Ultrametric skeletons Manor Mendel Open University of Israel

January 2012

M. Mendel (OUI)

UM skeletons

January 2012

1 / 33

Goal

Given: A metric space (X , d ) & probability measure µ on X . Goal: Finding a structured subset S ⊂ X that captures useful properties of (X , d , µ).

M. Mendel (OUI)

UM skeletons

January 2012

2 / 33

Structured metrics: Ultrametrics Definition (X , ρ) is called ultrametric if: ∀x, y , z ∈ X , ρ(x, z) ≤ max{ρ(x, y ), ρ(y , z)}.

M. Mendel (OUI)

UM skeletons

January 2012

3 / 33

Structured metrics: Ultrametrics Definition (X , ρ) is called ultrametric if: ∀x, y , z ∈ X , ρ(x, z) ≤ max{ρ(x, y ), ρ(y , z)}.

M. Mendel (OUI)

UM skeletons

January 2012

3 / 33

Structured metrics: Ultrametrics Definition (X , ρ) is called ultrametric if: ∀x, y , z ∈ X , ρ(x, z) ≤ max{ρ(x, y ), ρ(y , z)}.

M. Mendel (OUI)

UM skeletons

January 2012

3 / 33

Structured metrics: Ultrametrics Definition (X , ρ) is called ultrametric if: ∀x, y , z ∈ X , ρ(x, z) ≤ max{ρ(x, y ), ρ(y , z)}.

M. Mendel (OUI)

UM skeletons

January 2012

3 / 33

Structured metrics: Ultrametrics Definition (X , ρ) is called ultrametric if: ∀x, y , z ∈ X , ρ(x, z) ≤ max{ρ(x, y ), ρ(y , z)}.

Definition (Alternative) ∆ = 10 ∆=8

∆=8

∆=9

∆=7

x1

xn

X

d(xi , xj ) = ∆(lca(xi , xj )) where u = parent(v) ⇒ ∆(v) ≤ ∆(u).

M. Mendel (OUI)

UM skeletons

January 2012

3 / 33

Properties of UM

Ultrametrics: 1

are tree metrics.

2

are Euclidean metrics

3

have hierarchical clustering

4

support compact DS for fast queries of distances.

5

are amenable for DP optimization of clustering problems like k-median, k-minsum, Σ`p clustering.

6

represents evolution trees. .. .

7

M. Mendel (OUI)

UM skeletons

January 2012

4 / 33

Exact UM subset is useless

Finding meaningful UM subsets in general metric spaces is hopeless: x

z

y |x − z| > max{|x − y|, y − z|}

No 3 points on the line can be an UM. So the largest UM subset of [0, 1] is of size 2. An UM subset S ⊂ [0, 1] can “capture" the diameter, but not much more. Solution: allowing S to have an approximate UM structure.

M. Mendel (OUI)

UM skeletons

January 2012

5 / 33

Approximate UM Definition (Approximate UM) (S, d ) is D-approx’ UM if ∃ρ UM on S such that d (x, y ) ≤ ρ(x, y ) ≤ D · d (x, y ),

∀x, y ∈ S.



M. Mendel (OUI)

UM skeletons

January 2012

6 / 33

Approximate UM Definition (Approximate UM) (S, d ) is D-approx’ UM if ∃ρ UM on S such that d (x, y ) ≤ ρ(x, y ) ≤ D · d (x, y ),



∆ D



∆ D



M. Mendel (OUI)

∀x, y ∈ S.

UM skeletons

∆ D



∆ D

January 2012

6 / 33

Approximate UM Definition (Approximate UM) (S, d ) is D-approx’ UM if ∃ρ UM on S such that d (x, y ) ≤ ρ(x, y ) ≤ D · d (x, y ),

M. Mendel (OUI)

UM skeletons

∀x, y ∈ S.

January 2012

6 / 33

Large UM subset of the discrete line: Cantor subset

D=4

M. Mendel (OUI)

UM skeletons

January 2012

7 / 33

Large UM subset of the discrete line: Cantor subset 32 12

12

5 4

1

5 3

4

1

2

D=4 1

Number of points left: ≈ 2log8/3 n = n log(8/3) .

M. Mendel (OUI)

UM skeletons

January 2012

7 / 33

Large UM subset of the discrete line: Cantor subset 32 12

12

5 4

1

5 3

4

1

2

D=4 1

Number of points left: ≈ 2log8/3 n = n log(8/3) . Generalize: Throw out the middle ε-fraction. 1 ε

approx’ UM. log

Number of points: ≈ 2

2 1−ε

n

This is best possible for the line.

≈ n1−cε .

Approximates the size of the space up-to a power. M. Mendel (OUI)

UM skeletons

January 2012

7 / 33

Beyond size

M. Mendel (OUI)

UM skeletons

January 2012

8 / 33

Beyond size

S

M. Mendel (OUI)

UM skeletons

January 2012

8 / 33

Beyond size

We want to capture both approximate size and approximate diameter and more by a UM subset. M. Mendel (OUI)

UM skeletons

January 2012

8 / 33

Main Theorem

Theorem ([M. Naor ’11]) ∀ε > 0, ∀(X , d ) compact metric, ∀µ prob’ measure on X : ∃S ⊂ X , ∃ν prob’ measure supported on S s.t. (S, d ) is 9/ε-approx’ UM. ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , Here Cε = 2

O(1/ε2 )

∀x ∈ X , ∀r > 0

depends only on ε.

The tradeoff between the approximation and the power of µ is asymptotically tight.

M. Mendel (OUI)

UM skeletons

January 2012

9 / 33

The diameter property Recall: ν supported on S ⊂ X , and ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , ∀x ∈ X , ∀r > 0.

Claim ∆(S) ≥ ∆(supp(µ))/(2Cε ).

Proof.

M. Mendel (OUI)

UM skeletons

January 2012

10 / 33

The diameter property Recall: ν supported on S ⊂ X , and ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , ∀x ∈ X , ∀r > 0.

Claim ∆(S) ≥ ∆(supp(µ))/(2Cε ).

Proof.

S

M. Mendel (OUI)

UM skeletons

January 2012

10 / 33

The diameter property Recall: ν supported on S ⊂ X , and ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , ∀x ∈ X , ∀r > 0.

Claim ∆(S) ≥ ∆(supp(µ))/(2Cε ).

Proof.

r

S

ν(B(x, r)) = 1

M. Mendel (OUI)

UM skeletons

January 2012

10 / 33

The diameter property Recall: ν supported on S ⊂ X , and ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , ∀x ∈ X , ∀r > 0.

Claim ∆(S) ≥ ∆(supp(µ))/(2Cε ).

Proof.

µ(B(x, Cε r)) ≥ ν(B(x, r))1/1−ε = 1 Cε r

S

M. Mendel (OUI)

UM skeletons

January 2012

10 / 33

Large UM subset Recall: ν supported on S ⊂ X , and ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε ,

∀x ∈ X , ∀r > 0.

(1)

Theorem ([M Naor ’06]) ∀ε > 0 and ∀(X , d ) finite m.s., ∃S ⊆ X s.t. (S, d ) is 9/ε approx’ UM. |S| ≥ |X |1−ε .

Proof. Let n = |X |, and set µ uniform on X , i.e., µ({x}) = n1 , ∀x ∈ X . Then by main thm, ∃S ⊂ X , and ν as above. Applying (1) with r = 0, X X 1= ν({x}) ≤ µ({x})1−ε = |S| · n−(1−ε) . x∈S

M. Mendel (OUI)

x∈S

UM skeletons

January 2012

11 / 33

Large UM subset: History I Theorem ([Dvoretzky ’60, Milman ’71]) For every ε > 0 there exists Cε such that any n-dimensional normed space X has a subspace Y ⊂ X of dimension Cε log n on which the induced norm is 1 + ε distorted Euclidean.

Theorem ([Bourgain Figiel Milman ’86]: finite metric space Dvoretzky thm) For every ε > 0 there exists cε such that any n-point m.s. (X , d ) has a subset S ⊂ X , |S| ≥ cε log n, and (S, d ) is 1 + ε approx’ Euclidean. Actually: (S, d ) is 1 + ε approx’ UM. [BFM]’s bound is closely related to classical graph Ramsey theory: Up to 2-approx, every graph can be represented by {1, 2} metric. UM subset must be equilateral which is monochromatic. M. Mendel (OUI)

UM skeletons

January 2012

12 / 33

Large UM subset: History II

When approx’> 2 is considered, ∆-ineq’ “kicks-in". Thus: Let D > 2. ∀(X , d ) finite, ∃S ⊆ X such that S is D-approx UM and  p  [Blum Karloff Rabani Saks ’92]: |S| ≥ exp cD log n . [Bartal Linial M. Naor ’03]: |S| ≥ |X |αD , D where αD > 0 for D > 2, and αD ≥ 1 − C log D . [MN ’06]: αD ≥ 1 −

C D

(asymptotically tight).

[Naor Tao ’10]: C ≤ 2e.

M. Mendel (OUI)

UM skeletons

January 2012

13 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

k-server problem [Manasse McGeoch Sleator ’88]

Goal: Minimizing the total distance travelled by the trucks. M. Mendel (OUI)

UM skeletons

January 2012

14 / 33

Competitive ratio

k-server is analysed in an online setting using the competitive ratio. The performance of (randomized) online algorithm A is compared to the optimal offline cost.

Definition (r -Competitiveness of online alg A) ∃C > 0, ∀σ request sequence, E[Cost(A(σ))] ≤ r · Cost(opt(σ)) + C .

M. Mendel (OUI)

UM skeletons

January 2012

15 / 33

Competitive ratio for the k-server

The deterministic competitive ratio is between k [MMS ’88] and 2k − 1 [Koutsoupias Papadimitriou ’94] on any metric space.

The randomized competitive ratio of k-server attracted much research. On some metric spaces it is Θ(log k). Recent breakthrough: polylog(k, n) competitive randomized algorithm for k-server in n-point spaces [Bansal, Buchbinder, Madry, Naor ’11]. ∃ a lower bound of Ω(log k/ log log k) on any metric space. The l.b. proof uses the large UM subset theorem.

M. Mendel (OUI)

UM skeletons

January 2012

16 / 33

Large UM subset in l.b. argument

The competitive ratio is changed multiplicatively by at most a factor D on D-approx’ metric. An algorithm for a space X implies an algorithm for subset S ⊆ X . Counter-positive: A l.b. on subset S ⊆ X implies a l.b. on X . A l.b. on all spaces of size n = k + 1 implies a l.b. ∀n > k. The [Karloff Rabani Ravid ’91] paradigm is therefore:

Conceive a class of spaces C for which we can prove a good lower bound (e.g. log k). Prove: ∀X n-pt space ∃S ⊆ X , of size f (n) and S is D-approx’ in C. Deduce a l.b. of log f D(k+1) on the competitive ratio in S. The same lower bound also holds in X .

M. Mendel (OUI)

UM skeletons

January 2012

17 / 33

k-server lower bounds

Dvoretzky-type theorems and the lower bounds they imply Reference Karloff Rabani Ravid ’91

Dist’ 4

Size log n log log n q

Blum Karloff Rabani Saks ’92 Bartal Bollobas M. ’01 Bartal Linial M. Naor ’03

M. Mendel (OUI)

4

2

0.1·log n log log n

Type equilateral/lacunary (⊂ UM)

log log n

n0.01

dichotomic triangles (⊂ UM) UM

4

n0.01

UM

UM skeletons

Lower Bound log log k q

log k log log k

log k (log log k)2 log k log log k

January 2012

18 / 33

Approximate distance oracle (ADO)

Definition Given a metric space (or a graph) X . Preprocess X “quickly” and obtain a “compact” data structure S. Answer in “constant time” queries of the form Given x, y ∈ X , compute dX (x, y ) approximately.

M. Mendel (OUI)

UM skeletons

January 2012

19 / 33

Space / approximation trade-off Example (Distance Matrix) Constant query time. Exact answer. Storage: Θ(n2 ) words.

Proposition ([Thorup Zwick ’01]) 1

2

3

If ADO A estimates distances with distortion < 3, then |A| = Ω(n2 ) bits. A widely believed girth conjecture implies: If DS A estimates distances with distortion < 2h + 1, then space |A| = Ω(n1+1/h ) bits. The conjecture is verified for h = 1, 2, 3, 5.

M. Mendel (OUI)

UM skeletons

January 2012

20 / 33

Thorup-Zwick oracle Theorem ([TZ ’01]) Let h ∈ N. ∃ ADO with the parameters 2h − 1 approximation.

Storage: O(hn1+1/h ) words. Query time O(h). Preprocessing time O(n2 ). 1

Space / approximation trade-off almost optimal.

2

Oracle: For constant approximations, constant query time.

3

Many many follow-ups & variants.

M. Mendel (OUI)

UM skeletons

January 2012

21 / 33

Thorup-Zwick oracle Theorem ([TZ ’01]) Let h ∈ N. ∃ ADO with the parameters 2h − 1 approximation.

Storage: O(hn1+1/h ) words. Query time O(h). Preprocessing time O(n2 ). 1

Space / approximation trade-off almost optimal.

2

Oracle: For constant approximations, constant query time.

3

Many many follow-ups & variants.

4

Are there “true oracles” with universal constant query time?

M. Mendel (OUI)

UM skeletons

January 2012

21 / 33

True oracles

Theorem ([M Naor ’06]) Let h ∈ N. ∃ ADO with the parameters

c · h approximation, where c > 2 is a universal constant. Storage: O(n1+1/h ) words.

Query time is a universal constant. Preprocessing time is O(n2 ). [M. Schwob ’09] Construction is based on the large UM subset theorem. 2 < c ≤ 6e [Naor Tao ’10].

M. Mendel (OUI)

UM skeletons

January 2012

22 / 33

ADO using Dvoretzky [MN ’06] X

M. Mendel (OUI)

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X T1

M. Mendel (OUI)

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X T1

T1

M. Mendel (OUI)

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X T1

Te1

M. Mendel (OUI)

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X

T2

T1

Te1

M. Mendel (OUI)

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X

T2

T1

Te1

M. Mendel (OUI)

T2

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X

T2

T1

Te1

M. Mendel (OUI)

Te2

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X

T2

T1

T4 T3

Te1

M. Mendel (OUI)

Te2

Te3

UM skeletons

Te4

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X

T2

T1

T4 T3

Te1

Te2

x1

M. Mendel (OUI)

Te4

Te3

x23

UM skeletons

January 2012

23 / 33

ADO using Dvoretzky [MN ’06] X

T2

T1

T4 T3

Te1

Te2

Te4

Te3

x1

x23

Each tree contains n1−ε black points (ε = 1/h). Therefore, there are O(nε ) trees. The total size of the DS is n · O(nε ) = O(n1+ε ). M. Mendel (OUI)

UM skeletons

January 2012

23 / 33

Hausdorff dimension Definition (Hausdorff dimension) α H∞ (X )

= inf

( X i

riα

: ∃(xi )i∈N

[ i

B(xi , ri ) ⊇ X

)

α dimH (X ) = inf {α > 0 : H∞ (X ) = 0}

Example 1

For any countable X , dimH (X ) = 0.

2

The interval [0, 1]. Fix α > 1 ∀m > 1,  i i+1 α Pm−1 α ([0, 1]) ≤ H∞ = m1−α →m→∞ 0 i=0 diam m, m Hence dimH ([0, 1]) ≤ α ⇒ dimH ([0, 1]) ≤ 1. M. Mendel (OUI)

UM skeletons

January 2012

24 / 33

Dvoretzky-type theorem for Hausdorff dimension

Theorem ([M. Naor ’11]) ∀ε ∈ (0, 1), ∀X compact space, ∃S ⊆ X s.t. dimH (S) ≥ (1 − ε)dimH (X ); S is (9/ε) approx’ UM.

The bound is asymptotically tight even for approx’ Euclidean subsets. Example: Expander-based fractals

M. Mendel (OUI)

UM skeletons

January 2012

25 / 33

Proof of the Dvoretzky thm for Hausdorff dimension Lemma ([Frostman ’31]) Fix a compact m.s. X . Then β < dimH (X ) iff ∃µ prob’ measure on X such that ∀x ∈ X , ∀r > 0, µ(B(x, r )) ≤ Cr β .

Proof of the Dvoretzky Thm. Fix a compact (X , d ), and fix β < dimH (X ). Let µ be a β- Frostman measure for X , i.e., µ(B(x, r )) ≤ Cr β , ∀x ∈ X , r > 0.

By [Main Thm], ∃S ⊂ X which is such that

9 ε

approx’ UM, & prob’ measure ν on S

ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε ≤ C 1−ε Cε(1−ε)β · r (1−ε)β . So ν is (1 − ε)β-Frostman measure for S ⇒ dimH (S) ≥ (1 − ε)β. M. Mendel (OUI)

UM skeletons

January 2012

26 / 33

Urbański problem Lip

[Urbański ’09] ∀X , dimH (X ) > n ⇒ ∃f : X −→ [0, 1]n , f (X ) = [0, 1]n ?

Theorem ([Keleti Máthé ’12]) Yes, assuming (X , d ) is compact.

Proof. 1

if X is also UM then the thm can be proved using Frostman lemma and the n-th dim’ Peano curve.

2

Apply the Dvoretzky thm: ∃S ⊂ X s.t. dimH (S) > n, and S is approx’ UM.

3

4

Since S is (approx) UM, by step (1.), ∃f : S → [0, 1]n Lipschitz and surjective. By general Lipschitz extension thms (e.g. [Lee Naor ’05]) f is extended into f¯ : X → [0, 1]n . M. Mendel (OUI)

UM skeletons

January 2012

27 / 33

Boundness Gaussian processes

Let (Gx )x∈X be Gaussian process, i.e., Gx is a Gaussian r.v. for every x ∈X . We are interested in estimating E maxx∈X Gx . p The metric d (x, y ) = E[(Gx − Gy )2 ] determines the covariance matrix, and hence all the properties of Gaussian process.

[Dudley ’67] observed that the E maxx∈X Gx can be estimated by the “size" of the metric d .

M. Mendel (OUI)

UM skeletons

January 2012

28 / 33

Fernique-Talagrand γ2 functional [Fernique ’75] defined γ2 (X , d ) = inf sup µ x∈X

Z

0

∞p

log(1/µ(B(x, r )))dr ,

the inf is taken over all probability measures µ over X Fernique observed that E maxx∈X Gx . γ2 (X , d ). He conjectured that in fact E maxx∈X Gx  γ2 (X , d ).

Theorem ([Talagrand ’87]) ∀(Gx )x∈X finite Gaussian process, E maxx∈X Gx & γ2 (X , d ), p where d (x, y ) = E[(Gx − Gy )2 ]. M. Mendel (OUI)

UM skeletons

January 2012

29 / 33

Talagrand’s proof Proposition (UM special case [Fernique],[Talagrand]) Let (Gx )x∈U be a Gaussian process, and let d (x, y ) = Assume that (U, d ) is an ultrametric, then

p E[(Gx − Gy )2 ].

E max Gx & γ2 (U, d ). x∈U

Theorem (Dvoretzky thm for γ2 [Talagrand]) ∀(X , d ) m.s., ∃S ⊂ X such that

(S, d ) is O(1) approximate UM. γ2 (S) & γ2 (X ).

Let S ⊂ X be the subset from the Dvoretzky thm for γ2 : ∗

E max Gx ≥ E max Gx & γ2 (S, d ) & γ2 (X , d ). x∈X

M. Mendel (OUI)

x∈S

UM skeletons

January 2012

30 / 33

γ2 and δ2 Let φ(t) =

p

log(1/t) . R∞ γ2 (X ) = inf µ supx∈X 0 φ(µ(B(x, r )))dr .

γ2 looks like a multi-scale covering radius parameter. Similarly, we define δ2 (X ) = sup inf

µ x∈X

Z



φ(µ(B(x, r )))dr .

0

δ2 looks like a multi-scale packing radius parameter. Thus, no wonder that δ2  γ2 . This is in fact an easy observation. It also holds in greater generality [Bednorz ’11]: δφ  γφ , ∀φ continuous, non-increasing, and φ(0) = ∞. It thus sufficient to show a Dvoretzky theorem for δ2 .

M. Mendel (OUI)

UM skeletons

January 2012

31 / 33

Dvoretzky theorem for δ2 Proposition ∀(X , d ) m.s., ∃S ⊂ X such that

(S, d ) is O(1) approximate UM. δ2 (S) & δ2 (X ).

Proof. Let µ a prob’ measure on X s.t. δ2 (X ) = inf x∈X Apply Main Thm, with ε = 1/2.

R∞ 0

φ(µ(B(x, r )))dr .

Obtain S ⊂ X and prob’s measure ν on S such that:

(S, d ) is 18-approx UM, and ν(B(x, r )) ≤ µ(B(x, Cr ))1/2 . Z ∞ δ2 (S) ≥ inf φ(ν(B(x, r )))dr x∈S 0 Z ∞ 1 ≥ inf φ(µ(B(x, Cr ))1/2 )dr ≥ √ δ2 (X ). x∈S 0 2C M. Mendel (OUI)

UM skeletons

January 2012

32 / 33

Concluding remarks Theorem (Main theorem) ∀ε > 0, ∀(X , d ) compact metric, ∀µ prob’ measure on X : ∃S ⊂ X , ∃ν prob’ measure supported on S s.t. (S, d ) is 9/ε-approx’ UM. ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , Here Cε = 2

O(1/ε2 )

M. Mendel (OUI)

∀x ∈ X , ∀r > 0

depends only ε.

UM skeletons

January 2012

33 / 33

Concluding remarks Theorem (Main theorem) ∀ε > 0, ∀(X , d ) compact metric, ∀µ prob’ measure on X : ∃S ⊂ X , ∃ν prob’ measure supported on S s.t. (S, d ) is 9/ε-approx’ UM. ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , Here Cε = 2

O(1/ε2 )

∀x ∈ X , ∀r > 0

depends only ε.

Proof. arXiv:1106.0879 & arXiv:1112.3416

M. Mendel (OUI)

UM skeletons

January 2012

33 / 33

Concluding remarks Theorem (Main theorem) ∀ε > 0, ∀(X , d ) compact metric, ∀µ prob’ measure on X : ∃S ⊂ X , ∃ν prob’ measure supported on S s.t. (S, d ) is 9/ε-approx’ UM. ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , Here Cε = 2

O(1/ε2 )

∀x ∈ X , ∀r > 0

depends only ε.

Proof. arXiv:1106.0879 & arXiv:1112.3416 The algorithmic applications only used the large subset theorem — which corresponds to r = 0. More sophisticated CS applications? 2 We obtain Cε = 2O(1/ε ) . Can this bound be improved?

M. Mendel (OUI)

UM skeletons

January 2012

33 / 33

Concluding remarks Theorem (Main theorem) ∀ε > 0, ∀(X , d ) compact metric, ∀µ prob’ measure on X : ∃S ⊂ X , ∃ν prob’ measure supported on S s.t. (S, d ) is 9/ε-approx’ UM. ν(B(x, r )) ≤ µ(B(x, Cε r ))1−ε , Here Cε = 2

O(1/ε2 )

∀x ∈ X , ∀r > 0

depends only ε.

Proof. arXiv:1106.0879 & arXiv:1112.3416 The algorithmic applications only used the large subset theorem — which corresponds to r = 0. More sophisticated CS applications? 2 We obtain Cε = 2O(1/ε ) . Can this bound be improved?

Thank You

M. Mendel (OUI)

UM skeletons

January 2012

33 / 33

Ultrametric skeletons

support compact DS for fast queries of distances. 5 are amenable for DP optimization of clustering problems like k-median, k-minsum, Σlp clustering. 6.

3MB Sizes 1 Downloads 119 Views

Recommend Documents

EMBEDDING PROPER ULTRAMETRIC SPACES INTO ...
Mar 8, 2012 - above. Put Nk := #Pk. We consider each coordinate of an element of ℓNk p is indexed by. (i1,··· ,ik). We define a map fk : {xi1···ik }i1,··· ,ik → ℓNk.

Ultrametric Broken Replica Symmetry RaMOSt - Springer Link
Ultrametric Broken Replica Symmetry RaMOSt. Luca De Sanctis1. Received 15 June 2005; accepted 22 November 2005. Published Online: February 16, 2006. We propose an ultrametric breaking of replica symmetry for diluted spin glasses in the framework of R

PDF Download Dancing Skeletons: Life and Death in ...
... in West Africa ,ebook reader software Dancing Skeletons: Life and Death in .... and Death in West Africa ,epub creator Dancing Skeletons: Life and Death in ...

science animal skeletons q and a.pdf
Frogs are the best hoppers. Which word means the hard parts that give a body shape? a. Skull. b. Bones. c. legs. Page 1 of 1. science animal skeletons q and a.

Computing Stable Skeletons with Particle Filters
including visual tracking, speech recognition, mobile robot localization, robot map building ..... There are two important differences in comparison to the standard .... filter can deal with the condition that the path between two endpoints are not.

PDF Online Dancing Skeletons: Life and Death in West ...
PDF online, PDF new Dancing Skeletons: Life and Death in West Africa, Online .... (Not-for-sale instructor resource material available to college and university.