

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

Using the EEPROM memory in AVR-GCC Dean Camera July 17, 2016

Text

© Dean Camera, 2013-2016. All rights reserved.

This document may be freely distributed without payment to the author, provided that it is not sold, and the original author information is retained. Translations into other languages are authorized, as long as this license text is retained in all translated copies, and the translated versions are distributed under the same licensing restrictions. For more tutorials, project information, donation information and author contact information, please visit www.fourwalledcubicle.com. 1

Contents 1 Introduction

3

1.1

What is the EEPROM memory and why would I use it?

3

1.2

How is is accessed? .

3

2 The avr-libc EEPROM functions

4

2.1

Including the avr-libc EEPROM header .

4

2.2

The update vs. write functions .

4

3 Reading data from the EEPROM

6

4 Writing data to the EEPROM

7

5 EEPROM Block Access

8

6 Using the EEMEM attribute

10

7 Setting initial values

12

2

Chapter 1

Introduction 1.1

What is the EEPROM memory and why would I use it?

Most of the 8-bit AVRs in Atmel’s product line contain at least some internal EEPROM memory. EEPROM, short for Electronically Erasable Read-Only Memory, is a form of non-volatile memory with a reasonably long lifespan. Because it is non-volatile, it will retain its information during periods of no power and thus is a great place for storing data such as device parameters and system configuration at runtime so that it can persist between resets of the application processor. One important fact to note is that the AVR’s internal EEPROM memory has a limited lifespan of 100,000 writes per EEPROM page — reads are unlimited. Keep this in mind in your application; try to keep writes to a minimum, so that you only write the least amount of information required for your application each time you update the EEPROM.

1.2

How is is accessed?

The AVR’s internal EEPROM is accessed via special registers inside the AVR, which control the address to be written to (EEPROM uses byte addressing), the data to be written (or the data which has been read) as well as the flags to instruct the EEPROM controller to perform the requested read or write operation. The C language does not have any standards mandating how memory other than a single flat model (SRAM in AVRs) is accessed or addressed. Because of this, just like storing arbitrary data into flash memory via your program, every compiler’s standard library has a unique implementation based on what the author believed was the most logical system. This tutorial will focus specifically on the AVR-GCC compiler; other compilers may have alternative syntax and APIs.

3

Chapter 2

The avr-libc EEPROM functions 2.1

Including the avr-libc EEPROM header

The avr-libc library, included with WinAVR and (more recently) the Atmel AVR Toolchain, contains prebuilt library routines for EEPROM access and manipulation to simplify its use in user applications. Before we can make use of those routines, we need to include the EEPROM library header with the preprocessor directive #include . Once added to your application, you now have access to the EEPROM memory, via the routines now provided by the module of avr-libc. There are five main types of EEPROM access: byte, word, dword, float and block. Each type has three types of functions; a write, an update, and a read variant. The names of the routines exposed by our new headers are: uint8_t ee p r o m _ r e a d _ b y t e (const uint8_t * addr) void eep ro m _ w r i t e _ b y t e (uint8_t * addr , uint8_t value) void e ep r o m _ u p d a t e _ b y t e (uint8_t * addr , uint8_t value) uint16_t e e p r o m _ r e a d _w o r d (const uint16_t * addr) void eep ro m _ w r i t e _ w o r d (uint16_t * addr , uint16_t value) void e ep r o m _ u p d a t e _ w o r d (uint16_t * addr , uint16_t value) uint32_t e e p r o m _ r e a d _ d w o r d (const uint32_t * addr) void e ep r o m _ w r i t e _ d w o r d (uint32_t * addr , uint32_t value) void e e p r o m _ u p d a t e _ d w o r d (uint32_t * addr , uint32_t value) float e epr o m _ r e a d _ f l o a t (const float * addr) void e ep r o m _ w r i t e _ f l o a t (float * addr , float value) void e e p r o m _ u p d a t e _ f l o a t (float * addr , float value) void eep ro m _ r e a d _ b l o c k (void * pointer_ram , const void * pointer_eeprom , size_t n) void e ep r o m _ w r i t e _ b l o c k (const void * pointer_ram , void * pointer_eeprom , size_t n) void e e p r o m _ u p d a t e _ b l o c k (const void * pointer_ram , void * pointer_eeprom , size_t n)

In AVR-GCC, a word is two bytes long and a double word is twice that (4-bytes), while a block is an arbitrary number of bytes which you supply (think string buffers, or customer data types you create) and a float is also four bytes long (but can hold fractional values).

2.2

The update vs. write functions

Historically, there were only two types of EEPROM functions per data type; a write function, and a read function. In the case of the EEPROM write functions, these functions simply wrote out the requested data to the EEPROM without any checking performed; this resulted in a reduced EEPROM lifespan if the data to be written already matches the current contents of the EEPROM cell. To reduce the wear on the AVR’s limited lifespan EEPROM, the new update functions were added which only perform an EEPROM write if the data differs from the current cell contents. The old write functions are still kept around for compatibility with older applications, however 4

CHAPTER 2. THE AVR-LIBC EEPROM FUNCTIONS

5

the new update functions should be used instead of the old write functions in all new applications.

Chapter 3

Reading data from the EEPROM To start, lets try a simple example and try to read a single byte of EEPROM memory, let’s say at location 46. Our code might look like this: # include < avr / eeprom .h > void main (void) { uint8_t ByteOfData ; ByteOfData = e e p r o m _ r e a d _b y t e ((uint8_t *) 46) ; }

This will read out location 46 of the EEPROM and put it into our new variable named ByteOfData. How does it work? Firstly, we declare our byte variable, which I’m sure you’re familiar with: uint8_t ByteOfData ;

Now, we then call our eeprom_read_byte() routine, which expects a pointer to a byte in the EEPROM space. We’re working with a constant and known address value of 46, so we add in the typecast to transform that number 46 into a pointer for the eeprom_read_byte() function to make the compiler happy. EEPROM words (two bytes in size) can be written and read in much the same way, except they require a pointer to an int: # include < avr / eeprom .h > void main (void) { uint16_t WordOfData ; WordOfData = e e p r o m _ r e a d _w o r d ((uint16_t *) 46) ; }

And double words and floats can be read using the eeprom_read_dword() and eeprom_read_float() functions and a pointer to a uint32_t or float variable.

6

Chapter 4

Writing data to the EEPROM Alright, so now we know how to read bytes and words from the EEPROM, but how do we write data? The same principals as reading EEPROM data apply, except now we need to supply the data to write as a second argument to the EEPROM functions. As explained earlier, we will use the EEPROM update functions rather than the old write functions to preserve the EEPROM lifespan where possible. # include < avr / eeprom .h > void main (void) { uint8_t ByteOfData ; ByteOfData = 0 x12 ; e ep r om _ u p d a t e _ b y t e ((uint8_t *) 46 , ByteOfData) ; }

Unsuprisingly, the process for writing words of data to the EEPROM follows the same pattern: # include < avr / eeprom .h > void main (void) { uint16_t WordOfData ; WordOfData = 0 x1232 ; e ep r om _ u p d a t e _ w o r d ((uint16_t *) 46 , WordOfData) ; }

And double words and floats can be written using the functions and a uint32_t or float variable.

7

eeprom_update_dword()

and

eeprom_update_float()

Chapter 5

EEPROM Block Access Now we can read and write bytes and words to EEPROM, but what about larger datatypes, or strings? This is where the block commands come in. The block commands of the avr-libc header differ from the word and byte functions shown above. Unlike it’s smaller cousins, the block commands are both routines which return nothing, and thus operate on a variable you supply as a parameter. Let’s look at the function declaration for the block reading command. void eep ro m _ r e a d _ b l o c k (void * pointer_ram , const void * pointer_eeprom , size_t n)

Wow! It looks hard, but in practise it’s not. It may be using a concept you’re not familiar with however, void-type pointers. Normal pointers specify the size of the data type in their declaration (or typecast), for example uint8_t* is a pointer to an unsigned byte and int16_t* is a pointer to a signed int. But void is not a variable type we can create, so what does it mean? A void type pointer is useful when the exact type of the data being pointed to is not known by a function, or is unimportant. A void is mearly a pointer to a memory location, with the data stored at that location being important but the type of data stored at that location not being important. Why is a void pointer used? Using a void pointer means that the block read/write functions can deal with any datatype you like, since all the function does is copy data from one address space to another. The function doesn’t care what data it copies, only that it copies the correct number of bytes. Ok, that’s enough of a derail — back to our function. The block commands expect a void* pointer to a RAM location, a void* pointer to an EEPROM location and a value specifying the number of bytes to be written or read from the buffers. In our first example let’s try to read out 10 bytes of memory starting from EEPROM address 12 into a string. # include < avr / eeprom .h > void main (void) { uint8_t StringOfData [10]; ee pro m _ r e a d _ b l o c k ((void *) StringOfData , (const void *) 12 , 10) ; }

Again, looks hard doesn’t it! But it isn’t; let’s break down the arguments we’re sending to the eeprom_read_block() function. (void *) StringOfData

8

CHAPTER 5. EEPROM BLOCK ACCESS

9

The first argument is the RAM pointer. The eeprom_read_block() routine modifes our RAM buffer and so the pointer type it’s expecting is a void* pointer. Our buffer is of the type uint8_t, so we need to typecast its address to the necessary void type. (const void *) 12

Reading the EEPROM won’t change it, so the second parameter is a pointer of the type const void. We’re currently using a fixed constant as an address, so we need to typecast that constant to a pointer just like with the byte and word reading examples. 10

Obviously, this the number of bytes to be read. We’re using a constant but a variable could be supplied instead. The block update function is used in the same manner, except for the update routine the RAM pointer is of the type const void and the EEPROM is just a plain void pointer, as the data is sourced from the RAM location and written to the EEPROM location: # include < avr / eeprom .h > void main (void) { uint8_t StringOfData [10] = " TEST " ; e e p r o m _ u p d a t e _ b l o c k ((const void *) StringOfData , (void *) 12 , 10) ; }

Chapter 6

Using the EEMEM attribute You should now know how to read and write to the EEPROM using fixed addresses. But that’s not very practical! In a large application, maintaining all the fixed addresses is an absolute nightmare at best. But there’s a solution to push this work onto the compiler — the EEMEM attribute. Defined by the same uint8_t EEMEM No n Vo la ti l eC ha r ; uint16_t EEMEM NonVola tileInt ; uint8_t EEMEM N o n V o l a t i l e S t r i n g [10];

And the compiler will automatically allocate addresses for each of the EEPROM variables within the EEPROM address space, starting from location 0. Although the compiler allocates addresses for the EEMEM variables you declare, it cannot directly access them. This means that the following code will NOT work as intended: # include < avr / eeprom .h > uint8_t EEMEM No n Vo la ti l eC ha r ; uint16_t EEMEM NonVola tileInt ; uint8_t EEMEM N o n V o l a t i l e S t r i n g [10]; int main (void) { uint8_t SRAMchar ; SRAMchar = N on Vo l at il e Ch ar ; }

That code will instead assign the RAM variable “SRAMchar” to whatever is located in SRAM at the address of “NonVolatileChar”, and so the result will be incorrect. Like variables stored in program memory, we need to still use the eeprom read and write routines discussed above to access the seperate EEPROM memory space. So lets try to fix our broken code. We’re trying to read out a single byte of memory. Let’s try to use the eeprom_read_byte() routine. # include < avr / eeprom .h > uint8_t EEMEM No n Vo la ti l eC ha r ; uint16_t EEMEM NonVola tileInt ; uint8_t EEMEM N o n V o l a t i l e S t r i n g [10]; int main (void) {

10

CHAPTER 6. USING THE EEMEM ATTRIBUTE

11

uint8_t SRAMchar ; SRAMchar = e ep r o m _ r e a d _ b y t e (& N on Vo l at il eC h ar) ; }

It works! Why don’t we try to read out the other variables while we’re at it. Our second variable is an int, so we need the eeprom_read_word() routine: # include < avr / eeprom .h > uint8_t EEMEM No n Vo la ti l eC ha r ; uint16_t EEMEM NonVola tileInt ; uint8_t EEMEM N o n V o l a t i l e S t r i n g [10]; int main (void) { uint8_t SRAMchar ; uint16_t SRAMint ; SRAMchar = e ep r o m _ r e a d _ b y t e (& N on Vo l at il eC h ar) ; SRAMint = e e p r o m _ r e a d _ w o r d (& NonVolat ileInt) ; }

And our last one is a string, so we’ll have to use the block read command: # include < avr / eeprom .h > uint8_t EEMEM No n Vo la ti l eC ha r ; uint16_t EEMEM NonVola tileInt ; uint8_t EEMEM N o n V o l a t i l e S t r i n g [10]; int main (void) { uint8_t SRAMchar ; uint16_t SRAMint ; uint8_t SRAMstring [10]; SRAMchar = e ep r o m _ r e a d _ b y t e (& N on Vo l at il eC h ar) ; SRAMint = e e p r o m _ r e a d _ w o r d (& NonVolat ileInt) ; ee pro m _ r e a d _ b l o c k ((void *) SRAMstring , (const void *) NonVolatileString , 10) ; }

Chapter 7

Setting initial values Finally, I’ll discuss the issue of setting an initial value to your EEPROM variables. Upon compilation of your program with the default makefile, GCC will output two Intel-HEX format files. One will be your .HEX which contains your program data (and which is loaded into your AVR’s memory), and the other will be a .EEP file. The .EEP file contains the default EEPROM values, which you can load into your AVR via your programmer’s EEPROM programming functions. To set a default EEPROM value in GCC, simply assign a value to your

EEMEM

variable, like thus:

uint8_t EEMEM SomeVariable = 12;

You can then program in the resulting .EEP file into the target’s EEPROM using your chosen programming software. This is a seperate operation to programming in the application from the generated .HEX file – if you forget this, your AVR’s EEPROM won’t have the correct initial values! You should devise a way in your application to check for this possibility to ensure that no problems will arise if the initial values aren’t loaded correctly, via some sort of protection scheme (eg, loading in several values and checking against known start values).

12

[image: Using the USART in AVR-GCC - GitHub]
Using the USART in AVR-GCC - GitHub

[image: Overview of the EEPROM in LTC PSM Devices - Linear Technology]
Overview of the EEPROM in LTC PSM Devices - Linear Technology

[image: POSTER: Rust SGX SDK: Towards Memory Safety in Intel ... - GitHub]
POSTER: Rust SGX SDK: Towards Memory Safety in Intel ... - GitHub

[image: Track memory leaks in Python - Pycon Montreal 2014 - GitHub]
Track memory leaks in Python - Pycon Montreal 2014 - GitHub

[image: Using py-aspio - GitHub]
Using py-aspio - GitHub

[image: Using FeatureExtraction - GitHub]
Using FeatureExtraction - GitHub

[image: Using SqlRender - GitHub]
Using SqlRender - GitHub

[image: Single studies using the CaseControl package - GitHub]
Single studies using the CaseControl package - GitHub

[image: Using Remote Memory Paging for Handheld Devices in ...]
Using Remote Memory Paging for Handheld Devices in ...

[image: Single studies using the SelfControlledCaseSeries package - GitHub]
Single studies using the SelfControlledCaseSeries package - GitHub

[image: Single studies using the CaseCrossover package - GitHub]
Single studies using the CaseCrossover package - GitHub

[image: Single studies using the CohortMethod package - GitHub]
Single studies using the CohortMethod package - GitHub

[image: Species Identification using MALDIquant - GitHub]
Species Identification using MALDIquant - GitHub

[image: collective memory and memory politics in the central ...]
collective memory and memory politics in the central ...

[image: Introduction to phylogenetics using - GitHub]
Introduction to phylogenetics using - GitHub

[image: Instructions for using FALCON - GitHub]
Instructions for using FALCON - GitHub

[image: Memory-Efficient GroupBy-Aggregate using ...]
Memory-Efficient GroupBy-Aggregate using ...

[image: Dynamic NFC/RFID tag IC with 64-Kbit EEPROM, energy ... - GitHub]
Dynamic NFC/RFID tag IC with 64-Kbit EEPROM, energy ... - GitHub

[image: Grails In The Enterprise - GitHub]
Grails In The Enterprise - GitHub

[image: JDM Prog modificado EEPROM Microwire.pdf]
JDM Prog modificado EEPROM Microwire.pdf

[image: Image matting using comprehensive sample sets - GitHub]
Image matting using comprehensive sample sets - GitHub

[image: Creating covariates using cohort attributes - GitHub]
Creating covariates using cohort attributes - GitHub

Using the EEPROM memory in AVR-GCC - GitHub

Jul 17, 2016 - 3. 2 The avr-libc EEPROM functions. 4. 2.1 Including the avr-libc EEPROM header Now, we then call our eeprom_read_byte() routine, which expects a ... in size) can be written and read in much the same way, except they.

 Download PDF

 181KB Sizes
 71 Downloads
 247 Views

 Report

Recommend Documents

[image: alt]

Using the USART in AVR-GCC - GitHub

Jul 17, 2016 - 1.1 What is the USART? ... three wires for bi-directional communication (Rx, Tx and GND). 1.2 The #define USART_BAUDRATE 9600.

[image: alt]

Overview of the EEPROM in LTC PSM Devices - Linear Technology

L, LT, LTC, LTM, Linear Express, Linear Technology and the Linear logo are registered trademarks of ... may not be known until well into the development cycle.

[image: alt]

POSTER: Rust SGX SDK: Towards Memory Safety in Intel ... - GitHub

What's more, the Rust en- claves are able to run as fast as the ones written in C/C++. CCS CONCEPTS ... Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee 1.9/docs/Intel_SG

[image: alt]

Track memory leaks in Python - Pycon Montreal 2014 - GitHub

Track memory leaks in Python. Page 2. Python core developer since 2010 github.com/haypo/ bitbucket.org/haypo/. Working for eNovance. Victor Stinner. Page 3 ...

[image: alt]

Using py-aspio - GitHub

Jan 17, 2017 - Load ASP program and input/output specifications from file Programs can be loaded from files or strings: AI Magazine, 37(3):53â€“68.

[image: alt]

Using FeatureExtraction - GitHub

Oct 27, 2017 - Venous thrombosis. 3. 20-24. 2. Medical history: Neoplasms. 25-29. 4. Hematologic neoplasm. 1. 30-34. 6. Malignant lymphoma. 0. 35-39. 7. Malignant neoplasm of anorectum. 0. 40-44. 9. Malignant neoplastic disease. 6. 45-49. 11. Maligna

[image: alt]

Using SqlRender - GitHub

6. 3.5 Case sensitivity in string comparisons would have had no clue the two fields were strings, and would incorrectly leave the plus sign. Another clue that.

[image: alt]

Single studies using the CaseControl package - GitHub

Jun 29, 2016 - Loading data on the cases and potential controls from the database for which no matching control was found be removed from the analysis.

[image: alt]

Using Remote Memory Paging for Handheld Devices in ...

that finds out whether there is any remote paging service available. If the device ... stored in a hard disk for desktop machines) are sent to the remote server where they are Program. www.microsoft.com/msj/0598/memory.htm (1998). 10.

[image: alt]

Single studies using the SelfControlledCaseSeries package - GitHub

Transforming the data into a format suitable for an SCCS study. Now we can tell SelfControlledCaseSeries to extract all necessary data for our analysis:.

[image: alt]

Single studies using the CaseCrossover package - GitHub

Apr 21, 2017 - Loading data on the cases (and potential controls when performing a case-time-control analysis) from the database needed for matching. 2.

[image: alt]

Single studies using the CohortMethod package - GitHub

Jun 19, 2017 - We need to tell R how to connect to the server where the data are. work has been dedicated to provide the CohortMethod package.

[image: alt]

Species Identification using MALDIquant - GitHub

Jun 8, 2015 - Contents. 1 Foreword. 3. 2 Other vignettes. 3. 3 Setup. 3. 4 Dataset. 4. 5 Analysis. 4 [1] "F10". We collect all spots with a sapply call (to loop over all spectra) and similar way as the top 10 features in the example above.

[image: alt]

collective memory and memory politics in the central ...

2. The initiation of trouble or aggression by an alien force, or agent, which leads to: 3. A time of crisis and great suffering, which is: 4. Overcome by triumph over the alien force, by the Russian people acting heroically and alone. My study11 has

[image: alt]

Introduction to phylogenetics using - GitHub

Oct 6, 2016 - 2.2 Building trees Limitations: no model comparison (can't test for the 'best' tree, or the 'best' model of evolution); may be more efficient data reduction can be achieved using the bit-level coding of polymorphic sites

[image: alt]

Instructions for using FALCON - GitHub

Jul 11, 2014 - College of Life and Environmental Sciences, University of Exeter, ... used in FALCON is also available (see FALCON_Manuscript.pdf.). ... couraged to read the accompanying technical document to learn ... GitHub is an online repository

[image: alt]

Memory-Efficient GroupBy-Aggregate using ...

Of course, this requires a lazy aggregator to be finalized, where all scheduled-but-not-executed aggregations are performed, before the aggregated values can be accessed. Lazy aggregation works well in scenarios where for collision resolution;

[image: alt]

Dynamic NFC/RFID tag IC with 64-Kbit EEPROM, energy ... - GitHub

Jun 12, 2013 - To tag: 10% or 100% ASK modulation using 1/4 (26. Kbit/s) or ... Halogen-free). SO8 (MN) Energy harvesting: working domain range 11 .

[image: alt]

Grails In The Enterprise - GitHub

Developer Program portals for all kinds of companies, ... Employer had very antiquated Struts/OJB application. âž¢ Blog: http://rvanderwerf.blogspot.com.

[image: alt]

JDM Prog modificado EEPROM Microwire.pdf

Whoops! There was a problem loading more pages. Retrying... JDM Prog modificado EEPROM Microwire.pdf. JDM Prog modificado EEPROM Microwire.pdf.

[image: alt]

Image matting using comprehensive sample sets - GitHub

Mar 25, 2014 - If Î±z = 1 or 0, we call pixel z definite foreground or definite background, In Proceedings of the 2013 IEEE Conference on Computer Vi-.

[image: alt]

Creating covariates using cohort attributes - GitHub

Mar 28, 2016 - 3.1 Creating the cohort attributes and attributes definitions covariate builders that create covariates on the fly and can be re-used across ...

×
Report Using the EEPROM memory in AVR-GCC - GitHub

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

