Using a Differential I/O Amplifier in Single-Ended Applications Design Note DN473 Glen Brisebois Introduction Recent advances in low voltage silicon germanium and BiCMOS processes have allowed the design and production of very high speed amplifiers. Because the processes are low voltage, most of the amplifier designs have incorporated differential inputs and outputs to regain and maximize total output signal swing. Since many low-voltage applications are single-ended, the questions arise, “How can I use a differential I/O amplifier in a single-ended application?” and “What are the implications of such use?” This Design Note addresses some of the practical implications and demonstrates specific single-ended applications using the 3GHz gain-bandwidth LTC®6406 differential I/O amplifier. Background A conventional op amp has two differential inputs and an output. The gain is nominally infinite, but control is maintained by virtue of feedback from the output to the negative “inverting” input. The output does not go to infinity, but rather the differential input is kept to zero (divided by infinity, as it were). The utility, variety and beauty of conventional op amp applications are well documented, yet still appear inexhaustible. Fully differential op amps have been less well explored. Figure 1 shows a differential op amp with four feedback resistors. In this case the differential gain is still nominally infinite, and the inputs kept together by feedback, but this is not adequate to dictate the output voltages. The reason is that the common mode output voltage can be anywhere and still result in a “zero” differential input voltage because the feedback is symmetric. Therefore, for any fully differential I/O amplifier, there is always another control voltage to dictate the output common mode voltage. This is the purpose of the VOCM pin, and explains why fully differential amplifiers are at least 5-pin devices (not including supply pins) rather than 4-pin devices. The differential gain equation is VOUT(DM) = VIN(DM) • R2/R1. The common mode output voltage is forced internally to the voltage applied at VOCM. One final observation is that there is no longer a single inverting input: both inputs are inverting and noninverting

12/09/473_conv

depending on which output is considered. For the purposes of circuit analysis, the inputs are labeled with “+” and “–” in the conventional manner and one output receives a dot, denoting it as the inverted output for the “+” input. Anybody familiar with conventional op amps knows that noninverting applications have inherently high input impedance at the noninverting input, approaching GΩ or even TΩ. But in the case of the fully differential op amp in Figure 1, there is feedback to both inputs, so there is no high impedance node. Fortunately this difficulty can be overcome. RI2

RF2

VOUT–

+ VIN

LTC6406



RI1

VOCM RF1

VOUT+

0.1µF DN4GB F01

Figure 1. Fully Differential I/O Amplifier Showing Two Outputs and an Additional VOCM Pin

Simple Single-Ended Connection of a Fully Differential Op amp Figure 2 shows the LTC6406 connected as a single-ended op amp. Only one of the outputs has been fed back and only one of the inputs receives feedback. The other input is now high impedance. The LTC6406 works fine in this circuit and still provides a differential output. However, a simple thought experiment reveals one of the downsides of this configuration. Imagine that all of the inputs and outputs are sitting at 1.2V, including VOCM. Now imagine that the VOCM pin is driven an additional 0.1V higher. The only output that can move is VOUT – because VOUT + must remain equal to L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

VIN, so in order to move the common mode output higher by 100mV the amplifier has to move the VOUT – output a total of 200mV higher. That’s a 200mV differential output shift due to a 100mV VOCM shift. This illustrates the fact that single-ended feedback around a fully differential amplifier introduces a noise gain of two from the VOCM pin to the “open” output. In order to avoid this noise, simply do not use that output, resulting in a fully single-ended application. Or, you can take the slight noise penalty and use both outputs.

0.2pF

20k

3V

1%

NXP BF862 OSRAM SFH213

VOCM

715

3V VOUT–

+ LTC6406

VOUT+

– VIN

VOUT–

+ LTC6406



VOCM

VOUT+

3V 0.1µF

10k 0.1µF DN4GB F03

0.1µF

DN4GB F02

Figure 2. Feedback Is Single-Ended Only. This Circuit Is Stable, with a Hi-Z Input Like the Conventional Op Amp. The Closed Loop Output (Vout+ in This Case) Is Low Noise. Output Is Best Taken Single-Ended from the Closed Loop Output, Providing a 3db Bandwidth Of 1.2GHz. The Open Loop Output (Vout–) Has a Noise Gain Of Two From Vocm, But Is Well Behaved to About 300MHz, Above Which It Has Significant Passband Ripple.

A Single-Ended Transimpedance Amplifier Figure 3 shows the LTC6406 connected as a single-ended transimpedance amplifier with 20kΩ of transimpedance gain. The BF862 JFET buffers the LTC6406 input, drastically reducing the effects of its bipolar input transistor current noise. The VGS of the JFET is now included as an offset, but this is typically 0.6V so the circuit still functions well on a 3V single supply and the offset can be dialed out with the 10k potentiometer. The time domain response is shown in Figure 4. Total output noise on 20MHz bandwidth measurements shows 0.8mVRMS on VOUT+ and 1.1mVRMS on VOUT–. Taken differentially, the transimpedance gain is 40kΩ.

Data Sheet Download

www.linear.com/LTC6406

Linear Technology Corporation

Figure 3. Transimpedance Amplifier. Ultralow Noise JFET Buffers the Current Noise of the Bipolar LTC6406 Input. Trim the Pot for 0V Differential Output under No-Light Conditions.

Figure 4. Time Domain Response of Circuit of Figure 3, Showing Both Outputs Each with 20kΩ of TIA Gain. Rise Time is 16ns, Indicating a 20MHz Bandwidth.

Conclusion New families of fully differential op amps like the LTC6406 offer unprecedented bandwidths. Fortunately, these op amps can also function well in single-ended and 100% feedback applications.

For applications help, call (408) 432-1900, Ext. 3755 dn473_conv LT/TP 1209 116K • PRINTED IN THE USA

1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900



FAX: (408) 434-0507 ● www.linear.com

 LINEAR TECHNOLOGY CORPORATION 2009

Using a Differential I/O Amplifier in Single-Ended ... - Linear Technology

differential I/O amplifier in a single-ended application?” .... that output, resulting in a fully single-ended application. Or, ... call (408) 432-1900, Ext. 3755. –. +.

140KB Sizes 16 Downloads 140 Views

Recommend Documents

Operational Amplifier Selection Guide for ... - Linear Technology
Performance – Design Note 3. George Erdi. 10/87/3_conv. L, LT, LTC ... application requires large source resistors, the LT1028's relatively high current noise will ...

DN566 - Quad IO-Link Master with Higher Current ... - Linear Technology
In addition to the data pin (C/Q), the IO-Link Type A ... When the active driver changes state, it will generate ... swap channels as higher current SIO drivers.

Using a Current Sharing Controller with Non ... - Linear Technology
diodes. In this way, the LTC4370 can actively balance .... 2m. 1%. GA. TE1. FETON1. FETON2. OUT2. COMP. 10. 9. 8. 7. 3. EN1. EN1. V ... call (408) 432-1900.

Controlling a Semiconductor Optical Amplifier Using a State-Space ...
the controller designed with the linear model is seen to work well even with 100% modulations ... semiconductor optical amplifiers (SOAs), state space methods.

42V High Power Density Buck Regulators in a ... - Linear Technology
Introduction. Power dissipation is a significant problem facing the designers of DC/DC converters in industrial and auto- motive applications, where high currents ...

Linear Differential Equations With Constant Coefficients_Exercise 5.4 ...
devsamajcollege.blogspot.in Sanjay Gupta, Dev Samaj College For Women, Ferozepur City. Page 3 of 20. Linear Differential Equations With Constant Coefficients_Exercise 5.4.pdf. Linear Differential Equations With Constant Coefficients_Exercise 5.4.pdf.

New Methodologies for Differential-Linear ...
analysis, differential-linear cryptanalysis treats a block cipher as a cascade of two ... resulting attack will have an erroneous data and time complexity, break a wrong ...... The required memory for the attack is dominated by the storage of.

Linear Differential Equations With Constant Coefficients_Exercise 5.5 ...
devsamajcollege.blogspot.in Sanjay Gupta, Dev Samaj College For Women, Ferozepur City. Page 3 of 17. Linear Differential Equations With Constant Coefficients_Exercise 5.5.pdf. Linear Differential Equations With Constant Coefficients_Exercise 5.5.pdf.

Using the LTC6900 Low Power SOT-23 Oscillator ... - Linear Technology
The LTC6900 master oscillator is controlled by the ratio of the voltage between V+ and the SET pin and the current,. IRES, entering the SET pin. As long as IRES ...

Powering Complex FPGA-Based Systems Using ... - Linear Technology
Application Note 119A. AN119A- ... The design regulates 1.5V output while delivering. 40A (up ... output capacitors and resistors, the design using these. DC/DC ...

LTC1560-1 - Linear Technology
Gain vs Frequency of the 1MHz and 500kHz. Figure 1. A Typical ... 6. 5. GND. VIN. GND. V–. VOUT. SHDN. V+. 0.5fC/fC. 5V. 3. 1k. 2. 4. VOUT. 7. LT®1360. 5V. – 5V. 8 ... DC offset of the 1/2 LT1364 plus its offset current times the 10k resistor ..

DN172 - Linear Technology
response is excellent, with less than 5μs recovery time from a ±400mA ... Data Sheet Download ... LTC1504 is the best solution where efficiency, especially.

DN518 - Linear Technology
possible to produce a low noise supply in this way, it requires careful ... typical switching regulator, and (3) the LTM8028 low ... call (408) 432-1900, Ext. 3747.

DN375 - Linear Technology
call (408) 432-1900. RF FREQUENCY (GHz) ... For ACPR/AltCPR, center the measurement band 5MHz/10MHz above the center of the highest carrier. To find ...

DN531 - Linear Technology
SiR664DP. M2. SiR664DP. L1. 5.6µH. WÜRTH 7443556560. M3. SiR422DP. M5. SiR422DP. D6. B360A. C19. 0.22µF. 25V. 0603. C20. 0.22µF. 25V. 0603. C21.

eterna1 - Linear Technology
Dec 16, 2015 - ... If testing encompasses measuring ETERNA1's output power or PSD, ..... go to: http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html.

ETERNA2 User's Guide - Linear Technology
Sep 30, 2016 - Radiotest commands use the parameter to define which channel or channels the radio ... Earlier versions of software should omit.

ETERNA2 User's Guide - Linear Technology
Sep 30, 2016 - SmartMesh Industrial and Eterna are trademarks of Dust Networks, Inc. The ..... Transmit: 128 bytes of data maximum + 5 bytes preamble/SFD ..... found to comply with the limits for a Class B digital device, pursuant to Part 15.