j



(V)(II)T is equivalent to



 2  2  X 2 X 1 XX πij  π 1 ij  + oP (1) (V) = bi µ ˆ j − rj  = εj  bi n−1 j 1 − πjj n−1 j 1 − πjj 2



i,i6=j



i,i6=j



2



 =



 π 1 X 2X  ij  + oP (1) εj bi − E[·|Z] [bi ] + E[·|Z] [bi ] n−1 j 1 − πjj i,i6=j



2



 =



1 n−1



X j



ε2j 



X



E[·|Z] [bi ]



i,i6=j



2







πij  1 + 1 − πjj n−1



X



 X bi − E[·|Z] [bi ] ε2j 



j



i,i6=j



πij  1 − πjj



T  π 1 X 2X πij   X  ij  + oP (1) + εj E[·|Z] [bi ] bi − E[·|Z] [bi ] n−1 j 1 − πjj 1 − πjj 







i,i6=j



i,i6=j



2



2   X 2 X 1 1 X 2X = εj E[·|Z] [bi ]πij  + εj  bi − E[·|Z] [bi ] πij  n−1 j n−1 j 



i,i6=j



i,i6=j



T  X 1 X 2X + εj E[·|Z] [bi ]πij   bi − E[·|Z] [bi ] πij  + oP (1), n−1 j 







i,i6=j



i,i6=j



¯ 2 ], while the rest two are negligible by conditional expectation where the first term in the above display recovers V[·|Z] [Ψ calculation. Therefore we recovered the asymptotic variance. Back to the interaction terms, 2 X T  πij 2  X 1 X aj ci (II)(VI)T = µ ˆ j − rj (n − 1) n − 1 1 − π jj j j i,i6=j



1 X 2 πij = oP (1), -P n − 1 i,j
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and X (II)(VII)T = (n − 1)



X  2 X  πij  aj µ ˆ j − rj cTi µ ˆ i − µi n−1 j 1 − πjj i,i6=j    πij  2 X aj µ ˆj − rj cTi µ ˆ i − µi p n − 1 i,j 1 − πjj     2 X p aj µ ˆj − rj cTi πij µ ˆ i − µi (Assumption A.3(2)) n − 1 i,j s  2 sX  2 X 2 · ≤ |aj |2 µ ˆ j − rj |cj |2 µ ˆ j − µj (Projection and Cauchy-Schwarz) n−1 j j s  2 sX X 2 ≤ oP (1) · · |aj |2 µ ˆ j − rj |cj |2 = oP (1), n−1 j j



j



With a quick inspection, the above method also applies to the following interactions X X X (n − 1) (III)(V)T = oP (1), (n − 1) (III)(VI)T = oP (1), (n − 1) (III)(VII)T = oP (1), j



j



j



and (n − 1)



X



(IV)(V)T = oP (1),



(n − 1)



j



X



(IV)(VI)T = oP (1),



(n − 1)



j



X



(IV)(VII)T = oP (1).



j



Next we consider the squared terms involving (III) and (IV):  2 X 1 X 1 X (bj )2 µ ˆj − µj ≤ oP (1) · |bj |2 = oP (1), (n − 1) (III)2 = n − 1 n − 1 j j j and (n − 1)



X



(IV)2 =



j



 4 1 X 1 X (cj )2 µ ˆj − µj ≤ oP (1) · |cj |2 = oP (1). n−1 j n−1 j



T



What remains are (V)(VI) , (V)(VII)T , (VI)2 , (VI)(VII)T and (VII)2 .   T  2   2 X X πij  π 1 XX `j T bi µ ˆ j − rj   c` µ ˆ j − rj  (V)(VI) = (n − 1) n − 1 1 − π 1 − π jj `` j j i,i6=j



`,`6=j



 2 T   3 X 1 X π `j  bi πij µ ˆ j − rj  c` n − 1 i,j 1 − π`` `,`6=j v u   2 2 u 6 X u 1 X π `j -P t µ ˆj − rj c` (Projection and Cauchy-Schwarz) n−1 j 1 − π `` 



p 



`,`6=j



s p



1X 2 2 πij π`j = oP (1). n j,i,`



And X (V)(VII)T = (n − 1) j



T       X 2 XX πij  π `j bi µ ˆ j − rj   c` µ ˆ ` − µ` µ ˆ j − rj  n−1 j 1 − πjj 1 − π`` i,i6=j



`,`6=j



T  2 X   π 1 X `j bi πij µ ˆ j − rj  c` µ ˆ ` − µ`  n − 1 i,j 1 − π`` 



p 



`,`6=j
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v u u u -P t



2 4 X   1 X π `j c` µ ˆj − rj µ ˆ` − µ` = oP (1), n−1 j 1 − π`` `,`6=j



(Projection and Cauchy-Schwarz) where the last line uses Assumption A.1(3). Using techniques in the above results, we can show X X X (n − 1) (VI)2 = oP (1), (n − 1) (VII)2 = oP (1), (n − 1) (VI)(VII)T = oP (1), j



j



j



which closes the proof.



SA-10.21







Lemma SA.18



Recall that we have the decomposition: max |ˆ µ?i − µi | ≤ max |ˆ µ?i − µ ˆi | + max |ˆ µi − µi | 1≤i≤n 1≤i≤n X X ≤ max | πij e?j εj | + max | πij e?j (ˆ µj − µj )| + max |ˆ µi − µi |.



1≤i≤n



1≤i≤n



1≤i≤n



j



1≤i≤n



j



The last term is oP (1) by Assumption A.1(3), and the second term can be bounded by using the conditional Hoeffding’s inequality since e?i are bounded random variables with zero mean: " # " # X X ? ? ? ? P max | πij ej (ˆ µj − µj )| ≥ t ≤ n · max P max | πij ej (ˆ µj − µj )| ≥ t 1≤i≤n



1≤i≤n



j



1≤i≤n



j



"



# Ct2 ≤ 2n · max exp − P 2 1≤i≤n µj − µj | 2 j πij |ˆ   2 Ct  , ≤ 2n · exp −  max1≤i≤n πii max1≤i≤n |ˆ µi − µi | 2 which goes to zero in probability if







max1≤i≤n πii







 max1≤i≤n |ˆ µi − µi |2 / log(n) = oP (1), or max1≤i≤n πii =



OP (1/ log(n)). Since the conditional probability is always bounded by 1, the unconditional probability converges to zero by dominated convergence. Next we consider the first term, which requires a reversed symmetrization inequality of (van der Vaart and Wellner, 1996, Lemma 2.3.7). And for simplicity, we assume e?i has Rademacher distribution, which is without loss of generality since we assumed e?i being bounded and symmetrically distributed with zero mean. Let ε0j be an independent copy of εj from the conditional distribution εj |zj , µj , then (subscript [·|Z, e? ] indicates conditioning on Z and the bootstrap weights) # " # " X X t ? ? 0 , αn · P[·|Z,e? ] max | πij ej εj | > t ≤ P[·|Z,e? ] max | πij ej (εj − εj )| > 1≤i≤n 1≤i≤n 2 j j where " αn = min P[·|Z,e? ] | 1≤i≤n



X j



πij e?j εj |



t ≤ 2



#



" = 1 − max P[·|Z,e? ] | 1≤i≤n



X j



πij e?j εj |



t > 2



#



Ct2 ≥1− max πii , 4 1≤i≤n + where C ≥ max1≤i≤n E[ε2i |zi ]. Since we are dealing with probabilities, we can replace αn by αn = αn ∨ 0 in the original inequality, yielding " # " # X X 1 t ? ? 0 P[·|Z,e? ] max | πij ej εj | > t ≤ + P[·|Z,e? ] max | πij ej (εj − εj )| > . 1≤i≤n 1≤i≤n 2 αn j j



Note that both sides in the above display are nonnegative, hence we can take expectation with respect to the bootstrap
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weights, " P[·|Z]



#



max |



1≤i≤n



X



πij e?j εj |



j



1 > t ≤ + P[·|Z] αn



"



2 ≤ + P[·|Z] αn



"



max |



1≤i≤n



max |



1≤i≤n



X



πij (εj −



ε0j )|



j



X j



t > 2



#



# t πij εj | > , 4



+ where for the first line we used the fact that αn depends only on Z and both e?j and εj −ε0j have symmetric distribution. The second line is a simple fact of triangle inequality. Also note that the LHS in the above display is bounded by 1, hence we are able to tighten the RHS: # " " #! X X 2 t ? πij ej εj | > t ≤ P[·|Z] max | max | πij εj | > ∧ 1. + P[·|Z] 1≤i≤n 1≤i≤n 4 αn j j



Now we go back to Assumptions A.1(5) and A.1(3). They jointly imply that " " ## X X t max | πij εj | = oP (1) ⇔ E P[·|Z] max | πij εj > → 0, 1≤i≤ 1≤i≤n 4 j j which in turn implies that " P[·|Z]



max |



X



1≤i≤n



j



t πij εj > 4



# = oP (1).



+ By our assumption, max1≤i≤n πii = oP (1), hence 1/αn = OP (1), hence " #! X t 2 max | πij εj | > ∧ 1 = oP (1). + P[·|Z] 1≤i≤n 4 αn j



And since the quantity in the above display is bounded, dominated convergence implies " # X ? P max | πij ej εj | > t → 0, 1≤i≤n



j



which closes the proof.



SA-10.22







Proposition SA.19



The proof resembles that of Theorem SA.1, and is omitted here.



SA-10.23



Lemma SA.20



Note that 1 X ? ˆ (E.32) = √ m (wi , µ ˆi , θ) n i 1 X ? ˆ + oP (1) ei · m(wi , µ ˆi , θ) = √ n i 1 X ? = √ ei · m(wi , µ ˆi , θ 0 ) + oP (1). n i The second line uses (E.5), while the last line comes from the argument that   X ? ∂ 1 X ? ∂ ˜ θ ˆ − θ 0 -P 1 ˜ √ m(wi , µ ˆi , θ) ei · m(wi , µ ˆi , θ) ei · ∂θ n i ∂θ n i   ∂ →P E e?i · m(wi , µi , θ 0 ) , ∂θ



92







given Assumption A.2(2). To further understand the last term, we still need to expand it with respect to µ ˆi , yielding 1 X ? 1 X ? √ ei · m(wi , µ ˆi , θ 0 ) = √ ei · m(wi , µi , θ 0 ) n i n i   1 X ? ˙ ei · m(w ˆ i − µi +√ i , µi , θ 0 ) µ n i  2 1 X ? 1 ¨ i , µi , θ 0 ) µ +√ ei · m(w ˆi − µi · (1 + oP (1)). 2 n i



(I) (II) (III)



(I) apparently contributes to the first order. For (II), note that it can be simplified using exactly the same argument used in Lemma SA.3 and SA.4. Equivalently, assuming A.1 and A.2, then r ! k (II) = OP + oP (1). n By the same argument, (III) can be simplified with Lemma SA.6 and SA.7. Namely, assume A.1 and A.2 hold, then r ! k (III) = OP + oP (1). n 



SA-10.24



Lemma SA.21



ˆ by θ 0 , provided ∂ m/∂θ ˙ For (E.33), we first show that it is possible to replace θ is H¨ older continuous in µi and θ:     √  1 X ? 1X ∂ ? ˆ − θ0 , ˜ µ ˙ (wi , µ ˙ (wi , µ m ˆi , θ 0 ) µ ˆ?i − µ ˆi + n θ (E.33) = √ m ˆi , θ) ˆ?i − µ ˆi n i ∂θ n i where the second term is bounded by the following X   √  ∂ ? 1 ? ˆ − θ 0 ˜ µ ˙ (wi , µ n θ m ˆi , θ) ˆi − µ ˆi n ∂θ i   X 1 ˜ µ ∂ m ˙ ? (wi , µ -P ˆi , θ) ˆ?i − µ ˆi n i ∂θ 1 X ∂ ? ˜ = oP (1), ˙ = oP (1) · m (w , µ ˆ , θ) i i n i ∂θ where the last line uses the uniform consistency of µ ˆ?i and µ ˆi . Hence   X 1 ˙ ? (wi , µ ˆi + oP (1) m ˆi , θ 0 ) µ ˆ?i − µ (E.33) = √ n i X  1 X ? ˙ (wi , µ = √ m ˆi , θ 0 ) πij εj e?j n i j X  1 X ? ˙ (wi , µ −√ m ˆi , θ 0 ) πij (ˆ µj − µj )e?j + oP (1). n i j



(I)



For (I), h



E? (I)(I)T



i



  1 ? X ˙ ? (wi , µ ˙ ? (wi0 , µ = E m ˆ i , θ 0 )m ˆi0 , θ 0 )T (ˆ µj − µj )(ˆ µj 0 − µj 0 )e?j e?j0 πij πi0 j 0  n 0 0 i,i ,j,j



1 X ˙ ˙ = m(w ˆi , θ 0 )m(w ˆi0 , θ 0 )T (ˆ µj − µj )2 πij πi0 j i, µ i0 , µ n 0 i,i ,j distinct
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(II)



+



2 X ˙ ˙ m(w ˆi , θ 0 )m(w ˆi0 , θ 0 )T (ˆ µi − µi )(ˆ µi0 − µi0 )πii πi0 i0 i, µ i0 , µ n 0



(III)



2 X 2 ˙ ˙ m(w ˆi , θ 0 )m(w ˆi , θ 0 )T (ˆ µj − µj )2 πij i, µ i, µ n i,j



(IV)



i,i distinct



+



distinct



C1 X ˙ ˙ + m(w ˆi , θ 0 )m(w ˆj , θ 0 )T (ˆ µj − µj )2 πij πjj i, µ j, µ n i,j



(V)



distinct



C2 X 2 ˙ ˙ + m(w ˆi , θ 0 )m(w ˆi , θ 0 )T (ˆ µi − µi )2 πii , i, µ i, µ n i



(VI)



distinct



where C1 and C2 are related to the third and fourth moments of e?i . Then for each term,   1 X ˙ ˙ |(II)| ≤ max |ˆ µi − µi | 2 · |m(w ˆi , θ 0 )| |m(w ˆi0 , θ 0 )| πii0 i, µ i0 , µ 1≤i≤n n 0 i,i distinct



1X ˙ ≤ oP (1) · |m(w ˆi , θ 0 )|2 i, µ n i



(projection and Assumption A.1(3))



= oP (1), ˙ is H¨ provided m older continuous in µi . (III) can be handled by observing that !2 1 X ˙ |(III)| ≤ √ |m(w ˆi , θ 0 )| πii |ˆ µ i − µi | i, µ n i !2  2 k 1 X ˙ ≤ oP (1) · √ |m(w = oP . i , µi , θ 0 )| πii n n i Similarly   k 2 X 2 2 ˙ |m(w , |(IV)| ≤ oP (1) · i , µi , θ 0 )| πij = oP n i,j n distinct



and |(V)| ≤



C1 n



!1/2 X



-P n−1 ·



˙ |m(w ˆi , θ 0 )|2 i, µ



!1/2 X



i



√



2 ˙ |m(w ˆi , θ 0 )|2 |ˆ µi − µi |4 πjj i, µ



i



n·



√



k · oP (1) = oP



r ! k . n



Finally, |(VI)| ≤



  C2 X k 2 ˙ . |m(w ˆi , θ 0 )|2 |ˆ µi − µi |2 πii = oP i, µ n i n



To summarize, we have the following   X  1 X ? k ˙ (wi , µ (E.33) = √ m ˆi , θ 0 ) πij εj e?j + oP √ ∨ 1 n i n j     X 1 X ? k ˙ (wi , µi , θ 0 ) = √ m πij εj e?j + oP √ ∨ 1 , n i n j
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where the second line relies on almost the same argument. Finally, we can apply the same techniques used to prove Lemma SA.3 and SA.4, yielding ! 1 X X ˙ (E.33) = √ E [m(w εi e?i j , µj , θ 0 )|zj ] πij n i j   k 1 X +√ b1,i · πii + oP √ ∨ 1 . n i n 



SA-10.25



Lemma SA.22



First note that  2 1 X1 ? ˆ µ ¨ (wi , µ m ˜?i , θ) ˆ?i − µ ˆi (E.34) = √ n i 2  2 1 X1 ? ¨ (wi , µi , θ 0 ) µ = √ m ˆ?i − µ ˆi n i 2 i 2 1 X1h ? ˆ −m ¨ (wi , µ ¨ ? (wi , µi , θ 0 ) µ +√ m ˜?i , θ) ˆ?i − µ ˆi , n i 2 where the second term is easily bounded by h i 2 1 X1 ? ? ˆ ? ? ¨ (wi , µ ¨ (wi , µi , θ 0 ) µ m ˜i , θ) − m ˆi − µ ˆi √ n 2 i X 1 1 ˆ − θ 0 |)α · |ˆ ¨ i ) · (|˜ ≤ √ (1 + ei ) · Hα,δ (m µ?i − µi | + |θ µ?i − µ ˆ i |2 n i 2 1 X1 ¨ i ) · |ˆ (1 + ei ) · Hα,δ (m µ?i − µ ˆi |2 . ≤ oP (1) · √ n i 2



(I)



(II)



¨ and Hα,δ (m ¨ i ). Hence Compare (I) and (II) and note that Assumption A.2(4) imposes the same restrictions on m generically, (II) has the order (II) = oP (|(I)|) . Next we consider (I), which can be written as X 2 1 X1 ? 1 X1 ? ¨ (wi , µi , θ 0 ) ¨ (wi , µi , θ 0 )ˆ (I) = √ m πij εˆj e?j = √ m εj εˆ` e?j e?` πij πi` . n i 2 n i,j,` 2 j The key step, as before, is to replace εˆ· by ε· . Note that 1 X1 ? ¨ (wi , µi , θ 0 )ˆ (I) = √ m εj ε` e?j e?` πij πi` n i,j,` 2 1 X1 ? ¨ (wi , µi , θ 0 )(ˆ −√ m µ?i − µ ˆi )(ˆ µ` − µ` )e?` πi` , n i,` 2 ¨ ? (wi , µi , θ 0 )(ˆ and (for simplicity let a?i = m µ?i − µ ˆi )) h i h i X 1 E? (III)(III)T = E? a?i a?T µj − µj )(ˆ µj 0 − µj 0 )e?j e?j0 πij πi0 j 0 i0 (ˆ 4n 0 0 i,i ,j,j 1 X ? h ? ?T i = E ai ai0 (ˆ µj − µj )2 πij πi0 j 4n 0



(III)



(IV)



i,i ,j distinct



+



1 X ? h ? ?T i 2 E ai ai (ˆ µj − µj )2 πij 4n i,j distinct
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(V)



+



1 X ? ? ? ? ? ? T E [ai ei ]E [ai0 ei0 ] (ˆ µi − µi )(ˆ µi0 − µi0 )πii πi0 i0 2n 0



(VI)



i,i distinct



+



1 X ? ? ? h ?2 ?T i µi0 − µi0 )2 πii0 πi0 i0 E [ai ] E ei0 ai0 (ˆ 2n 0



(VII)



i,i distinct



+



1 X ? h ? ?T ?2 i 2 E ai ai ei (ˆ µi − µi )2 πii . 4n i



(VIII)



Then i h X 1 2 ? ? ?T µj − µj ) πij πi0 j E ai ai0 (ˆ |(IV)| = 4n i,i0 ,j distinct i h X 1 - oP (1) · πii0 E? a?i a?T i0 n 0 i,i



1X ? ? ? ? ≤ oP (1) · E [|ai |] E [|ai0 |] πii0 n 0 i,i



1X ¨ i , µi , θ 0 )||m(w ¨ i0 , µi0 , θ 0 )|πii0 ≤ oP (1) · |m(w n 0 i,i



1X ¨ i , µi , θ 0 )|2 = oP (1), ≤ oP (1) · |m(w n i where the second line uses Assumption A.1(3), the fourth line uses Assumption A.4(2), and the last line uses projection property and Assumption A.2(4). Similarly, we have, for (V), h i X 1 ? ? ?T 2 2 E ai ai (ˆ µj − µj ) πij |(V)| = 4n i,j distinct   1X k 2 ¨ i , µi , θ 0 )|2 πij - oP (1) · |m(w = oP , n i,j n and the last equality is a simple consequence of Assumption A.2(4). (VI) is the most difficult, which can be rewritten as 1 X ? ? ? ? ? ? T µi − µi )(ˆ µi0 − µi0 )πii πi0 i0 |(VI)| = E [ai ei ]E [ai0 ei0 ] (ˆ 2n 0 i,i distinct







1 X ? ? ? √ E [ai ei ](ˆ µi − µi )πii n i



- oP (1) ·



!2



1 X √ ¨ i , µi , θ 0 )|πii |m(w n i



!2



 = oP



k2 n



 .



And h i 1 X ? ? ? ?2 ?T 2 |(VII)| = E [ai ] E ei0 ai0 (ˆ µi0 − µi0 ) πii0 πi0 i0 2n i,i0 distinct !1/2 !1/2 X ?  ?2 ?  2 1 X ? ? 2 2 2 |E [ai ] | |E ei ai | |ˆ µi − µi | πii n i i !1/2 !1/2 X 1 X 2 2 2 ¨ i , µi , θ 0 )| ¨ i , µi , θ 0 )| πii ≤ oP (1) · |m(w |m(w n i i
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(projection)



= oP (1) · n−1 · n1/2 · k1/2 = oP



r ! k . n



Finally |(VII)| =



1 X ? h ? ?T ?2 i 2 E ai ai ei (ˆ µi − µi )2 πii 4n i



- oP (1) ·



  k 1X 2 ¨ i , µi , θ 0 )|2 πii |m(w = oP . n i n



Hence we have shown that   1 X1 ? k ¨ (wi , µi , θ 0 )ˆ (I) = √ m εj ε` e?j e?` πij πi` + oP √ ∨ 1 . n i,j,` 2 n Not surprisingly, we can replicate the above argument, and replace εˆj by εj in the above display, yielding   k 1 X1 ? ¨ (wi , µi , θ 0 )εj ε` e?j e?` πij πi` + oP √ ∨ 1 . (I) = √ m n i,j,` 2 n The next step is to apply Lemma SA.7 to conclude that    ?  2 k 1 X1 ¨ (wi , µi , θ 0 )ε2j e?2 E[·|Z] m πij + oP √ ∨ 1 (I) = √ j n i,j 2 n   1 X 1 X k 2 2 √ = √ b2,ij · πij +√ b2,ii · πii · E[e?3 ] + o ∨ 1 . P i n i,j n i n 



SA-10.26



Proposition SA.23



This is a simple consequence of linearization, Lemma SA.20, SA.21 and SA.22.



SA-10.27







Proposition SA.24, Part 1 ?



ˆ has the expansion For the ease of exposition we ignore (asymptotic negligible) remainder terms in the proof. Then θ √ √ √  X ? √  ? n X ?ˆ nX ? 2 ˆ −θ ˆ = n ˆi + ˆi (ˆ µ?i − µ ˆi ) + n θ ωi a ωi bi (ˆ ωi c µ?i − µ ˆi ) , nω i nω i nω i where to save notations we used ωi? = 1 + e?i , nω = ˆ ˆ i = Σ0 m(wi , µ a ˆi , θ)



P



i



ωi? , and ˆ ¨ i, µ m(w ˆi , θ) . 2



ˆ i = Σ0 m(w ˆ ˙ b ˆi , θ) i, µ



ˆi = Σ0 c



˙ bi = Σ0 m(w i , µi , θ 0 )



ci = Σ0



For future reference, let ai = Σ0 m(wi , µi , θ 0 )



¨ i , µi , θ 0 ) m(w . 2



ˆ ?,(j) , it is easy to see that Denote the leave-j-out estimator by θ √ √    √  ?,(j) n X ? n X ? ?,(j) ˆ ˆi µ ˆ = n θ (ωi − δij )ˆ ai + (ωi − δij )b ˆi −µ ˆi −θ nω − 1 i nω − 1 i √  2 X n ?,(j) + (ωi? − δij )ˆ ci µ ˆi −µ ˆi , nω − 1 i
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where δij = 1[i = j]. Recall that the jackknife estimator is defined as X ? ?,(j) ˆ ˆ ?,(·) = 1 ωj θ , θ nω j hence √ √   X ? ? X ? ? n n ?,(j) ˆi µ ωj (ωi − δij )ˆ ai + ωj (ωi − δij )b ˆi −µ ˆi nω (nω − 1) i,j nω (nω − 1) i,j √  2 X ? ? n ?,(j) ωj (ωi − δij )ˆ ci µ ˆi + −µ ˆi . nω (nω − 1) i,j



 √  ?,(·) ˆ ˆ = n θ −θ



To simplify, we further expand the leave-j-out propensity score, which satisfies ?,(j)



µ ˆi



−µ ˆi = µ ˆ?i − µ ˆi +



πij (ˆ µ?j − rj? ), 1 − πjj



hence  √  ?,(·) ˆ ˆ = n θ −θ + + +



+



√



X ? ? n ωj (ωi − δij )ˆ ai nω (nω − 1) i,j √ √ X ? ? X ? ? n n 2 ? ˆ ωj (ωi − δij )bi (ˆ µi − µ ˆi ) + ωj (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) nω (nω − 1) i,j nω (nω − 1) i,j √ X ? ? n ˆ i πij (ˆ ωj (ωi − δij )b µ?j − rj? ) nω (nω − 1) i,j 1 − πjj √ X ? ? πij 2 n ωj (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi )(ˆ µ?j − rj? ) nω (nω − 1) i,j 1 − πjj  2 √ X ? ? πij n ωj (ωi − δij )ˆ ci (ˆ µ?j − rj? )2 . nω (nω − 1) i,j 1 − πjj



Note that √ √ X ? ? X X ? ?  n n ˆi ωj (ωi − δij ) ωj (ωi − δij )ˆ ai = a nω (nω − 1) i,j nω (nω − 1) i j √ X n ˆ i ((nω − ωi? )ωi? + ωi? (ωi? − 1)) = a nω (nω − 1) i √ X n ˆi . = ωi? a nω i Similarly, we have √ X X ? ? n n ? ˆ ˆ i (ˆ ωj (ωi − δij )bi (ˆ µi − µ ˆi ) = ωi? b µ?i − µ ˆi ) , nω (nω − 1) i,j nω i √



and √



√ X X ? ? n n 2 2 ˆi (ˆ ωj (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) = ωi? c µ?i − µ ˆi ) . nω (nω − 1) i,j nω i As a consequence, √ X n ˆ i πij (ˆ ωj? (ωi? − δij )b µ?j − rj? ) nω i,j 1 − πjj √ 2 nX ? ? πij + ωj (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi )(ˆ µ?j − rj? ) nω i,j 1 − πjj



 √  ?,(·) ˆ ˆ? = (nω − 1) n θ −θ
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+



 2 √ X πij n (ˆ µ?j − rj? )2 ωj? (ωi? − δij )ˆ ci nω i,j 1 − πjj



1 X ? ? ˆ i πij (ˆ = √ ωj (ωi − δij )b µ?j − rj? ) 1 − πjj n i,j 2 X ? ? πij +√ ωj (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi )(ˆ µ?j − rj? ) 1 − πjj n i,j  2 πij 1 X ? ? ωj (ωi − δij )ˆ ci (ˆ µ?j − rj? )2 +√ 1 − πjj n i,j



(I) (II)



(III)



+ oP (1). Next we analyze each term. For term (I), it is X  1 X ? ? 1 X ? ? ˆ i πij (ˆ ˆ i πij (I) = √ µ?j − rj? ) = √ πj` e?` εˆ` − e?j εˆj ωj (ωi − δij )b ωj (ωi − δij )b 1 − πjj 1 − πjj n i,j n i,j ` X 1 πij ? ? ?ˆ = √ πj` εˆ` ωj (ωi − δij )e` bi 1 − πjj n i,j,` 1 X ? ? ? ˆ i πij εˆj . ωj ej (ωi − δij )b −√ 1 − πjj n i,j



(I.1) (I.2)



Again we consider conditional expectation:   X π 1 ij ˆi ωj? (ωi? − δij )e?` b πj` εˆ`  E? [(I.1)] = E?  √ 1 − πjj n i,j,`     2 X X π 1 1 π π ij ˆi ˆ i ij jj εˆj  = E?  √ ωj? ωi? e?i b ωj? ωi? e?j b εˆi  + E?  √ 1 − πjj 1 − πjj n i,j,i6=j n i,j,i6=j " # 2 1 X ? ? ˆ i πii εˆi + E? √ ωi (ωi − 1)e?i b 1 − πii n i 2 2 1 X ˆ πij 1 X ˆ πij πjj 1 X ? ?3 ˆ i πii εˆi . (E [ei ] + 1)b = √ bi εˆi + √ bi εˆj + √ 1 − πii n i,j,i6=j 1 − πjj n i,j,i6=j 1 − πjj n i



Similarly, # πij 1 X ? ? ? ˆ εˆj E [(I.2)] = E − √ ωj ej (ωi − δij )bi 1 − πjj n i,j   " # X 1 π πii 1 X ? ? ? ij ? ? ? ?ˆ ? ˆ  = E −√ ωj ej ωi bi εˆj + E − √ ωi ei (ωi − 1)bi εˆi 1 − πjj 1 − πii n i,j,i6=j n i "



?



?



1 X ˆ πij 1 X ? ?3 ˆ i πii εˆi . bi = −√ εˆj − √ (E [ei ] + 1)b 1 − πii n i,j,i6=j 1 − πjj n i Therefore 2 1 X ˆ πij E? [(I)] = √ bi εˆi n i,j,i6=j 1 − πjj



(I.3)



1 X ˆ −√ bi πij εˆj n i,j,i6=j



(I.4)



1 X ? ?3 ˆ i πii εˆi . −√ (E [ei ] + 1)b n i



(I.5)
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Furthermore, 2 1 X ˆ πij bi εˆi (I.3) = √ n i,j,i6=j 1 − πjj



  2 2 πij πij πjj 1 X 1 X 2 = √ bi εi + oP (1) = √ bi πij + εi + oP (1) 1 − πjj n i,j,i6=j 1 − πjj n i,j,i6=j 1 X 1 X 2 2 = √ bi πij εi + oP (1) = √ bi πij εi + oP (1) n i,j,i6=j n i,j 1 X 1 X = √ bi πii εi + oP (1) = √ E[bi εi |zi ]πii + oP (1) n i n i 1 X = Σ0 √ b1,i πii + oP (1). n i The second line follows from consistency and (E.36); the third line follows from Assumption A.3(2) and (E.37); the fourth line is a simple fact of Lemma SA.4. Similar argument applies to (I.5), which implies 1 X Σ0 (E? [e?3 (I.5) = − √ i ] + 1)b1,i πii + oP (1). n i Finally, 1 X ˆ 1 Xˆ 1 Xˆ (I.4) = − √ bi πij εˆj + √ bi πii εˆi bi πij εˆj = − √ n i,j,i6=j n i,j n i 1 X 1 Xˆ bi πii εˆi = √ Σ0 b1,i πii + oP (1), = √ n i n i where, in the second line, we used the fact that



P



ij



πij εˆj = 0 for all i. Therefore



1 X (I) = (1 − E? [e?3 Σ0 b1,i πii + oP (1). i ]) √ n i Next we consider (II). Note that it has the expansion: 2 X ? ? πij (II) = √ ωj (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi )(ˆ µ?j − rj? ) 1 − πjj n i,j X X πij 2 X ? ? ωj (ωi − δij )ˆ ci = √ ( πi` e?` εˆ` )( πj` e?` εˆ` − e?j εˆj ) 1 − πjj n i,j `



`



πij 2 X ? ? ˆi = √ ωj (ωi − δij )e?` e?`0 c πi` πj`0 εˆ` εˆ`0 1 − πjj n 0



(II.1)



πij 2 X ? ? ? ˆi ωj ej (ωi − δij )e?` c −√ πi` εˆ` εˆj . 1 − πjj n i,j,`



(II.2)



i,j,`,`



Then "



# 2 X ? ? πii ? ? ˆi E [(II.1)] = E √ ωi (ωi − 1)ei ei c πii πii εˆi εˆi 1 − πii n i   X 2 π ij ˆi + E?  √ ωj? ωi? e?i e?i c πii πji εˆi εˆi  1 − πjj n i,j,i6=j   X 2 π ij ˆi ωj? ωi? e?j e?j c πij πjj εˆj εˆj  + E?  √ 1 − πjj n i,j,i6=j   X 2 π ii ˆi + E?  √ ωi? (ωi? − 1)e?` e?` c πi` πi` εˆ` εˆ`  1 − πii n ?



?



i,`,i6=`
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 X ? ? ? ? 2 π ij ˆi + E √ πii πjj εˆi εˆj  ωj ωi ei ej c 1 − πjj n i,j,i6=j   X ? ? ? ? πij ? 2 ˆi +E √ πij πji εˆj εˆi  ωj ωi ej ei c 1 − πjj n i,j,i6=j   X 2 π   ij ˆi + E?  √ ωj? (ωi? − δij )e?` e?` c πi` πj` εˆ` εˆ`  1 − πjj n ?



i,j,` distinct







 X 3 X 2 X 2 X 2 1 πii + πij πii + πij πjj + πi` πii  = √ OP  n i i,j i,j i,` 3 πij 2 X 2 X 2 X πij πii πjj πij πi` πj` 2 ˆi ˆi ˆi +√ εˆi εˆj + √ εˆi εˆj + √ εˆ` c c c 1 − πjj 1 − πjj n i,j,i6=j n i,j,i6=j 1 − πjj n i,j,` distinct 3 πij πij πii πjj πij πi` πj` 2 2 X 2 X 2 X ˆi ˆi ˆi = √ c εˆi εˆj + √ c εˆi εˆj + √ c εˆ` + oP (1), 1 − πjj 1 − πjj n i,j,i6=j n i,j,i6=j 1 − πjj n i,j,` distinct



where the oP (1) terms follows from (E.37) and Assumption A.3(1). Similarly, # " 2 X ? ? ? πii ? ? ? ˆi ωi ei (ωi − 1)ei c πii εˆi εˆi E [(II.2)] = E − √ 1 − πii n i   2 X ? ? ? ? πij ? ˆi + E −√ ωj ej ωi ei c πii εˆi εˆj  1 − πjj n i,j,i6=j   πij 2 X ? ? ? ? ? ˆi + E −√ ωj ej ωi ej c πij εˆj εˆj  1 − πjj n i,j,i6=j



1 = √ OP ( n 2 = −√ n



X i



2 πij 2 X 2 X πij πii 2 ˆi εˆi εˆj − √ εˆ2j πii )− √ c (E? [e?3 ci i ] + 1)ˆ 1 − πjj n i,j,i6=j 1 − πjj n i,j,i6=j



X i,j,i6=j



ˆi c



2 πij πij πii 2 X εˆi εˆj − √ (E? [e?3 ci εˆ2j + oP (1). i ] + 1)ˆ 1 − πjj 1 − πjj n i,j,i6=j



Hence 2 X πij πii πjj ˆi E? [(II)] = √ c εˆi εˆj 1 − πjj n i,j,i6=j



(II.3)



3 πij 2 X ˆi +√ c εˆi εˆj n i,j,i6=j 1 − πjj



(II.4)



2 X πij πi` πj` 2 ˆi +√ c εˆ` 1 − πjj n i,j,`



(II.5)



distinct



2 X πij πii ˆi −√ c εˆi εˆj n i,j,i6=j 1 − πjj



(II.6)



2 πij 2 X (E? [e?3 ci εˆ2j + oP (1). −√ i ] + 1)ˆ 1 − πjj n i,j,i6=j



(II.7)



First note that 3 3 πij πij 2 X 2 X (II.4) = √ ci εi εj + oP (1) = √ E[ci εi εj |zi , zj ] + oP (1) = oP (1). 1 − πjj n i,j,i6=j 1 − πjj n i,j,i6=j
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Next 2 X 2 X 2 X 2 2 ˆi πij πii εˆi εˆj = − √ ˆi πij πii εˆi εˆj + √ ˆi πii c c c εˆi (II.3)+(II.6) = − √ n i,j,i6=j n i,j n i 2 X 2 2 ˆi πii = √ c εˆi = oP (1), n i where for the third line we used the fact



P



i,j



πij εˆj = 0, and the last line follows from Assumption A.3(1). Hence



2 πij 2 X πij πi` πj` 2 2 X ˆi ˆi E? [(II)] = √ c εˆ` − √ c εˆ2j 1 − πjj n i,j,` n i,j,i6=j 1 − πjj



(II.8)



distinct 2 πij 2 X ? ?3 −√ E [ei ]ˆ ci εˆ2j + oP (1). 1 − πjj n i,j,i6=j



(II.9)



For the first line, we have the following result: 2 X X π 2 π π π 2 ij 2 ij i` j` 2 ˆi εˆ` ˆi εˆj −√ c c (II.8) = √ n 1 − πjj 1 − πjj n i,j,i6=j i,j,` distinct 2 πi` 2 X 2 X 2 πij πi` πj` 2 √ √ ˆ ˆ = ci εˆ` ci εˆ` − (change j → `) n 1 − πjj 1 − π`` n i,j,` i,`,i6=` distinct 2 X 2 X 2 π π π π ij i` j` 2 2 i` + oP (1) ˆi εˆ` ˆi εˆ` −√ ((E.37) and Assumption A.3(1)) c c = √ 1 − π 1 − π n n jj `` i,j,` i,`,i6=` X 2 X π π π 2 ij i` j` 2 2 2 ˆi εˆ` ˆi εˆ` πi` + oP (1) = √ c −√ c ((E.37) and Assumption A.3(2)) 1 − π n n jj i,j,` i,`,i6=` X 2 X π π π 2 ij i` j` 2 2 2 ˆi εˆ` ˆi εˆ` πi` + oP (1) −√ (Assumption A.3(1)) c c = √ 1 − π n n jj i,j,` i,` X X 2 X π π π 2 2 π π π π ij i` j` ij i` j` jj + oP (1) ˆi εˆ2` ˆi εˆ2` πij πi` πj` + oP (1) = √ ˆi εˆ2` = √ c −√ c c 1 − πjj 1 − πjj n i,j,` n i,j,` n i,j,` v v !2 !2 √ u sX u X X X X πij πj` πjj u πij πj` πjj 1 ku 2 t t π -P √ = √ 1 − πjj 1 − πjj n i,` i` i,` n j j i,` v √ u √ s 2 πjj πj 0 j 0 πjj 0 k X X πij πj` πjj πij 0 πj 0 ` πj 0 j 0 k uX = √ t = √ (1 − π )(1 − π n i,` 0 (1 − πjj )(1 − πj 0 j 0 ) n jj j0 j0 ) jj jj 0 √ s √ √ k X k 2 πjj πj 0 j 0 πjj · oP ( k) = oP (1). -P √ 0 = √ n n 0 jj



Hence we have: 2 2 πij πij 2 X ? ?3 2 X ? ?3 (II) = − √ E [ei ]ˆ ci εˆ2j + oP (1) = − √ E [ei ]ci ε2j + oP (1) 1 − πjj 1 − πjj n i,j,i6=j n i,j,i6=j 2 πij 2 X ? ?3 2 X 2 = −√ E [ei ]ci ε2j + oP (1) = −E? [e?3 b2,ij πij + oP (1), i ]Σ0 √ 1 − πjj n i,j n i,j



and the last line follows essentially from Lemma SA.7.
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(III) has the following expansion:  2 πij 1 X ? ? (III) = √ ωj (ωi − δij )ˆ ci (ˆ µ?j − rj? )2 1 − πjj n i,j  2 X πij 1 X ? ? = √ ωj (ωi − δij )ˆ ci ( πj` e?` εˆ` − e?j εˆj )2 1 − πjj n i,j `  2 X X πij 1 ωj? (ωi? − δij )ˆ ci ( πj` e?` εˆ` )2 = √ 1 − πjj n i,j ` 2 X  2 X ? ? πij −√ ( πj` e?` εˆ` )e?j εˆj ωj (ωi − δij )ˆ ci 1 − πjj n i,j ` 2  πij 1 X ? ? (e?j εˆj )2 . ωj (ωi − δij )ˆ ci +√ 1 − πjj n i,j Then !2 # 2 X  1 X ? ? πij ? E [(III.1)] = E √ ωj (ωi − δij )ˆ ci πj` e` εˆ` 1 − πjj n i,j ` # " 2  πii 1 X ? ? ? ? ? ˆi ωi (ωi − 1)ei ei c πii πii εˆi εˆi =E √ 1 − πii n i   X ? ? ? ?  πij 2 ? 1 ˆi +E √ ωj ωi ei ei c πji πji εˆi εˆi  1 − πjj n i,j,i6=j   X ? ? ? ?  πij 2 ? 1 ˆi πjj πjj εˆj εˆj  ωj ωi ej ej c +E √ 1 − πjj n i,j,i6=j    2 X 1 π ii ˆi + E?  √ ωi? (ωi? − 1)e?` e?` c πi` πi` εˆ` εˆ`  1 − πii n i,`,i6=`    2 X π 1 ij ˆi πji πjj εˆi εˆj  + E?  √ ωj? (ωi? − δij )e?i e?j c 1 − πjj n i,j,i6=j    2 X 1 π ij ˆi + E?  √ ωj? (ωi? − δij )e?j e?i c πjj πji εˆj εˆi  1 − πjj n i,j,i6=j    2 X πij  1  ˆi + E?  √ ωj? (ωi? − δij )e?` e?` c πj` πj` εˆ` εˆ`  1 − πjj n "



?



?



i,j,` distinct







 X 4 X 4 X 2 2 X 2 2 X 3 X 2 2 1 πii + πij + πij πjj + πi` πii + πij πjj + πij πj`  = √ OP  n i i,j i,j i,j i,` i,j,` = oP (1), by (E.37), (E.38) and Assumption A.3(1). Next " ! #  2 X πij 2 X ? ? ωj (ωi − δij )ˆ ci πj` e?` εˆ` e?j εˆj E? [(III.2)] = E? − √ 1 − πjj n i,j ` " #  2 X πii 2 ˆi ωi? e?i (ωi? − 1)e?i c πii εˆi εˆi = E? − √ 1 − πii n i
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(III.1)



(III.2)



(III.3)







 X ? ? ? ?  πij 2 2 ˆi + E − √ πji εˆi εˆj  ωj ej ωi ei c 1 − πjj n i,j,i6=j   2  2 X ? ? ? ? πij ? ˆi + E −√ πjj εˆj εˆj  ωj ej ωi ej c 1 − πjj n i,j,i6=j   2 2 2 X πij πij 2 X ˆi = −√ c ci πij εˆi εˆj + oP (1) = − √ πij εi εj + oP (1) 1 − πjj 1 − πjj n i,j,i6=j n i,j,i6=j 2  2 X πij πij + oP (1) = oP (1). = −√ E[ci εi εj |zi , zj ] 1 − πjj n ?



i,j,i6=j



Finally   2 2 1 X ? ?3 πij πij 1 X ? ?3 E? [(III.3)] = √ (E [ei ] + 1)ˆ ci εˆ2j + oP (1) = √ (E [ei ] + 1)ci ε2j + oP (1) 1 − πjj 1 − πjj n i,j n i,j 1 X 2 = (E? [e?3 b2,ij πij + oP (1). i ] + 1)Σ0 √ n i,j Given the previous results,  √  ?,(·) 1 ˆ ˆ ? = (1 − E? [e?3 −θ (nω − 1) n θ i ])Σ0 √ n



! X i



b1,i πii +



X



2 b2,ij πij



+ oP (1)



i,j



= (1 − E? [e?3 i ])B + oP (1). 



SA-10.28



Proposition SA.24, Part 2



We follow the notational convention used in the previous part: ˆ ¨ i, µ m(w ˆi , θ) . 2



ˆ ˆ i = Σ0 m(wi , µ a ˆi , θ)



ˆ i = Σ0 m(w ˆ ˙ b ˆi , θ) i, µ



ˆi = Σ0 c



ai = Σ0 m(wi , µi , θ 0 )



˙ bi = Σ0 m(w i , µi , θ 0 )



ci = Σ0



Similarly, ¨ i , µi , θ 0 ) m(w . 2



First note that the jackknife variance estimator for the bootstrap data takes the form: 2 X  ?,(j) ˆ ˆ ?,(·) , (n − 1) θ −θ j 2



where for a (column) vector v, we use v to denote vvT to save space. Then the variance estimator could be rewritten as 2  ? 2 X  ?,(j) ˆ ˆ? − 1 ˆ ? = (n − 1) ˆ V θ −θ B n−1 j   2 X  ?,(j) ˆ ˆ ? + OP 1 . = (n − 1) θ −θ n j Next recall that   X ? X ? 1 1 ?,(j) ˆi µ (ωi − δij )ˆ ai + (ωi − δij )b ˆi −µ ˆi nω − 1 i nω − 1 i  2 X 1 ?,(j) (ωi? − δij )ˆ ci µ ˆi −µ ˆi . + nω − 1 i



ˆ ?,(j) − θ ˆ= θ
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Then we make the following decomposition: X ? X ? 1 1 1 ˆi − ˆj , (ωi − δij )ˆ ai = ωi a a nω − 1 i nω − 1 i nω − 1 and     X ? X ? 1 πij 1 ?,(j) ˆi µ ˆi µ (ωi − δij )b ˆi (ωi − δij )b ˆ?i − µ ˆi − e?j εˆj −µ ˆi = nω − 1 i nω − 1 i 1 − πjj   X ? X ? 1 πij 1 ˆ i (ˆ ˆi = (ωi − δij )b µ?i − µ ˆi ) − (ωi − δij )b e?j εˆj nω − 1 i nω − 1 i 1 − πjj   X ? X ?  1 πij 1 ˆ 1 ˆ i (ˆ ˆi = ωi b µ?i − µ ˆi ) − bj µ ˆ?j − µ ˆj − (ωi − δij )b e?j εˆj , nω − 1 i nω − 1 nω − 1 i 1 − πjj and  2  2 X ? X ? 1 πij 1 ?,(j) ? ? (ωi − δij )ˆ ci µ ˆi (ωi − δij )ˆ ci µ ˆi − µ ˆi − ej εˆj −µ ˆi = nω − 1 i nω − 1 i 1 − πjj X ? 1 2 = (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) nω − 1 i  2 X ? 2 1 πij + (ωi − δij )ˆ ci e?j εˆj nω − 1 i 1 − πjj   X ? πij 2 (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) e?j εˆj − nω − 1 i 1 − πjj X 1 2 ˆi (ˆ c µ?i − µ ˆi ) = nω − 1 i 2 1 ˆj µ c ˆ?j − µ ˆj nω − 1  2 X ? 2 πij 1 (ωi − δij )ˆ ci e?j εˆj + nω − 1 i 1 − πjj   X ? πij 2 (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) − e?j εˆj . nω − 1 i 1 − πjj −



Therefore ˆ ?,(j) − θ ˆ= θ



X ? 1 ˆi ωi a nω − 1 i



1 ˆj a nω − 1 X ? 1 ˆ i (ˆ + ωi b µ?i − µ ˆi ) nω − 1 i



−



 1 ˆ bj µ ˆ?j − µ ˆj nω − 1   X ? 1 πij ˆi − (ωi − δij )b e?j εˆj nω − 1 i 1 − πjj X 1 2 ˆi (ˆ + c µ?i − µ ˆi ) nω − 1 i −



2 1 ˆj µ c ˆ?j − µ ˆj nω − 1  2 X ? 2 1 πij + (ωi − δij )ˆ ci e?j εˆj nω − 1 i 1 − πjj   X ? 2 πij − (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) e?j εˆj . nω − 1 i 1 − πjj



−
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Then we have  X ?  ?,(j) ˆ ?,(·) − θ ˆ= 1 ˆ ˆ θ ωj θ −θ nω j X ? 1 ˆi ωi a nω − 1 i X ? 1 ˆj − ωj a nω (nω − 1) j =



X ? 1 ˆ i (ˆ ωi b µ?i − µ ˆi ) nω − 1 i X ?  1 ˆj µ ˆ?j − µ ˆj − ωi b nω (nω − 1) j   X ? 1 πij ˆi − (ωi − δij )ωj? b e?j εˆj nω (nω − 1) i,j 1 − πjj +



X 1 2 ˆi (ˆ c µ?i − µ ˆi ) nω − 1 i X ? 2 1 ˆj µ − ωj c ˆ?j − µ ˆj nω (nω − 1) j  2 X ? 2 πij 1 ˆi (ωi − δij )ωj? c e?j εˆj + nω (nω − 1) i,j 1 − πjj   X ? 2 πij ˆi (ˆ − (ωi − δij )ωj? c µ?i − µ ˆi ) e?j εˆj , nω (nω − 1) i,j 1 − πjj +



which means ˆ ?,(j) − θ ˆ ?,(·) = θ − − = − − − − + −



  ?  2 1 1 1 ˆ 1 ˆ −θ ˆ−B ˆ ? /√nω − ˆj − ˆj µ θ a bj µ ˆ?j − µ ˆj − c ˆ?j − µ ˆj nω − 1 nω − 1 nω − 1 nω − 1    2 X ? X 2 π 1 πij 1 ij ? ? ˆ (ωi − δij )bi ej εˆj + (ωi − δij )ˆ ci e?j εˆj nω − 1 i 1 − πjj nω − 1 i 1 − πjj   X ? πij 2 (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) e?j εˆj nω − 1 i 1 − πjj   1 ˆ ?bc − θ ˆ θ (I) nω − 1 1 ˆj a (II) nω − 1  1 ˆ bj µ ˆ?j − µ ˆj (III) nω − 1 2 1 ˆj µ c ˆ?j − µ ˆj (IV) nω − 1   X ? 1 πij ˆi (ωi − δij )b e?j εˆj (V) nω − 1 i 1 − πjj  2 X ? 2 1 πij (ωi − δij )ˆ ci e?j εˆj (VI) nω − 1 i 1 − πjj   X ? 2 πij (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) e?j εˆj . (VII) nω − 1 i 1 − πjj



Term (I) is the easiest: (nω − 1)



X



 ? 2 ˆ bc − θ ˆ = oP (1), ωj? (I)2  θ



j
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by consistency. Similarly (nω − 1)



X



 T  ? X  T ˆ bc − θ ˆ ωj? (I) (II) + · · · (VII) = θ ωj? (II) + · · · (VII) = oP (1). j



j



Next (nω − 1)



X



ωj? (II)2 =



j



By the uniform consistency of



X ? 1 ¯ 1 ]. ωj (ˆ aj )2 →P V[Ψ nω − 1 j



µ ˆ?j ,



it is very easy to show that X ? X ? (nω − 1) ωj (II)(III)T = oP (1), (nω − 1) ωj (II)(IV)T = oP (1). j



j



Then (nω − 1)



X



ωj? (II)(V)T =



j



= = + + +



  X πij 1 ˆ Ti ωj? (ωi? − δij ) ˆj b a e?j εˆj nω − 1 i,j 1 − πjj   X T ? X 1 ˆ i (ωi − δij ) πij ˆ j ωj? e?j εˆj b a nω − 1 j 1 − πjj i h i X X 1 ˆ Ti πij ˆ j ωj? e?j εˆj b a nω − 1 j i X  T πij πjj  X 1 ? ? ˆi ˆ j ωj ej εˆj b a nω − 1 j 1 − πjj i   X X 1 ˆ Ti e?i πij ˆ j ωj? e?j εˆj a b nω − 1 j 1 − πjj i,i6=j   X 1 ˆ Tj (e?j − 1) πjj ˆ j ωj? e?j εˆj b . a nω − 1 j 1 − πjj



(i) (ii) (iii) (iv)



¯ 1, Ψ ¯ 2 |Z], and the other terms are asymptotically negligible. This essentially uses the Then we have (i) →P Cov[Ψ same technique (conditional mean and variance SA.4 and SA.7, and we do not repeat P calculation) used for¯Lemma ¯ here. By taking transpose, we have (nω − 1) j ωj? (V)(II)T →P Cov[Ψ 2 , Ψ1 |Z]. Further, X ? ωj (II)(VI)T = (nω − 1) j



-P



 2 X ? X ? 2 1 πij ˆj (ωi − δij )ˆ ci ωj a e?j εˆj nω − 1 j 1 − πjj i 1X 2 πij = oP (1), n i,j



and   X ? ? X ? 2 πij ˆj ωj ej εˆj a (ωi − δij )ˆ ci (ˆ µ?i − µ ˆi ) nω − 1 j 1 − π jj i sX sX 1 ˆ j |2 -P · |ωj? e?j εˆj a |(ωi? − δij )ˆ ci (ˆ µ?i − µ ˆ i ) |2 n j j



X ? ωj (II)(VII)T = (nω − 1) j



= oP (1). Due to uniform consistency of µ ˆ?j , the following are easy to establish: X ? X ? (nω − 1) ωj (III)2 = oP (1) (nω − 1) ωj (III)(IV)T = oP (1) j



(nω − 1)



X j



(nω − 1)



j



ωj? (III)(VI)T



= oP (1)



(nω − 1)



X j



X



ωj? (III)(VII)T



j
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= oP (1),



ωj? (III)(V)T = oP (1)



as well as (nω − 1)



X



(nω − 1)



X



ωj? (IV)2 = oP (1)



(nω − 1)



j



X



ωj? (IV)(V)T = oP (1)



(nω − 1)



X



j



ωj? (IV)(VI)T = oP (1)



j



ωj? (IV)(VII)T = oP (1).



j



Next it is easy to show that (nω − 1)



X



¯ ωj? (V)2 →P (1 + E? [e?3 i ])V[Ψ2 |Z].



j



What remains are terms involving (V)(VI)T , (V)(VII)T , (VI)2 , (VI)(VII)T and (VII)2 . X ? ωj (V)(VI)T (nω − 1) j



= 



X ? 1 ωj nω − 1 j



P 



 X ? ˆi (ωi − δij )b i



πij e?j εˆj 1 − πjj



X ? ?  1 ˆ i e?j εˆj 3 πij ωj (ωi − δij )b nω − 1 i,j



X



 ! X (ω`? − δ`j )ˆ c` `



(ω`? − δ`j )ˆ c`



`







π`j 1 − πjj



π`j 1 − πjj 2 !T 



2



!T 2 e?j εˆj







2 2 !1/2  1 X X ? π`j -P c` (ω` − δ`j )ˆ n j 1 − πjj ` s 1X 2 2 p πij π`j = oP (1). n j,i,`



And X ? ωj (V)(VII)T (nω − 1) j



= 



  X X ? πij 2 ˆi (ωi − δij )b e?j εˆj nω − 1 j 1 − πjj i



!



 X ? (ω` − δ`j )ˆ c` (ˆ µ?` − µ ˆ` ) `



πij 2 (e?j εˆj )2 (ω`? − δ`j )ˆ c` (ˆ µ?` − µ ˆ` ) nω − 1 i,j 1 − πjj ` v u  2 u 1 X X π`j  t ? -P µ ˆ −µ ˆ` = oP (1), n j 1 − π`` ` = 



X ? ˆi (ωi − δij )b



X







π`j 1 − πjj



π`j e?j εˆj 1 − πjj !T 



!T 



`



Using techniques in the above results, we can show X ? X ? (nω − 1) ωj (VI)2 = oP (1), (nω − 1) ωj (VII)2 = oP (1), j



j



(nω − 1)



X



ωj? (VI)(VII)T = oP (1),



j



which closes the proof.
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Table 1. Bootstrap Inference, MTE, DGP 1 Nominal Level: 0.05 (a) n = 1000 √



k/n



√ k/ n



bias



n(ˆ τMTE − τMTE ): conventional √ sd mse size† ci† size‡



√ ci‡



bias



sd



n(ˆ τMTE − τMTE ): percentile ci √ mse size† ci† size‡



ci‡



k 5



0.00



0.16



0.43



4.81



4.83



0.05



18.85



0.02



19.71



0.09



5.03



5.03



0.05



19.73



0.03



19.71



20



0.02



0.63



2.06



4.24



4.71



0.07



16.60



0.08



16.28



0.86



5.16



5.23



0.05



20.23



0.10



16.28



40



0.04



1.26



3.30



3.67



4.93



0.15



14.38



0.16



13.85



1.85



4.79



5.13



0.06



18.76



0.17



13.85



60



0.06



1.90



4.14



3.27



5.27



0.23



12.81



0.26



12.34



2.61



4.40



5.11



0.09



17.23



0.22



12.34



80



0.08



2.53



4.76



3.01



5.63



0.36



11.81



0.39



11.29



3.14



4.10



5.17



0.11



16.09



0.28



11.29



100



0.10



3.16



5.27



2.80



5.97



0.47



10.97



0.50



10.57



3.55



3.84



5.23



0.15



15.04



0.33



10.57



120



0.12



3.79



5.73



2.65



6.31



0.58



10.39



0.59



9.94



3.90



3.66



5.34



0.18



14.34



0.39



9.94



140



0.14



4.43



6.11



2.54



6.62



0.67



9.94



0.70



9.51



4.15



3.51



5.43



0.23



13.75



0.44



9.51



160



0.16



5.06



6.46



2.44



6.90



0.75



9.58



0.79



9.10



4.37



3.39



5.53



0.26



13.27



0.48



9.10



180



0.18



5.69



6.80



2.33



7.19



0.84



9.12



0.85



8.78



4.61



3.22



5.62



0.30



12.62



0.53



8.78



200



0.20



6.32



7.11



2.24



7.46



0.89



8.76



0.90



8.49



4.82



3.09



5.73



0.34



12.11



0.58



8.49



(b) n = 2000 √



√



k/n



√ k/ n



bias



n(ˆ τMTE − τMTE ): conventional √ sd mse size† ci† size‡



ci‡



bias



sd



n(ˆ τMTE − τMTE ): percentile ci √ mse size† ci† size‡



ci‡



k 5



0.00



0.11



0.46



4.78



4.80



0.05



18.73



0.04



18.94



0.21



4.88



4.89



0.05



19.14



0.05



18.94



20



0.01



0.45



1.69



4.43



4.75



0.07



17.37



0.07



17.32



0.51



5.03



5.05



0.05



19.70



0.09



17.32



40



0.02



0.89



3.03



4.03



5.05



0.12



15.80



0.13



15.64



1.35



4.90



5.08



0.06



19.22



0.12



15.64



60



0.03



1.34



3.97



3.81



5.50



0.18



14.95



0.20



14.37



2.07



4.81



5.24



0.07



18.86



0.18



14.37



80



0.04



1.79



4.75



3.58



5.95



0.27



14.04



0.30



13.44



2.76



4.63



5.39



0.09



18.13



0.22



13.44



100



0.05



2.24



5.37



3.37



6.34



0.35



13.21



0.39



12.70



3.32



4.42



5.53



0.11



17.34



0.26



12.70



120



0.06



2.68



5.88



3.21



6.70



0.46



12.59



0.49



12.08



3.76



4.27



5.69



0.14



16.74



0.32



12.08



140



0.07



3.13



6.35



3.14



7.08



0.54



12.32



0.57



11.57



4.18



4.21



5.93



0.17



16.51



0.37



11.57



160



0.08



3.58



6.77



3.02



7.41



0.62



11.83



0.65



11.15



4.53



4.08



6.10



0.21



16.00



0.42



11.15



180



0.09



4.02



7.15



2.94



7.73



0.68



11.51



0.71



10.73



4.84



3.99



6.28



0.23



15.65



0.46



10.73



200



0.10



4.47



7.47



2.83



7.99



0.75



11.10



0.78



10.40



5.07



3.86



6.38



0.26



15.15



0.50



10.40



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. k = 5 is the correctly specified model. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the bootstrap (500 repetitions, Rademacher weights). For the naive ci, we first center the bootstrap distribution to suppress its bias correction ability; (viii): ci‡ : average confidence interval length.
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Table 2. Jackknife Inference, MTE, DGP 1 Nominal Level: 0.05 (a) n = 1000 √



k/n



√ k/ n



bias



sd



n(ˆ τMTE − τMTE ) √ mse size† ci†



√ size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



size‡



ci‡



k 5



0.00



0.16



0.16



4.78



4.79



0.05



18.75



0.04



19.28



−0.20



5.00



5.00



0.05



19.60



0.05



19.28



20



0.02



0.63



1.79



4.16



4.53



0.07



16.32



0.05



18.29



0.22



5.34



5.34



0.06



20.93



0.08



18.29



40



0.04



1.26



3.08



3.70



4.82



0.12



14.52



0.07



17.06



0.96



5.42



5.51



0.06



21.25



0.11



17.06



60



0.06



1.90



3.95



3.30



5.15



0.23



12.92



0.12



15.93



1.68



5.19



5.46



0.06



20.35



0.14



15.93



80



0.08



2.53



4.64



3.04



5.55



0.34



11.91



0.18



15.00



2.30



5.04



5.54



0.08



19.75



0.18



15.00



100



0.10



3.16



5.14



2.81



5.86



0.45



11.02



0.24



14.24



2.69



4.84



5.53



0.08



18.96



0.20



14.24



120



0.12



3.79



5.65



2.63



6.23



0.58



10.29



0.33



13.61



3.13



4.70



5.64



0.10



18.40



0.23



13.61



140



0.14



4.43



6.05



2.51



6.55



0.67



9.86



0.43



13.10



3.42



4.55



5.69



0.11



17.84



0.24



13.10



160



0.16



5.06



6.39



2.42



6.83



0.76



9.47



0.51



12.66



3.50



4.49



5.70



0.12



17.62



0.27



12.66



180



0.18



5.69



6.77



2.32



7.15



0.83



9.08



0.60



12.24



3.72



4.41



5.77



0.14



17.30



0.31



12.24



200



0.20



6.32



7.13



2.24



7.47



0.89



8.76



0.68



11.92



3.94



4.34



5.86



0.15



17.00



0.33



11.92



size‡



ci‡



(b) n = 2000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



k 5



0.00



0.11



0.33



4.73



4.74



0.05



18.54



0.04



18.84



0.08



4.83



4.83



0.06



18.94



0.04



18.84



20



0.01



0.45



1.65



4.37



4.68



0.06



17.15



0.05



18.48



0.30



5.07



5.08



0.05



19.89



0.06



18.48



40



0.02



0.89



2.94



4.08



5.03



0.10



15.99



0.07



17.96



0.77



5.27



5.32



0.05



20.64



0.08



17.96



60



0.03



1.34



3.93



3.84



5.49



0.17



15.05



0.11



17.34



1.35



5.33



5.49



0.05



20.88



0.10



17.34



80



0.04



1.79



4.76



3.61



5.98



0.26



14.16



0.16



16.74



1.98



5.24



5.61



0.07



20.56



0.13



16.74



100



0.05



2.24



5.42



3.40



6.40



0.36



13.33



0.22



16.22



2.54



5.13



5.72



0.08



20.10



0.16



16.22



120



0.06



2.68



5.95



3.24



6.78



0.45



12.71



0.29



15.69



2.98



5.05



5.86



0.09



19.78



0.19



15.69



140



0.07



3.13



6.38



3.08



7.08



0.55



12.08



0.35



15.27



3.32



4.93



5.94



0.10



19.33



0.19



15.27



160



0.08



3.58



6.76



2.98



7.39



0.62



11.70



0.43



14.83



3.60



4.85



6.04



0.12



19.00



0.23



14.83



180



0.09



4.02



7.14



2.91



7.71



0.69



11.42



0.49



14.45



3.95



4.84



6.25



0.13



18.96



0.26



14.45



200



0.10



4.47



7.46



2.80



7.97



0.76



10.99



0.56



14.08



4.18



4.75



6.33



0.14



18.62



0.29



14.08



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. k = 5 is the correctly specified model. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the jackknife variance estimator and normal approximation; (viii): ci‡ : average confidence interval length.
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Table 3. Bootstrap Inference with Bias Correction, MTE, DGP 1 Nominal Level: 0.05 (a) n = 1000 √



k/n



√ k/ n



bias



sd



n(ˆ τMTE − τMTE ) √ mse size† ci†



√ size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



size‡



ci‡



k 5



0.00



0.16



0.14



4.72



4.73



0.05



18.51



0.07



17.59



−0.21



4.93



4.93



0.05



19.31



0.07



18.28



20



0.02



0.63



1.73



4.11



4.46



0.07



16.11



0.07



16.21



0.18



5.26



5.27



0.05



20.63



0.06



19.81



40



0.04



1.26



3.08



3.54



4.69



0.14



13.88



0.12



14.78



1.03



5.11



5.22



0.05



20.05



0.06



19.67



60



0.06



1.90



3.96



3.22



5.11



0.23



12.63



0.20



13.73



1.75



5.02



5.32



0.07



19.68



0.07



19.27



80



0.08



2.53



4.61



3.00



5.50



0.34



11.76



0.28



12.82



2.28



4.91



5.41



0.07



19.24



0.08



18.67



100



0.10



3.16



5.10



2.83



5.83



0.44



11.08



0.38



12.05



2.65



4.78



5.46



0.08



18.72



0.10



18.28



120



0.12



3.79



5.55



2.67



6.16



0.54



10.48



0.48



11.39



2.96



4.66



5.51



0.10



18.25



0.11



17.80



140



0.14



4.43



5.97



2.54



6.49



0.65



9.98



0.59



10.79



3.24



4.57



5.60



0.11



17.90



0.13



17.46



160



0.16



5.06



6.35



2.45



6.81



0.74



9.59



0.69



10.29



3.46



4.43



5.62



0.12



17.36



0.14



17.15



180



0.18



5.69



6.69



2.33



7.09



0.82



9.13



0.77



9.88



3.58



4.35



5.63



0.12



17.04



0.14



16.97



200



0.20



6.32



7.03



2.23



7.38



0.88



8.75



0.84



9.48



3.81



4.22



5.69



0.16



16.56



0.16



16.75



size‡



ci‡



(b) n = 2000 √



k/n



√ k/ n



bias



sd



n(ˆ τMTE − τMTE ) √ mse size† ci†



√ size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



k 5



0.00



0.11



0.13



4.85



4.85



0.05



19.00



0.07



17.84



−0.12



4.95



4.95



0.05



19.41



0.07



18.21



20



0.01



0.45



1.42



4.47



4.69



0.06



17.51



0.07



17.03



0.06



5.16



5.16



0.05



20.23



0.06



19.31



40



0.02



0.89



2.73



4.17



4.99



0.10



16.36



0.11



16.17



0.54



5.35



5.38



0.05



20.97



0.06



19.72



60



0.03



1.34



3.78



3.95



5.47



0.16



15.47



0.17



15.38



1.18



5.44



5.57



0.06



21.32



0.07



19.75



80



0.04



1.79



4.62



3.74



5.95



0.24



14.67



0.24



14.73



1.82



5.43



5.73



0.06



21.30



0.09



19.59



100



0.05



2.24



5.27



3.55



6.35



0.32



13.91



0.31



14.09



2.33



5.37



5.86



0.07



21.06



0.10



19.31



120



0.06



2.68



5.77



3.37



6.68



0.41



13.22



0.39



13.59



2.74



5.27



5.94



0.08



20.67



0.10



19.04



140



0.07



3.13



6.27



3.20



7.03



0.51



12.53



0.47



13.12



3.21



5.11



6.04



0.09



20.04



0.12



18.85



160



0.08



3.58



6.67



3.07



7.35



0.59



12.03



0.55



12.72



3.53



5.05



6.16



0.10



19.81



0.13



18.66



180



0.09



4.02



7.07



2.95



7.65



0.68



11.54



0.63



12.30



3.87



4.95



6.28



0.12



19.40



0.15



18.40



200



0.10



4.47



7.42



2.83



7.94



0.74



11.11



0.70



11.91



4.13



4.84



6.36



0.12



18.97



0.15



18.22



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. k = 5 is the correctly specified model. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the bootstrap (500 repetitions, Rademacher weights); (viii): ci‡ : average confidence interval length.
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Table 4. Bootstrap Inference, MTE, DGP 2 Nominal Level: 0.05 (a) n = 1000 k/n



√ k/ n



bias



√ n(ˆ τMTE − τMTE ): conventional √ sd mse size† ci† size‡



√ ci‡



bias



n(ˆ τMTE − τMTE ): percentile ci √ mse size† ci† size‡



sd



ci‡



k 5



0.00



0.16



−0.57



6.80



6.82



0.05



26.66



0.00



30.21



−0.96



7.53



7.59



0.06



29.51



0.01



30.21



20



0.02



0.63



−0.41



2.86



2.89



0.06



11.22



0.04



11.38



−1.02



3.16



3.32



0.06



12.39



0.08



11.38



40



0.04



1.26



0.46



2.09



2.14



0.06



8.20



0.05



8.37



−0.37



2.28



2.31



0.06



8.95



0.07



8.37



60



0.06



1.90



1.30



1.91



2.31



0.10



7.48



0.09



7.64



0.28



2.10



2.12



0.05



8.25



0.08



7.64



80



0.08



2.53



1.69



1.87



2.52



0.14



7.32



0.13



7.52



0.43



2.10



2.14



0.06



8.22



0.08



7.52



100



0.10



3.16



2.05



1.85



2.75



0.19



7.23



0.17



7.40



0.60



2.11



2.19



0.06



8.26



0.09



7.40



120



0.12



3.79



2.39



1.82



3.00



0.26



7.14



0.24



7.28



0.79



2.11



2.25



0.06



8.27



0.11



7.28



140



0.14



4.43



2.73



1.80



3.27



0.33



7.06



0.32



7.17



1.01



2.12



2.35



0.07



8.31



0.12



7.17



160



0.16



5.06



3.04



1.77



3.52



0.41



6.94



0.39



7.05



1.23



2.10



2.44



0.09



8.24



0.15



7.05



180



0.18



5.69



3.35



1.74



3.78



0.50



6.82



0.48



6.93



1.48



2.09



2.56



0.10



8.18



0.17



6.93



200



0.20



6.32



3.64



1.72



4.03



0.56



6.75



0.55



6.82



1.74



2.08



2.71



0.12



8.16



0.22



6.82



(b) n = 2000 k/n



√ k/ n



bias



√ n(ˆ τMTE − τMTE ): conventional √ sd mse size† ci† size‡



√ ci‡



bias



n(ˆ τMTE − τMTE ): percentile ci √ mse size† ci† size‡



sd



ci‡



k 5



0.00



0.11



−1.39



6.76



6.91



0.06



26.52



0.02



27.91



−1.71



7.06



7.26



0.06



27.67



0.03



27.91



20



0.01



0.45



−1.30



2.99



3.26



0.07



11.72



0.07



11.61



−1.81



3.16



3.64



0.08



12.39



0.10



11.61



40



0.02



0.89



−0.12



2.19



2.19



0.05



8.58



0.05



8.47



−0.79



2.30



2.43



0.06



9.01



0.08



8.47



60



0.03



1.34



0.93



2.02



2.22



0.08



7.91



0.08



7.77



0.10



2.13



2.14



0.05



8.37



0.07



7.77



80



0.04



1.79



1.23



2.00



2.35



0.10



7.83



0.11



7.72



0.17



2.14



2.15



0.05



8.40



0.07



7.72



100



0.05



2.24



1.52



1.98



2.49



0.12



7.74



0.13



7.64



0.25



2.15



2.16



0.05



8.41



0.07



7.64



120



0.06



2.68



1.80



1.97



2.66



0.15



7.70



0.16



7.59



0.34



2.16



2.19



0.05



8.48



0.08



7.59



140



0.07



3.13



2.08



1.95



2.85



0.18



7.64



0.19



7.53



0.44



2.17



2.21



0.06



8.50



0.09



7.53



160



0.08



3.58



2.35



1.94



3.04



0.22



7.60



0.23



7.46



0.55



2.18



2.25



0.06



8.55



0.10



7.46



180



0.09



4.02



2.61



1.92



3.24



0.27



7.54



0.28



7.42



0.68



2.19



2.29



0.06



8.57



0.10



7.42



200



0.10



4.47



2.86



1.91



3.44



0.32



7.48



0.33



7.37



0.80



2.18



2.33



0.07



8.56



0.11



7.37



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. Statistics are centered at the pseudo-true value, 0.545, obtained by using 50 instruments and one million sample size. k = 50 is the correctly specified model for estimating the pseudo-true value. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the bootstrap (500 repetitions, Rademacher weights). For the naive ci, we first center the bootstrap distribution to suppress its bias correction ability; (viii): ci‡ : average confidence interval length.
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Table 5. Jackknife Inference, MTE, DGP 2 Nominal Level: 0.05 (a) n = 1000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



size‡



ci‡



k 5



0.00



0.16



−0.97



7.05



7.12



0.06



27.63



0.03



27.97



−1.41



7.73



7.86



0.06



30.31



0.04



27.97



20



0.02



0.63



−0.55



2.85



2.91



0.06



11.18



0.04



12.01



−1.24



3.18



3.41



0.07



12.47



0.08



12.01



40



0.04



1.26



0.42



2.15



2.19



0.05



8.44



0.04



8.78



−0.50



2.41



2.46



0.06



9.45



0.07



8.78



60



0.06



1.90



1.29



1.97



2.35



0.10



7.73



0.08



8.08



0.12



2.24



2.25



0.05



8.80



0.08



8.08



80



0.08



2.53



1.68



1.94



2.56



0.14



7.60



0.11



8.09



0.18



2.31



2.32



0.05



9.06



0.08



8.09



100



0.10



3.16



2.04



1.91



2.80



0.19



7.51



0.14



8.10



0.26



2.37



2.38



0.05



9.28



0.09



8.10



120



0.12



3.79



2.41



1.88



3.05



0.25



7.36



0.19



8.12



0.40



2.37



2.40



0.06



9.29



0.09



8.12



140



0.14



4.43



2.74



1.85



3.31



0.31



7.25



0.24



8.10



0.52



2.43



2.48



0.06



9.51



0.10



8.10



160



0.16



5.06



3.05



1.84



3.56



0.38



7.20



0.30



8.09



0.55



2.46



2.52



0.06



9.66



0.11



8.09



180



0.18



5.69



3.36



1.82



3.82



0.47



7.14



0.36



8.08



0.70



2.58



2.67



0.06



10.10



0.12



8.08



200



0.20



6.32



3.66



1.80



4.08



0.55



7.04



0.42



8.06



0.85



2.61



2.75



0.07



10.23



0.14



8.06



size‡



ci‡



(b) n = 2000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



k 5



0.00



0.11



−1.68



6.91



7.11



0.06



27.09



0.03



27.20



−2.00



7.22



7.49



0.06



28.28



0.05



27.20



20



0.01



0.45



−1.31



2.99



3.26



0.08



11.71



0.07



11.96



−1.84



3.17



3.67



0.09



12.44



0.09



11.96



40



0.02



0.89



−0.08



2.20



2.20



0.05



8.62



0.05



8.71



−0.77



2.33



2.45



0.06



9.13



0.08



8.71



60



0.03



1.34



0.97



2.04



2.26



0.08



8.01



0.08



8.02



0.09



2.18



2.18



0.05



8.54



0.07



8.02



80



0.04



1.79



1.28



2.01



2.39



0.10



7.90



0.09



8.03



0.13



2.19



2.20



0.05



8.59



0.07



8.03



100



0.05



2.24



1.56



1.99



2.53



0.12



7.79



0.11



8.04



0.15



2.21



2.21



0.05



8.65



0.07



8.04



120



0.06



2.68



1.85



1.98



2.71



0.15



7.76



0.13



8.05



0.21



2.25



2.26



0.05



8.83



0.07



8.05



140



0.07



3.13



2.12



1.97



2.90



0.20



7.72



0.17



8.06



0.27



2.27



2.29



0.05



8.90



0.08



8.06



160



0.08



3.58



2.39



1.95



3.08



0.24



7.62



0.20



8.07



0.30



2.30



2.32



0.05



9.00



0.08



8.07



180



0.09



4.02



2.65



1.93



3.28



0.28



7.57



0.24



8.08



0.35



2.31



2.33



0.06



9.05



0.08



8.08



200



0.10



4.47



2.91



1.91



3.48



0.33



7.50



0.28



8.08



0.40



2.33



2.36



0.05



9.12



0.08



8.08



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. Statistics are centered at the pseudo-true value, 0.545, obtained by using 50 instruments and one million sample size. k = 50 is the correctly specified model for estimating the pseudo-true value. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the jackknife variance estimator and normal approximation; (viii): ci‡ : average confidence interval length.
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Table 6. Bootstrap Inference with Bias Correction, MTE, DGP 2 Nominal Level: 0.05 (a) n = 1000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



size‡



ci‡



k 5



0.00



0.16



−1.00



6.89



6.96



0.05



27.02



0.09



24.10



−1.46



7.55



7.69



0.05



29.58



0.09



25.90



20



0.02



0.63



−0.60



2.91



2.97



0.06



11.42



0.06



11.27



−1.30



3.26



3.51



0.07



12.78



0.08



12.54



40



0.04



1.26



0.42



2.12



2.16



0.05



8.32



0.05



8.33



−0.50



2.37



2.42



0.06



9.27



0.05



9.34



60



0.06



1.90



1.25



1.95



2.32



0.10



7.65



0.11



7.59



0.09



2.21



2.21



0.05



8.67



0.05



8.73



80



0.08



2.53



1.65



1.93



2.54



0.15



7.56



0.15



7.48



0.16



2.29



2.30



0.05



8.99



0.05



8.97



100



0.10



3.16



2.01



1.91



2.77



0.19



7.47



0.20



7.36



0.26



2.34



2.36



0.04



9.18



0.05



9.18



120



0.12



3.79



2.35



1.88



3.01



0.24



7.35



0.26



7.26



0.30



2.37



2.39



0.05



9.30



0.05



9.37



140



0.14



4.43



2.72



1.85



3.29



0.31



7.26



0.33



7.14



0.48



2.45



2.49



0.05



9.59



0.06



9.58



160



0.16



5.06



3.04



1.84



3.56



0.39



7.21



0.40



7.05



0.57



2.47



2.54



0.06



9.70



0.06



9.75



180



0.18



5.69



3.34



1.80



3.79



0.47



7.04



0.47



6.94



0.69



2.49



2.58



0.05



9.75



0.06



9.89



200



0.20



6.32



3.62



1.78



4.03



0.54



6.97



0.56



6.83



0.79



2.53



2.65



0.06



9.93



0.06



10.00



size‡



ci‡



(b) n = 2000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



k 5



0.00



0.11



−1.82



7.04



7.27



0.05



27.60



0.10



24.83



−2.15



7.36



7.66



0.05



28.84



0.10



25.82



20



0.01



0.45



−1.42



2.99



3.31



0.07



11.72



0.08



11.46



−1.95



3.18



3.73



0.09



12.46



0.10



12.18



40



0.02



0.89



−0.18



2.18



2.19



0.06



8.56



0.06



8.45



−0.87



2.32



2.48



0.07



9.09



0.07



8.99



60



0.03



1.34



0.88



1.98



2.17



0.07



7.77



0.08



7.71



0.00



2.11



2.11



0.05



8.29



0.05



8.32



80



0.04



1.79



1.18



1.97



2.30



0.09



7.72



0.10



7.67



0.01



2.16



2.16



0.06



8.49



0.05



8.48



100



0.05



2.24



1.47



1.96



2.45



0.11



7.69



0.12



7.61



0.04



2.19



2.19



0.05



8.58



0.05



8.63



120



0.06



2.68



1.74



1.93



2.60



0.14



7.58



0.14



7.56



0.08



2.23



2.23



0.05



8.75



0.05



8.78



140



0.07



3.13



2.02



1.92



2.79



0.18



7.54



0.19



7.50



0.11



2.26



2.26



0.05



8.87



0.05



8.89



160



0.08



3.58



2.30



1.90



2.98



0.23



7.44



0.23



7.43



0.16



2.28



2.28



0.05



8.92



0.05



9.06



180



0.09



4.02



2.56



1.88



3.18



0.28



7.37



0.27



7.39



0.26



2.26



2.28



0.05



8.88



0.05



9.16



200



0.10



4.47



2.82



1.87



3.39



0.33



7.34



0.33



7.33



0.28



2.32



2.34



0.05



9.09



0.05



9.30



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. Statistics are centered at the pseudo-true value, 0.545, obtained by using 50 instruments and one million sample size. k = 50 is the correctly specified model for estimating the pseudo-true value. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the bootstrap (500 repetitions, Rademacher weights); (viii): ci‡ : average confidence interval length.
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Table 7. Bootstrap Inference, MTE, DGP 3 Nominal Level: 0.05 (a) n = 1000 √



k/n



√ k/ n



bias



n(ˆ τMTE − τMTE ): conventional √ sd mse size† ci† size‡



√ ci‡



bias



sd



n(ˆ τMTE − τMTE ): percentile ci √ mse size† ci† size‡



ci‡



k 6



0.01



0.19



18.10



14.81



23.39



0.21



58.07



0.16



59.52



17.24



15.22



22.99



0.19



59.65



0.15



59.52



11



0.01



0.35



15.55



13.29



20.46



0.19



52.10



0.14



53.43



14.39



14.54



20.45



0.15



56.99



0.14



53.43



21



0.02



0.66



2.23



7.03



7.37



0.06



27.54



0.03



29.03



0.40



8.01



8.02



0.05



31.38



0.04



29.03



26



0.03



0.82



2.86



6.87



7.44



0.07



26.94



0.03



28.48



0.57



8.06



8.08



0.05



31.61



0.04



28.48



56



0.06



1.77



5.70



6.10



8.35



0.14



23.90



0.11



23.95



2.46



8.30



8.65



0.06



32.52



0.11



23.95



61



0.06



1.93



6.15



5.92



8.54



0.16



23.20



0.12



23.51



2.77



8.11



8.57



0.06



31.78



0.12



23.51



126



0.13



3.98



9.26



4.59



10.33



0.51



17.98



0.54



16.47



6.14



6.72



9.10



0.14



26.33



0.34



16.47



131



0.13



4.14



9.53



4.53



10.55



0.54



17.74



0.58



16.25



6.38



6.62



9.19



0.15



25.94



0.36



16.25



252



0.25



7.97



12.64



3.33



13.07



0.98



13.06



0.99



11.30



10.82



4.86



11.86



0.59



19.06



0.86



11.30



257



0.26



8.13



12.79



3.32



13.21



0.98



13.02



0.99



11.21



11.01



4.85



12.03



0.61



19.01



0.86



11.21



(b) n = 2000 √



k/n



√ k/ n



bias



n(ˆ τMTE − τMTE ): conventional √ sd mse size† ci† size‡



√ ci‡



bias



sd



n(ˆ τMTE − τMTE ): percentile ci √ mse size† ci† size‡



ci‡



k 6



0.00



0.13



24.05



14.68



28.18



0.36



57.56



0.35



57.87



23.46



14.87



27.77



0.34



58.30



0.33



57.87



11



0.01



0.25



20.55



13.34



24.50



0.31



52.30



0.29



52.96



19.69



14.00



24.16



0.27



54.86



0.28



52.96



21



0.01



0.47



1.47



7.07



7.22



0.05



27.73



0.03



28.34



0.12



7.53



7.53



0.05



29.51



0.04



28.34



26



0.01



0.58



1.94



6.99



7.25



0.06



27.39



0.04



28.14



0.18



7.59



7.59



0.06



29.76



0.04



28.14



56



0.03



1.25



4.78



6.77



8.29



0.11



26.56



0.08



26.32



1.62



8.32



8.47



0.06



32.60



0.08



26.32



61



0.03



1.36



5.18



6.75



8.51



0.12



26.47



0.09



26.13



1.81



8.36



8.55



0.06



32.77



0.09



26.13



126



0.06



2.82



8.56



5.99



10.44



0.27



23.46



0.33



21.02



4.41



8.28



9.38



0.08



32.44



0.23



21.02



131



0.07



2.93



8.82



5.93



10.63



0.30



23.25



0.35



20.94



4.59



8.22



9.41



0.09



32.20



0.23



20.94



252



0.13



5.63



12.92



4.50



13.68



0.83



17.63



0.86



15.75



8.89



6.44



10.98



0.27



25.23



0.55



15.75



257



0.13



5.75



13.10



4.47



13.84



0.84



17.54



0.88



15.58



9.03



6.41



11.08



0.27



25.13



0.56



15.58



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Power series expansion is used to estimate nonlinear propensity score. No model is correctly specified, and the misspecification error shrinks as k increases. Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the bootstrap (500 repetitions, Rademacher weights). For the naive ci, we first center the bootstrap distribution to suppress its bias correction ability; (viii): ci‡ : average confidence interval length.
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Table 8. Jackknife Inference, MTE, DGP 3 Nominal Level: 0.05 (a) n = 1000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



size‡



ci‡



k 6



0.01



0.19



17.82



14.67



23.08



0.22



57.49



0.20



58.47



16.90



15.20



22.73



0.19



59.58



0.19



58.47



11



0.01



0.35



15.31



13.06



20.12



0.20



51.19



0.16



53.94



13.98



14.48



20.13



0.15



56.77



0.17



53.94



21



0.02



0.66



2.06



6.93



7.23



0.06



27.17



0.04



28.35



0.09



8.15



8.15



0.05



31.93



0.04



28.35



26



0.03



0.82



2.71



6.75



7.28



0.07



26.47



0.04



28.40



0.17



8.29



8.29



0.05



32.48



0.05



28.40



56



0.06



1.77



5.78



6.13



8.43



0.14



24.03



0.08



27.92



1.52



9.87



9.99



0.06



38.69



0.10



27.92



61



0.06



1.93



6.24



6.07



8.71



0.16



23.80



0.08



27.67



1.85



9.91



10.08



0.06



38.86



0.10



27.67



126



0.13



3.98



9.31



4.73



10.44



0.49



18.52



0.26



24.00



4.00



9.90



10.67



0.07



38.80



0.21



24.00



131



0.13



4.14



9.57



4.67



10.65



0.53



18.30



0.28



23.77



4.13



9.85



10.68



0.07



38.61



0.22



23.77



252



0.25



7.97



12.61



3.34



13.05



0.97



13.11



0.86



18.29



7.67



8.07



11.13



0.14



31.63



0.44



18.29



257



0.26



8.13



12.75



3.32



13.18



0.97



13.03



0.87



18.19



7.68



8.05



11.12



0.15



31.54



0.44



18.19



size‡



ci‡



(b) n = 2000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



k 6



0.00



0.13



24.31



14.22



28.16



0.40



55.75



0.39



56.71



23.77



14.43



27.81



0.37



56.56



0.38



56.71



11



0.01



0.25



20.52



13.00



24.29



0.34



50.95



0.33



52.65



19.66



13.81



24.03



0.29



54.12



0.31



52.65



21



0.01



0.47



1.67



6.98



7.18



0.05



27.37



0.05



27.65



0.31



7.56



7.57



0.05



29.64



0.06



27.65



26



0.01



0.58



2.16



6.90



7.23



0.06



27.04



0.06



27.85



0.35



7.61



7.62



0.05



29.84



0.06



27.85



56



0.03



1.25



4.95



6.47



8.14



0.12



25.36



0.08



28.17



1.33



8.55



8.65



0.05



33.51



0.08



28.17



61



0.03



1.36



5.32



6.36



8.29



0.13



24.95



0.09



28.35



1.42



8.63



8.74



0.05



33.82



0.08



28.35



126



0.06



2.82



8.60



5.52



10.22



0.34



21.63



0.18



27.41



2.80



9.34



9.75



0.07



36.63



0.14



27.41



131



0.07



2.93



8.88



5.50



10.45



0.35



21.57



0.19



27.36



2.93



9.39



9.83



0.07



36.80



0.15



27.36



252



0.13



5.63



12.85



4.38



13.58



0.84



17.17



0.61



23.05



5.67



9.02



10.65



0.09



35.35



0.27



23.05



257



0.13



5.75



13.04



4.37



13.76



0.85



17.11



0.63



22.94



5.80



8.99



10.69



0.10



35.23



0.28



22.94



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Power series expansion is used to estimate nonlinear propensity score. No model is correctly specified, and the misspecification error shrinks as k increases. Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the jackknife variance estimator and normal approximation; (viii): ci‡ : average confidence interval length.
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Table 9. Bootstrap Inference with Bias Correction, MTE, DGP 3 Nominal Level: 0.05 (a) n = 1000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



size‡



ci‡



k 6



0.01



0.19



17.92



14.81



23.25



0.22



58.06



0.32



54.47



17.14



15.33



22.99



0.19



60.11



0.28



56.65



11



0.01



0.35



15.55



13.33



20.48



0.20



52.24



0.29



49.13



14.30



15.02



20.74



0.15



58.87



0.22



55.40



21



0.02



0.66



2.12



6.98



7.29



0.06



27.35



0.10



25.46



0.25



8.10



8.11



0.05



31.76



0.08



29.56



26



0.03



0.82



2.75



6.78



7.32



0.07



26.57



0.11



25.00



0.37



8.25



8.26



0.05



32.35



0.07



30.13



56



0.06



1.77



5.58



6.11



8.28



0.14



23.96



0.21



22.92



1.45



9.85



9.96



0.06



38.61



0.07



33.76



61



0.06



1.93



6.02



5.96



8.47



0.16



23.35



0.23



22.76



1.50



9.83



9.94



0.06



38.52



0.07



34.18



126



0.13



3.98



9.13



4.42



10.15



0.53



17.34



0.59



18.09



3.79



9.20



9.95



0.07



36.08



0.09



33.63



131



0.13



4.14



9.42



4.44



10.42



0.56



17.41



0.62



17.88



4.10



9.34



10.20



0.07



36.62



0.10



33.92



252



0.25



7.97



12.54



3.25



12.95



0.97



12.74



0.98



12.01



7.73



7.96



11.09



0.15



31.19



0.26



27.85



257



0.26



8.13



12.68



3.24



13.09



0.97



12.72



0.98



11.82



7.93



7.92



11.21



0.16



31.04



0.26



27.86



size‡



ci‡



(b) n = 2000 √ k/n



√ k/ n



bias



sd



√



√



n(ˆ τMTE − τMTE )



mse



size†



ci†



size‡



ci‡



bias



sd



√



n(ˆ τMTE,bc − τMTE )



mse



size†



ci†



k 6



0.00



0.13



24.18



14.56



28.22



0.36



57.08



0.43



54.69



23.55



14.83



27.83



0.34



58.12



0.41



55.89



11



0.01



0.25



20.50



13.37



24.48



0.32



52.39



0.39



49.69



19.57



14.11



24.12



0.27



55.30



0.33



52.89



21



0.01



0.47



1.44



7.13



7.28



0.06



27.96



0.08



26.06



0.10



7.71



7.72



0.05



30.24



0.07



28.33



26



0.01



0.58



1.89



7.00



7.25



0.06



27.44



0.08



25.89



0.14



7.74



7.74



0.05



30.35



0.07



28.84



56



0.03



1.25



4.59



6.70



8.13



0.10



26.28



0.15



24.76



0.86



8.94



8.98



0.05



35.04



0.06



31.89



61



0.03



1.36



4.99



6.64



8.31



0.11



26.03



0.16



24.69



0.87



9.13



9.17



0.06



35.78



0.07



32.31



126



0.06



2.82



8.38



5.70



10.13



0.30



22.34



0.36



22.37



2.33



9.85



10.12



0.06



38.60



0.07



35.27



131



0.07



2.93



8.69



5.65



10.36



0.31



22.15



0.39



22.34



2.60



9.82



10.16



0.06



38.51



0.07



35.45



252



0.13



5.63



12.72



4.39



13.46



0.82



17.22



0.85



17.14



5.51



8.91



10.47



0.09



34.93



0.14



33.18



257



0.13



5.75



12.91



4.39



13.63



0.84



17.20



0.87



17.03



5.62



9.03



10.63



0.10



35.38



0.13



33.14



Notes. The marginal treatment effect is evaluated at a = 0.5, or equivalently it is θˆ2 + θˆ3 . Power series expansion is used to estimate nonlinear propensity score. No model is correctly specified, and the misspecification error shrinks as k increases. Panel (a) and (b) correspond to sample size n = 1000 and 2000, respectively. (i) k: number of instruments used for propensity score estimation; (ii) bias: empirical bias; (iii) sd: empirical standard deviation; (iv) mse: empirical mean squared error (i.e. bias2 +sd2 ); (v) size† : empirical size of the level-0.05 test, where the t-statistic is constructed with the (infeasible) oracle standard deviation; (vi) ci† : average confidence interval length of the t-test using the (infeasible) oracle standard deviation; (vii) size‡ : empirical size of the level-0.05 test based on the bootstrap (500 repetitions, Rademacher weights); (viii): ci‡ : average confidence interval length.
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Table 10. Summary Statistics (n = 1, 747) Variable



Description



wage91



log wage in 1991



college cAFQT



college attendance corrected AFQT score



exp



working experience



YoB57 YoB58 YoB59 YoB60 YoB61 YoB62 YoB63 urban14 eduMom



1=born in 1957 1=born in 1958 1=born in 1959 1=born in 1960 1=born in 1961 1=born in 1962 1=born in 1963 1=urban residency at 14 mom education



numSiblings



number of siblings



pub4 avgTui17



1= presence of public 4 year college in county of residence at 14 average tuition in public 4 year colleges in county of residence at 17



avgUne17Perm



average permanent unemployment in state of residence at 17



avgWag17Perm



log average permanent wage in county of residence at 17



avgUne17



average unemployment in state of residence at 17



avgWag17



log average wage in county of residence at 17



avgUne91



average unemployment in state of residence in 1991



avgWag91



log average wage in county of residence in 1991



Notes. Standard deviations in square brackets.
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college= 0 (n = 882)



college= 1 (n = 865)



2.209 [0.441] 0.000 −0.045 [0.867] 10.100 [3.126] 0.098 0.083 0.120 0.137 0.127 0.167 0.136 0.700 11.310 [2.106] 3.263 [2.084] 0.463 22.020 [7.873] 6.294 [1.016] 10.270 [0.180] 7.080 [1.785] 10.280 [0.162] 6.797 [1.331] 10.260 [0.160]



2.550 [0.496] 1.000 0.952 [0.750] 6.840 [3.252] 0.103 0.112 0.089 0.125 0.133 0.169 0.141 0.790 12.910 [2.279] 2.585 [1.645] 0.588 21.110 [8.068] 6.208 [0.954] 10.300 [0.195] 7.085 [1.845] 10.270 [0.165] 6.823 [1.198] 10.320 [0.166]



121 66 1.58



X X X



35 0.84



X X X



X X X



0.094 (0.067)



0.072 (0.052)



(6)



45 1.08



X



X X X



X X X



0.057 (0.074)



0.059 (0.052)



(7)



56 1.34



X



X X X



47 1.12



X X X



0.102 (0.056)



0.110 (0.045)



τˆMTE (0.5) (8)



66 1.58



X X



X X X



X X X



0.090 (0.055)



0.097 (0.042)



(9)



35 0.84



X



X X X



X X X



0.072 (0.044)



0.069 (0.035)



(10)



−0.410 (0.214)



−0.273 (0.232)



35 0.84



X X X



45 1.08



X



X X X



X X X



−0.283 (0.141)



−0.274 (0.159)



X X X



(12)



(11)



56 1.34



X



X X X



X X X



−0.210 (0.174)



−0.104 (0.116)



τˆMTE (0.8) (13) (14)



66 1.58



X X



X X X



X X X



−0.241 (0.175)



−0.113 (0.108)



(15)



35 0.84



X



X X X



X X X



−0.218 (0.143)



−0.167 (0.107)



Notes. The marginal treatment effects are estimated at 0.2, 0.5 and 0.8, and are evaluated at mean values of the covariates. The estimated propensity score enters quadratically. Bias correction is based on the jackknife method, and standard error are obtained by inverting the 95% bootstrap confidence interval (500 bootstrap repetitions). a. Linear and square terms of corrected AFQT score, education of mom, number of siblings, average permanent local unemployment rate and wage rate at age 17; urban residency at age 14; and cohort dummies. b. Experience in 1991, and squared. c. Average local unemployment and wage rate in 1991. d. Raw instruments, including presence of four year college at age 14, average local college tuition at age 17, average local unemployment rate and wage rate at age 17. e. Interaction of the the raw instruments with corrected AFQT score, education of mom, and number of siblings. f. First order interactions among corrected AFQT score, education of mom, number of siblings, average permanent local unemployment rate and wage rate at age 17. g. Interactions of cohort dummies with corrected AFQT score, education of mom and number of siblings. h. Logit model is used to estimate the selection equation.



56 1.34



X X



X X X



X X X



0.362 (0.121)



0.305 (0.089)



(5)



35 0.84



45 1.08



X



X X X



X X X



0.422 (0.132)



0.307 (0.082)



(4)



k √ k/ n



35 0.84



X



X X X



X X X



0.414 (0.132)



0.324 (0.084)



τˆMTE (0.2) (3)



X



interactions interactions



X X X



X X X



0.523 (0.145)



0.401 (0.097)



(2)



h logit



g cohort



f linear



Selection Eqn. a baseline d instruments e × cAFQT, eduMom, numSib



k √ k/ n



X X X



0.460 (0.161)



bias corrected



Outcome Eqn. a baseline b exp (and squared) c avgUne91, avgWag91



0.418 (0.107)



no bias correction



(1)



Table 11. Marginal Treatment Effects (p = 2)



122 66 1.58



X X X



35 0.84



X X X



X X X



0.074 (0.076)



0.062 (0.061)



(6)



45 1.08



X



X X X



X X X



0.028 (0.086)



0.050 (0.064)



(7)



56 1.34



X



X X X



48 1.15



X X X



0.128 (0.062)



0.117 (0.046)



τˆMTE (0.5) (8)



66 1.58



X X



X X X



X X X



0.113 (0.067)



0.110 (0.047)



(9)



35 0.84



X



X X X



X X X



0.049 (0.052)



0.053 (0.041)



(10)



−0.398 (0.220)



−0.269 (0.253)



35 0.84



X X X



45 1.08



X



X X X



X X X



−0.277 (0.141)



−0.267 (0.176)



X X X



(12)



(11)



56 1.34



X



X X X



X X X



−0.233 (0.183)



−0.112 (0.120)



τˆMTE (0.8) (13) (14)



66 1.58



X X



X X X



X X X



−0.264 (0.200)



−0.127 (0.120)



(15)



35 0.84



X



X X X



X X X



−0.161 (0.150)



−0.130 (0.116)



Notes. The marginal treatment effects are estimated at 0.2, 0.5 and 0.8, and are evaluated at mean value of the covariates. The estimated propensity score enters up to third order. Bias correction is based on the jackknife method, and standard error are obtained by inverting the 95% bootstrap confidence interval (500 bootstrap repetitions).



56 1.34



X X



X X X



X X X



0.412 (0.130)



0.338 (0.095)



(5)



35 0.84



45 1.08



X



X X X



X X X



0.391 (0.146)



0.291 (0.086)



(4)



k √ k/ n



35 0.84



X



X X X



X X X



0.384 (0.134)



0.317 (0.083)



τˆMTE (0.2) (3)



X



interactions interactions



X X X



X X X



0.561 (0.160)



0.414 (0.101)



(2)



h logit



g cohort



f linear



Selection Eqn. a baseline d instruments e × cAFQT, eduMom, numSib



k √ k/ n



X X X



0.483 (0.175)



bias corrected



Outcome Eqn. a baseline b exp (and squared) c avgUne91, avgWag91



0.430 (0.118)



no bias correction



(1)



Table 12. Marginal Treatment Effects (p = 3)



123 66 1.58



X X X



35 0.84



X X X



X X X



0.086 (0.085)



0.069 (0.061)



(6)



45 1.08



X



X X X



X X X



0.033 (0.092)



0.055 (0.063)



(7)



56 1.34



X



X X X



49 1.17



X X X



0.130 (0.060)



0.121 (0.048)



τˆMTE (0.5) (8)



66 1.58



X X



X X X



X X X



0.113 (0.071)



0.114 (0.049)



(9)



35 0.84



X



X X X



X X X



0.034 (0.056)



0.044 (0.043)



(10)



−0.392 (0.232)



−0.282 (0.225)



35 0.84



X X X



45 1.08



X



X X X



X X X



−0.278 (0.146)



−0.267 (0.154)



X X X



(12)



(11)



56 1.34



X



X X X



X X X



−0.257 (0.178)



−0.124 (0.131)



τˆMTE (0.8) (13) (14)



66 1.58



X X



X X X



X X X



−0.271 (0.180)



−0.137 (0.113)



(15)



35 0.84



X



X X X



X X X



−0.227 (0.200)



−0.170 (0.143)



Notes. The marginal treatment effects are estimated at 0.2, 0.5 and 0.8, and are evaluated at mean value of the covariates. The estimated propensity score enters up to fourth order. Bias correction is based on the jackknife method, and standard error are obtained by inverting the 95% bootstrap confidence interval (500 bootstrap repetitions).



56 1.34



X X



X X X



X X X



0.441 (0.148)



0.358 (0.105)



(5)



35 0.84



45 1.08



X



X X X



X X X



0.400 (0.120)



0.301 (0.085)



(4)



k √ k/ n



35 0.84



X



X X X



X X X



0.407 (0.126)



0.329 (0.087)



τˆMTE (0.2) (3)



X



interactions interactions



X X X



X X X



0.558 (0.159)



0.416 (0.100)



(2)



h logit



g cohort



f linear



Selection Eqn. a baseline d instruments e × cAFQT, eduMom, numSib



k √ k/ n



X X X



0.485 (0.161)



bias corrected



Outcome Eqn. a baseline b exp (and squared) c avgUne91, avgWag91



0.433 (0.113)



no bias correction



(1)



Table 13. Marginal Treatment Effects (p = 4)



124 66 1.58



X X X



35 0.84



X X X



X X X



0.089 (0.109)



0.086 (0.066)



(6)



45 1.08



X



X X X



X X X



0.040 (0.124)



0.073 (0.066)



(7)



56 1.34



X



X X X



50 1.20



X X X



0.061 (0.130)



0.155 (0.062)



τˆMTE (0.5) (8)



66 1.58



X X



X X X



X X X



0.063 (0.131)



0.145 (0.056)



(9)



35 0.84



X



X X X



X X X



0.061 (0.070)



0.079 (0.054)



(10)



−0.411 (0.223)



−0.301 (0.246)



35 0.84



X X X



45 1.08



X



X X X



X X X



−0.300 (0.153)



−0.285 (0.182)



X X X



(12)



(11)



56 1.34



X



X X X



X X X



−0.197 (0.181)



−0.159 (0.120)



τˆMTE (0.8) (13) (14)



66 1.58



X X



X X X



X X X



−0.205 (0.188)



−0.170 (0.116)



(15)



35 0.84



X



X X X



X X X



−0.237 (0.185)



−0.188 (0.139)



Notes. The marginal treatment effects are estimated at 0.2, 0.5 and 0.8, and are evaluated at mean value of the covariates. The estimated propensity score enters up to fifth order. Bias correction is based on the jackknife method, and standard error are obtained by inverting the 95% bootstrap confidence interval (500 bootstrap repetitions).



56 1.34



X X



X X X



X X X



0.415 (0.153)



0.323 (0.112)



(5)



35 0.84



45 1.08



X



X X X



X X X



0.469 (0.185)



0.261 (0.101)



(4)



k √ k/ n



35 0.84



X



X X X



X X X



0.489 (0.189)



0.285 (0.104)



τˆMTE (0.2) (3)



X



interactions interactions



X X X



X X X



0.556 (0.174)



0.393 (0.110)



(2)



h logit



g cohort



f linear



Selection Eqn. a baseline d instruments e × cAFQT, eduMom, numSib



k √ k/ n



X X X



0.486 (0.160)



bias corrected



Outcome Eqn. a baseline b exp (and squared) c avgUne91, avgWag91



0.414 (0.108)



no bias correction



(1)



Table 14. Marginal Treatment Effects (p = 5)
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