

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Using py-aspio

January 17, 2017

1 / 31

Motivation and General Approach

Outline

1

Motivation and General Approach

2

Input Specification

3

Output Specification

4

Python Interface

2 / 31

Motivation and General Approach

Motivation Answer Set Programming Answer Set Programming (ASP) is a declarative programming paradigm [Gelfond and Lifschitz, 1991]. Applications: workforce management [Ricca et al., 2012], generating holiday plans for tourists [Ielpa et al., 2009], for many others cf. [Erdem et al., 2016].

Limitations Typical end-user applications contain components which cannot be (easily) solved in ASP: graphical user interfaces presentation of results interfaces to data sources etc.

Realizing such components is in the domain of traditional object-oriented (OOP) languages. 3 / 31

Motivation and General Approach

Motivation Typical approach Use ASP programs as components of a larger application. The ASP program solves the core computational problem, while other components are implemented in an object-oriented language. To this end, object-oriented code 1 2 3

adds input as facts, evaluates the ASP program, and interprets the answer sets.

But: An implementation from scratch is similar for most applications ⇒ repetitive work.

4 / 31

Motivation and General Approach

Evaluating ASP Programs from Object-Oriented Code Overview We want to use ASP programs similarly to subprocedures: an ASP program P performs a computation over input parameters v1 , . . . , vn , and each answer set should correspond to a solution object. Approach: the ASP program is annotated with input/output specifications. Annotations are added as special comments of form %! to the ASP code. py-aspio is a Python library for evaluating (“calling”) such an annotated program from Python code: it takes an annotated ASP program and a list of input parameters (objects) as input, and returns a set of objects (corresponding the results of the ASP program).

5 / 31

Motivation and General Approach

3-Colorability I To give an overview over the usage of py-aspio, we show an example implementation of the 3-colorability problem: Given a graph as input assign to each node a color (red, green, or blue), such that any two adjacent nodes have different colors. The graph in the Python code is represented by sets of nodes and edges: Nodes are represented by the class Node, where the attribute label is a unique string identifiying the node, and edges are represented by the class Edge, where the attributes first and second are the nodes at both ends of the edge.

6 / 31

Motivation and General Approach

3-Colorability II coloring.dl (ASP code and input/output specification) %! INPUT (Set nodes , Set edges) { %! node (n . l a b e l) f o r n i n nodes ; %! edge (e . f i r s t . l a b e l , e . second . l a b e l) f o r e i n edges ; } %! OUTPUT { %! colored_nodes = s e t { %! query : c o l o r (X , C) ; %! c o n t e n t : ColoredNode (X , C) ; } ; } c o l o r (X , red) v c o l o r (X , green) v c o l o r (X , b l u e) :− node (X) . :− edge (X , Y) , c o l o r (X , C) , c o l o r (Y , C) .

This program can be called with two parameters of types Set and Set (i.e., any set-like collection containing instances of the classes Node and Edge, respectively). Its output is of type Set (by default, a frozenset containing instances of ColoredNode).

7 / 31

Motivation and General Approach

3-Colorability III The Python program first defines the data-holding classes and registers them with py-aspio.

coloring.py (executable Python program) from c o l l e c t i o n s import namedtuple import a s p i o # D e f i n e c l a s s e s and c r e a t e sample data Node = namedtuple (’ Node ’ , [’ l a b e l ’]) ColoredNode = namedtuple (’ ColoredNode ’ , [’ l a b e l ’ , ’ c o l o r ’]) Edge = namedtuple (’ Edge ’ , [’ f i r s t ’ , ’ second ’]) a , b , c = Node (’ a ’) , Node (’ b ’) , Node (’ c ’) nodes = { a , b , c } edges = { Edge (a , b) , Edge (a , c) , Edge (b , c) } # R e g i s t e r c l a s s names w i t h a s p i o a s p i o . r e g i s t e r _ d i c t (globals ()) # . . . (c o n t i n u e d on n e x t s l i d e)

8 / 31

Motivation and General Approach

3-Colorability IV Then the ASP program is loaded and evaluated in different ways.

coloring.py (cont’d) # Load ASP program and i n p u t / o u t p u t s p e c i f i c a t i o n s from f i l e prog = a s p i o . Program (f i l e n a m e = ’ c o l o r i n g . d l ’) # I t e r a t e over a l l answer s e t s f o r r e s u l t i n prog . s o l v e (nodes , edges) : p r i n t (r e s u l t . colored_nodes) # S h o r t c u t i f o n l y one v a r i a b l e i s needed (note p r e f i x " each_ ") f o r cns i n prog . s o l v e (nodes , edges) . each_colored_nodes : p r i n t (cns) # Compute a s i n g l e answer s e t r e s u l t = prog . solve_one (nodes , edges) i f r e s u l t i s not None : p r i n t (r e s u l t . colored_nodes) else : p r i n t (’ no answer s e t e x i s t s ’)

9 / 31

Motivation and General Approach

Further examples

The 3-Colorability example and others can be found in the “examples” directory of the py-aspio repository:

https://github.com/hexhex/py-aspio/tree/master/examples

10 / 31

Input Specification

Outline

1

Motivation and General Approach

2

Input Specification

3

Output Specification

4

Python Interface

11 / 31

Input Specification

Input Specification

Consists of two parts: The parameter list defines what input is expected from the Python program. The predicate specifications control how atoms are generated from the input data. In the example from before: %! %! %! %!

INPUT (Set nodes , Set edges) { node (n . l a b e l) f o r n i n nodes ; edge (e . f i r s t . l a b e l , e . second . l a b e l) f o r e i n edges ; }

12 / 31

Input Specification

Input parameter list A comma-separated list of parameters, each of the form type followed by name, e.g. int x defines a parameter with name x of type int . Available types:

int str SethTi SequencehTi DictionaryhK, Vi TuplehT1 , . . . , Tn i MyClass, . . .

integers character strings set containing elements of type T list containing elements of type T dictionary with keys of type K and values of type V n-tuple with components of types T1 , . . . , Tn user-defined classes

In py-aspio, i.e., the Python implementation of the specification language, the actual types are not checked at runtime but serve as documentation.

13 / 31

Input Specification

Predicate specifications First part defines the form of generated facts. Example: edge (e . f i r s t . l a b e l , e . second . l a b e l , e . someIntArray [3])

This will create facts of the form edge("node1", "node2", 27). Available components: ASP predicate Variables: input parameter or introduced by loop (next slide) Attribute access Subscription (currently only for integer subscripts) How are python objects mapped to ASP terms? int : Integer constant str : Quoted string constant (special characters are escaped transparently by py-aspio) Everything else is converted to str first 14 / 31

Input Specification

Iteration Second part of predicate specification allows iteration over collections. Example: p(...)

f o r x1 i n y1 . . .

f o r xk i n yk .

Loop variables xi must be new and refer to elements of collections yi (the yi s consist of variables plus attribute access and subscription). Evaluated from left to right (same as list comprehensions in Python), meaning a variable xi can be used in all yj to the right (yi+1 , . . . , yk), allowing for nested iteration. Value of the loop variables: If yi is a set, xi will loop over all elements of yi . If yi is a sequence, xi will loop over all (index, element) pairs of yi . If yi is a dictionary, xi will loop over all (key, value) pairs of yi . What do set, sequence, dictionary mean in Python? → Any classes that implement the abstract base classes collections.abc.Set, collections.abc.Sequence, collections.abc.Mapping, respectively! 15 / 31

Input Specification

Shortcuts Iterating over a sequence (e.g., a list instance) produces (index, element) pairs ⇒ index and element can be accessed with subscripts x[0] and x[1] Shortcut: use list of variables x1 , . . . , xn instead of single iteration variable x ⇒ write for (i ,v) in y instead of for x in y for a sequence y to access components directly Analogously for dictionaries and (key, value)-pairs. This shortcut can also be used for tuples.

Example INPUT (Sequence> r e a d i n g s) { t e mp e r at u r e (x [0] , x [1] [0]) f o r x i n r e a d i n g s ; h u m i d i t y (t , hum) f o r (t , (temp , hum)) i n r e a d i n g s ; }

The specification of temperature uses subscripts to access the components, while the specification of humidity assigns the values directly to different variables. Additionally, the underscore _ serves as don’t care variable to ignore unneeded values. 16 / 31

Output Specification

Outline

1

Motivation and General Approach

2

Input Specification

3

Output Specification

4

Python Interface

17 / 31

Output Specification

Output Specification Enables access to results of the ASP program: Each answer set is mapped to a single result object. The output specification defines one or more attributes for the result object by referring to the answer set. Syntactically, it is just a list of assignments of the form “name = object”.

Example %! %! %!

OUTPUT { l a b e l s = s e t { query : l a b e l (X) ; c o n t e n t : X ; } ; }

18 / 31

Output Specification

Expressions overview The objects on the right-hand side can be built from the following types of expressions: Integer constants, e.g. 0, 123, -5, . . . String constants, e.g. "hello", "one\ntwo", . . . Tuples: (e1 , e2 , . . . , en) with subexpressions e1 , . . . , en Instantiating user-defined classes: MyClass (e1 , e2 , . . . , en) Sets: set { query: q; content: e; } Shortcuts for sets: set { p/n } and set { p/n −> MyClass } Sequences/lists: sequence { query: q; index: i; content: e; } Dictionaries: dictionary { query: q; key: k; content: e; } Variables (after being introduced by a query): X, Y, Color, . . . References: &name

19 / 31

Output Specification

Collection Expressions I Collections expressions use a query q to access the answer set. There are three types: set { query: q; content: e; } sequence { query: q; index: i; content: e; } dictionary { query: q; key: k; content: e; } The query q is a list of (possibly non-ground) ASP literals that are to be matched against the answer set. Any variables introduced by (non-ground literals in) the query q can be used in the expressions e, i, k. Every match of the query yields an element of the collection, with any ASP variables introduced in q replaced by their matched values. The content e is an expression that defines the elements of the collection. In case of a sequence, the index i (must be a variable) determines the position of the element. The values of i over all matches must form a consecutive range of integers without gaps or duplicates. In case of a dictionary, the key k determines the key of the element. As e, the key can be any expression. Note that in Python, set elements and dictionary keys must be hashable. 20 / 31

Output Specification

Collection Expressions II Example Consider the following output specification: OUTPUT { l a b e l s = s e t { query : v e r t e x (X) ; c o n t e n t : X ; } ; red_nodes = s e t { query : c o l o r (X , red) ; c o n t e n t : X ; } ; }

It defines two attributes, labels and red_nodes, whose concrete values depend on the current answer set. Now consider the answer set

I = {vertex(a), vertex(b), vertex(c), edge(a, b), edge(a, c), color(a, blue), color(b, red), color(c, red)}. The query vertex(X) matches all atoms of the predicate vertex, thus labels will have the value { "a", "b", "c"}. The query color(X, red) has a constant as second argument, which means only atoms with this value are matched, here: color(b, red) and color(c, red). The value of red_nodes will be { "b", "c"}.

21 / 31

Output Specification

Collection Expressions III

Since the query refers to elements of the ASP code, the same naming conventions apply: words starting with an upper-case letter are variables, and words starting with a lower-case letter are constant symbols. Note that for consistency, all variable values are strings. If an integer value is required, use int (X) instead of X. The only exception is the index clause in sequence expressions, which is always interpreted as an integer. As in ordinary ASP, anonymous variables _ can be used in the query.

22 / 31

Output Specification

Collection Expressions IV Nested collections Collection expressions can be nested. The following extracts a dictionary that maps colors to the set of nodes with that color: %! %! %! %! %! %! %!

OUTPUT { labels_by_color = dictionary { query : c o l o r (_ , C) ; key : C; c o n t e n t : s e t { query : c o l o r (L , C) ; c o n t e n t : L ; } ; }; }

If this expression is evaluated under the answer set

{color(a, blue), color(b, red), color(c, red)}, the dictionary labels_by_color yields the mappings blue 7→ {a} and red 7→ {b, c}. Note that the variable C is introduced in the dictionary expression. For every match of its query color(_, C), the nested set expression is evaluated with C fixed to the matched value, thus generating a set of labels colored by the color C.

23 / 31

Output Specification

Shortcuts for Set Expressions set { p/n } stands for set { query: p(X1 , . . . , Xn); content: (X1 , . . . , Xn); } set { p/n −> MyClass } stands for set { query: p(X1 , . . . , Xn); content: MyClass(X1 , . . . , Xn); }

Example OUTPUT { labels = set { vertex /1 } ; colored_nodes = s e t { c o l o r / 2 −> ColoredNode } ; }

is equivalent to OUTPUT { l a b e l s = s e t { query : v e r t e x (X) ; c o n t e n t : X ; } ; colored_nodes = s e t { query : c o l o r (X , Y) ; c o n t e n t : ColoredNode (X , Y) ; } ; }

24 / 31

Python Interface

Outline

1

Motivation and General Approach

2

Input Specification

3

Output Specification

4

Python Interface

25 / 31

Python Interface

Loading the ASP Program ASP programs are represented by the class Program. Programs can be loaded from files or strings: import a s p i o prog1 = a s p i o . Program (f i l e n a m e = ’ a s p f i l e . d l ’) prog2 = a s p i o . Program (code= r ’ ’ ’ a :− n o t b . b :− n o t a . ’’’) prog3 = a s p i o . Program () # empty program

To merge ASP code from multiple sources: prog . a p p e n d _ f i l e (’ a n o t h e r f i l e . d l ’) prog . append_code (’ c :− b . ’)

The input and output specifications are extracted automatically. However, note that one program may contain at most one input specification and at most one output specification.

26 / 31

Python Interface

Evaluating the ASP Program Two methods for evaluating a program p: prog.solve(. . .): Returns an iterable allowing to iterate over all answer sets of the program. Note that due to the semantics of ASP, the concrete order of the returned objects has no meaning! prog.solve_one(. . .): Returns the first answer set found by the solver, or None if the program does not have any answer sets. The positional arguments of these methods are the parameters defined by the input specification. The answer sets are represented by instances of the class Result. These objects have attributes as defined by the output specification (see next slide). Additional keyword arguments: options: specify additional options to pass to the solver (more details later). solver: specify the ASP solver to use. Currently, only dlvhex is supported.

27 / 31

Python Interface

Working with the Output of an ASP Program Consider the annotations of the 3-Colorability example (with parts omitted): %! %!

INPUT (Set nodes , Set edges) { . . . } OUTPUT { colored_nodes = s e t { . . . } ; }

According to the input specification, the evaluation requires two arguments. Use the method solve to iterate over all answer sets. The collection returned by solve contains one object per answer set, with attributes as defined in the output specification: f o r r e s u l t i n prog . s o l v e (nodes , edges) : p r i n t (r e s u l t . colored_nodes)

A shortcut if only one attribute is needed (note the required prefix each_): f o r cns i n prog . s o l v e (nodes , edges) . each_colored_nodes : p r i n t (cns)

Use the method solve_one if only a single arbitrary answer set is needed, or if only the consistency of the program is of interest: r e s u l t = prog . solve_one (nodes , edges) i f r e s u l t i s not None : p r i n t (r e s u l t . colored_nodes) else : p r i n t (" no answer s e t e x i s t s ") 28 / 31

Python Interface

Solver Options Instance of class SolverOptions with the following attributes: max_answer_sets: Set to an integer n to compute at most n answer sets, or to None to compute all (default: None). max_int: Set maximum integer value (may be necessary for arithmetic). capture: A list of strings; the names of predicates that should be captured (in addition to the output specification). The captured data is available through the attribute answer_set of the class Result (cf. below example). custom: A list of strings; any custom options that are to be passed to the solver subprocess.

Example The following snippet show how to evaluate an ASP program with the max_int option set to 25, and accessing the raw data of predicate p: prog = a s p i o . Program (. . .) o p t s = a s p i o . S o l v e r O p t i o n s (max_int =25 , c a p t u r e = [’ p ’]) f o r r e s u l t i n prog . s o l v e (i n p u t 1 , i n p u t 2 , o p t i o n s = o p t s) : ps = r e s u l t . answer_set [’ p ’] # t y p e : I t e r a b l e [Tuple [s t r ,

...]] 29 / 31

Python Interface

User-defined Classes in Output User-defined classes that are to be used in an output specification, either must be fully qualified (e.g., package.module.MyClass), or have to be registered with py-aspio as described below. There are three methods to register classes for a program prog: Pass the constructor and its name to the method register: prog . r e g i s t e r (MyClass ,

’ MyClass ’)

If the name is missing, the constructor’s attribute __name__ is used: prog . r e g i s t e r (MyClass)

Or simply register all callable objects in the current global scope: prog . r e g i s t e r _ d i c t (globals ())

Alternatively, these methods may be called on the aspio module in order to register classes globally (i.e., for all ASP programs in the current application): import a s p i o a s p i o . r e g i s t e r (MyClass) 30 / 31

Python Interface

References I Erdem, E., Gelfond, M., and Leone, N. (2016). Applications of answer set programming. AI Magazine, 37(3):53–68. Gelfond, M. and Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive Databases. 9(3–4):365–386. Ielpa, S. M., Iiritano, S., Leone, N., and Ricca, F. (2009). An ASP-Based System for e-Tourism. In Erdem, E., Lin, F., and Schaub, T., editors, Logic Programming and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Proceedings, volume 5753 of Lecture Notes in Computer Science, pages 368–381. Springer. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., and Leone, N. (2012). Team-building with answer set programming in the Gioia-Tauro seaport. TPLP, 12(3):361–381.

31 / 31

[image: Using FeatureExtraction - GitHub]
Using FeatureExtraction - GitHub

[image: Using SqlRender - GitHub]
Using SqlRender - GitHub

[image: Species Identification using MALDIquant - GitHub]
Species Identification using MALDIquant - GitHub

[image: Introduction to phylogenetics using - GitHub]
Introduction to phylogenetics using - GitHub

[image: Instructions for using FALCON - GitHub]
Instructions for using FALCON - GitHub

[image: Single studies using the CaseControl package - GitHub]
Single studies using the CaseControl package - GitHub

[image: Using the USART in AVR-GCC - GitHub]
Using the USART in AVR-GCC - GitHub

[image: Image matting using comprehensive sample sets - GitHub]
Image matting using comprehensive sample sets - GitHub

[image: Creating covariates using cohort attributes - GitHub]
Creating covariates using cohort attributes - GitHub

[image: Single studies using the SelfControlledCaseSeries package - GitHub]
Single studies using the SelfControlledCaseSeries package - GitHub

[image: Using LoRa for iNav Telemetry - GitHub]
Using LoRa for iNav Telemetry - GitHub

[image: Single studies using the CaseCrossover package - GitHub]
Single studies using the CaseCrossover package - GitHub

[image: Data Visualization Using R & ggplot2 - GitHub Pages]
Data Visualization Using R & ggplot2 - GitHub Pages

[image: image compression using deep autoencoder - GitHub]
image compression using deep autoencoder - GitHub

[image: Improving IMAGE matting USING COMPREHENSIVE ... - GitHub]
Improving IMAGE matting USING COMPREHENSIVE ... - GitHub

[image: Single studies using the CohortMethod package - GitHub]
Single studies using the CohortMethod package - GitHub

[image: Designing Mobile Persuasion: Using Pervasive Applications ... - GitHub]
Designing Mobile Persuasion: Using Pervasive Applications ... - GitHub

[image: Using the Xtivia Services Framework (XSF) to Create REST ... - GitHub]
Using the Xtivia Services Framework (XSF) to Create REST ... - GitHub

[image: Monadic Development for the Web Using RxJS and React - GitHub]
Monadic Development for the Web Using RxJS and React - GitHub

Using py-aspio - GitHub

Jan 17, 2017 - Load ASP program and input/output specifications from file Programs can be loaded from files or strings: AI Magazine, 37(3):53â€“68.

 Download PDF

 133KB Sizes
 8 Downloads
 367 Views

 Report

Recommend Documents

[image: alt]

Using FeatureExtraction - GitHub

Oct 27, 2017 - Venous thrombosis. 3. 20-24. 2. Medical history: Neoplasms. 25-29. 4. Hematologic neoplasm. 1. 30-34. 6. Malignant lymphoma. 0. 35-39. 7. Malignant neoplasm of anorectum. 0. 40-44. 9. Malignant neoplastic disease. 6. 45-49. 11. Maligna

[image: alt]

Using SqlRender - GitHub

6. 3.5 Case sensitivity in string comparisons would have had no clue the two fields were strings, and would incorrectly leave the plus sign. Another clue that.

[image: alt]

Species Identification using MALDIquant - GitHub

Jun 8, 2015 - Contents. 1 Foreword. 3. 2 Other vignettes. 3. 3 Setup. 3. 4 Dataset. 4. 5 Analysis. 4 [1] "F10". We collect all spots with a sapply call (to loop over all spectra) and similar way as the top 10 features in the example above.

[image: alt]

Introduction to phylogenetics using - GitHub

Oct 6, 2016 - 2.2 Building trees Limitations: no model comparison (can't test for the 'best' tree, or the 'best' model of evolution); may be more efficient data reduction can be achieved using the bit-level coding of polymorphic sites

[image: alt]

Instructions for using FALCON - GitHub

Jul 11, 2014 - College of Life and Environmental Sciences, University of Exeter, ... used in FALCON is also available (see FALCON_Manuscript.pdf.). ... couraged to read the accompanying technical document to learn ... GitHub is an online repository

[image: alt]

Single studies using the CaseControl package - GitHub

Jun 29, 2016 - Loading data on the cases and potential controls from the database for which no matching control was found be removed from the analysis.

[image: alt]

Using the USART in AVR-GCC - GitHub

Jul 17, 2016 - 1.1 What is the USART? ... three wires for bi-directional communication (Rx, Tx and GND). 1.2 The #define USART_BAUDRATE 9600.

[image: alt]

Image matting using comprehensive sample sets - GitHub

Mar 25, 2014 - If Î±z = 1 or 0, we call pixel z definite foreground or definite background, In Proceedings of the 2013 IEEE Conference on Computer Vi-.

[image: alt]

Creating covariates using cohort attributes - GitHub

Mar 28, 2016 - 3.1 Creating the cohort attributes and attributes definitions covariate builders that create covariates on the fly and can be re-used across ...

[image: alt]

Single studies using the SelfControlledCaseSeries package - GitHub

Transforming the data into a format suitable for an SCCS study. Now we can tell SelfControlledCaseSeries to extract all necessary data for our analysis:.

[image: alt]

Using LoRa for iNav Telemetry - GitHub

Nov 4, 2017 - Power. 14dBm. Table 1. Specific Settings. Figure 1. Device Configuration. Note: The speeds were chosen as a result of experiments and advice from members of the iNav development community in order to minimise latency. Ground Station mwp

[image: alt]

Single studies using the CaseCrossover package - GitHub

Apr 21, 2017 - Loading data on the cases (and potential controls when performing a case-time-control analysis) from the database needed for matching. 2.

[image: alt]

Data Visualization Using R & ggplot2 - GitHub Pages

Feb 22, 2015 - 3. 1.4 .2 setosa. # Note the use of the . function to allow Species to be used Themes are a great way to define custom plots. ... Then just call your function to generate a plot. ... ggsave(file = "/path/to/figure/filename.pdf")

[image: alt]

image compression using deep autoencoder - GitHub

Deep Autoencoder neural network trains on a large set of images to figure out similarities 2.1.3 Representing and generalizing nonlinear structure in data .

[image: alt]

Improving IMAGE matting USING COMPREHENSIVE ... - GitHub

Mar 25, 2014 - ... full and partial pixel coverage (alpha-channel) ... Choose best pair among all possible pairs ... confidence have higher smoothing weights) ...

[image: alt]

Single studies using the CohortMethod package - GitHub

Jun 19, 2017 - We need to tell R how to connect to the server where the data are. work has been dedicated to provide the CohortMethod package.

[image: alt]

Designing Mobile Persuasion: Using Pervasive Applications ... - GitHub

Keywords: Mobile social media, design, persuasion, climate change, transportation ... Transportation, together with food and shelter, is one of the biggest carbon ...

[image: alt]

Using the Xtivia Services Framework (XSF) to Create REST ... - GitHub

As we know the current trend in web application development is toward Single Page Applications (SPAs), where the majority of application functionality is ...

[image: alt]

Monadic Development for the Web Using RxJS and React - GitHub

Monadic Development for the Web. Using RxJS and React ... webrx-react is a single page application web framework written in TypeScript that aims to reduce ...

×
Report Using py-aspio - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

