

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

IEEE ICC 2014 - Communication and Information Systems Security Symposium

Virtual Machine Allocation Policies against Co-resident Attacks in Cloud Computing Yi Han 1

Jeffrey Chan 1

Tansu Alpcan 2

Christopher Leckie 1

1

Department of Computing and Information Systems Department of Electrical and Electronic Engineering University of Melbourne Melbourne, Australia e-mail: , {jeffrey.chan, tansu.alpcan, caleckie}@unimelb.edu.au 2

Abstract—While the services-based model of cloud computing makes more and more IT resources available to a wider range of customers, the massive amount of data in cloud platforms is becoming a target for malicious users. Previous studies show that attackers can co-locate their virtual machines (VMs) with target VMs on the same server, and obtain sensitive information from the victims using side channels. This paper investigates VM allocation policies and practical countermeasures against this novel kind of co-resident attack by developing a set of security metrics and a quantitative model. A security analysis of three VM allocation policies commonly used in existing cloud computing platforms reveals that the server’s configuration, oversubscription and background traffic have a large impact on the ability to prevent attackers from co-locating with the targets. If the servers are properly configured, and oversubscription is enabled, the best policy is to allocate new VMs to the server with the most VMs. Based on these results, a new strategy is introduced that effectively decreases the probability of attackers achieving co-residence. The proposed solution only requires minor changes to current allocation policies, and hence can be easily integrated into existing cloud platforms to mitigate the threat of co-resident attacks. Keywords-cloud computing security, co-resident attack, virtual machine allocation policy

I.

INTRODUCTION

The emergence of cloud computing has fundamentally changed the deployment and usage of information technologies. More and more IT resources, like software applications, operating systems, and even network infrastructure, are now delivered as services and made accessible to a wide range of customers. However, while regular users benefit from the advantages brought by cloud computing, malicious users are also targeting the growing amount of data in cloud platforms, which creates a major potential security risk. This paper focuses on a novel type of threat: the coresident attack [1] (also known as a co-residence attack, or co-location attack). In cloud computing environments, in order to maximise the utilisation rate of hardware platforms, it is common practice that the virtual machines (VMs) of different users run on the same physical server (i.e., these VMs are co-resident), and are logically isolated from each other. However, malicious users can circumvent the logical isolation, and obtain sensitive information from co-resident VMs [1]. If cloud providers cannot ensure data confidential-

978-1-4799-2003-7/14/$31.00 ©2014 IEEE

786

ity and hence lose the basic trust from users, the future of cloud computing will be jeopardised. Therefore, it is crucial to find effective and practical countermeasures against this kind of threat. Although, in principle, programs running on co-resident VMs should not be able to influence each other, there are a variety of ways this can occur in practice. For example, the cache utilisation rate has a major influence on the execution time of cache read operations. Therefore, the attacker is able to estimate the victim’s cache usage by performing extensive cache read operations and comparing the execution time on a co-resident VM [1]. With similar approaches, attackers can also infer other private statistics, such as the traffic rate of a website. In addition, co-resident VMs share the instruction cache and other hardware resources. This can also be exploited by malicious users to extract private information, such as cryptographic keys [2], although it requires overcoming several major challenges. Furthermore, a number of papers have discussed how to build side channels between co-resident VMs to transfer sensitive information, which is prohibited by security policies [3-8]. One way to encounter this kind of threat is to fundamentally eliminate the side channels between VMs, which is the approach taken by most previous work [9-14]. However, the proposed methods require substantial changes to be made to existing commercial platforms, and hence are impractical and not suitable for immediate deployment. Our earlier work [15] takes a different approach and investigates how to minimise the possibility of achieving coresidence for the attacker. In the types of co-resident attacks we consider, the attacker has a clear set of targets. Before the attacker is able to extract any useful information, they need to first co-locate their VMs with the targets. If we can find a practical way to decrease the possibility of achieving co-location, then the threat of this kind of attack can be mitigated. Specifically, we focus on the VM allocation policy, since this is one important factor the cloud provider can control that will influence the possibility of co-location. However, all the analyses in the previous work were only based on simulation experiments. In this paper, we introduce theoretical models to more accurately quantify and explain the differences of the VM allocation policies in preventing co-resident attacks. Our contributions include: (1) we define three security metrics for assessing attacks,

IEEE ICC 2014 - Communication and Information Systems Security Symposium

and quantitatively evaluate these metrics under different allocation policies; (2) we conduct extensive experiments on the widely used platform CloudSim [16, 17] to verify that our theoretical models closely match our simulation results; (3) we find that the server’s configuration, oversubscription and background traffic have a large impact on the ability to prevent the attacker from co-locating with the targets. If the servers are properly configured, and oversubscription is enabled, the best policy is to allocate new VMs to the server with the most VMs; and (4) we propose a new VM allocation strategy that considerably increases the difficulty for attackers to achieve co-residence. The rest of the paper is organized as follows. In Section II, we give our problem statement and methodology. In Section III, we define several security metrics that measure the co-resident attack. In Section IV, we present our simulation experiments and model verification. In Section V, we propose our new VM allocation policy, while Section VI concludes the paper and gives directions for future work. II.

PROBLEM STATEMENT AND METHODOLOGY

In this paper, we compare the performance of different VM allocation policies under the co-resident attack, and find a practical method that can effectively mitigate its threat. Our earlier result [15] shows that a deterministic policy like Round Robin is the least secure, mainly because the servers are selected with a fixed order. Hence, in this paper we only consider three basic stochastic policies: (1)/(2) Least VM/Most VM policy. For every new VM request, the policy selects one server randomly from those that host the least/most number of VMs, and have enough resources left. (3) Random policy. For every new VM request, the policy randomly selects one server from those with enough resources. These three policies form the basis of most existing VM allocation policies, and are used in popular open source cloud platforms, such as OpenStack [18], Eucalyptus [19], OpenNebula [20], and CloudStack [21]. In order to facilitate a quantitative analysis, we introduce the following definitions as listed in Table I. Two points should be noted. (1) We modify the definition of attack efficiency. In the previous paper [15], efficiency is defined as “the number of malicious VMs that are successfully co-located with at least one of the T targets, divided by the total number of VMs launched during this attack”. Under this definition, we cannot differentiate the situation where two attack VMs co-locate with two targets, from the situation where two attack VMs co-locate with the same target. However, from the attacker’s point of view, the first case is clearly preferable. Consequently, we change the definition of efficiency to the current version. (2) We add one more metric to measure the attack: VMmin, such that VMmin−1 is the expected number of VMs that the attacker has to start before they can co-locate with one target. VMmin estimates the amount of effort that an attacker has to expend to achieve co-residence. The following example illustrates the definitions of attack efficiency and coverage. In Fig. 1, four VMs of legal

787

user L are running on four different servers. The attacker A starts eight VMs, four of which co-locate with three VMs of L. In this example, the efficiency is 3/8 (instead of 4/8), and the coverage is 3/4. Server 1

Server 2

VM_L1

VM_L2

VM_A1

VM_A2

Server 3

Server 4

VM_L3

VM_L4 VM_A3

VM_A4 Server 5 VM_A5

Server 6 VM_A6

Server 7

Server 8

VM_A7

VM_A8

Figure 1. Example explaining attack efficiency and coverage

Given these definitions, the attack scenario is as follows: in a system of N servers, the attacker A’s target are the VMs started by the legal user L, i.e., Target(A) = ™tVM(L,t). During one attack started at time t, A launches VM(A,t) VMs. The success of an attack is measured in terms of Efficiency(VM(A,t)) and Coverage(VM(A,t)), which are formally defined in Table I. TABLE I.

DEFINITIONS USED IN THIS PAPER

Name

Definition

N

The total number of servers in the system

A

The attacker

L

A legal user. The target of A is the set of VMs started by L

VM(L,t)

The set of VMs started by L at time t

VM(A,t)

The set of VMs started by A during one attack at time t

Target(A) SuccTarget(A,t) SuccVM(A,t) Servers({a set of VMs}) Efficiency(VM(A,t)) Coverage(VM(A,t)) VMmin

The target set of VMs that A intends to co-locate with, Target(A) = ™tVM(L,t), |Target(A)| = T A subset of Target(A) that co-locates with at least one VM from VM(A,t) A subset of VM(A,t) that co-locates with at least one of the T targets Servers that host the set of VMs The number of servers that host malicious VMs that are co-located with at least one of the T targets, divided by the total number of VMs launched during this attack, i.e., Efficiency(VM(A,t)) = |Servers(SuccVM(A,t))| / |VM(A,t)| The number of target VMs co-located with malicious VMs started in this attack, divided by the number of targets T, i.e., Coverage(VM(A,t)) = |SuccTarget(A,t)| / T The minimum number of VMs that the attacker needs to start so that Efficiency(VM(A,t)) or Coverage(VM(A,t)) is larger than zero

The attacker’s aim is to maximise either the efficiency or the coverage rate. One approach to realising it is to spread the VMs, i.e., to occupy as many servers as possible with the fewest number of VMs. From the attacker’s perspective, this is similar to the set cover problem: given a universe U of N elements, U = {u1, u2, …, uN}, and a set of j sets, S = {Si | Si ⊆ U, ڂSi = U, i = 1, 2, …, j}, the problem is to find the smallest subset of S, I, the union of which equals U. In our situation, all the servers in the system can be considered as the universe U, while Si is the set of servers that host the malicious VMs started during one attack, i.e., Si =

IEEE ICC 2014 - Communication and Information Systems Security Symposium

Servers(VM(A,t)). However, one major difference from the original set cover problem is that instead of identifying the smallest subset I of the given set S, the attacker aims to find an optimal way to generate the set S, so that S is as close to I as possible. It is obvious that the best scenario is S = {Si | Si ⊆ U, ڂSi = U, ŀSi = ĭ, i = 1, 2, …, j}, as in this case S = I. In other words, for the attacker A it is best that newly started VMs will be assigned to distinct servers that have never hosted A’s VMs before. In the next section, we analyse the difficulty of achieving this, and model VMmin, Efficiency(VM(A,t)), and Coverage(VM(A,t)) under different VM allocation policies. III.

MODELLING THE SECURITY METRICS

In this section, we first analyse how the attacker is able to spread their VMs across a wider range of servers in order to maximise the efficiency and coverage rate. Then we describe our analytical models for VMmin, Efficiency(VM(A,t)), Coverage(VM(A,t)). A. How to spread VMs under different allocation policies As we analysed earlier, in order to maximise the efficiency and coverage rates, attackers should occupy as many servers as possible with the minimum number of VMs. Under the Least VM policy, one server is very unlikely to be chosen twice within a short period of time. Hence, the attacker should start as many VMs as possible (the attacker may be restricted by costs and other factors) at the same time, because all these VMs are likely to be allocated to different servers. Under the Most VM policy, the situation is more complicated. For every new VM request submitted at time t, the server selection occurs in the following order: (1) servers from which at least one VM departs at time t−1 and have enough remaining resources; (2) other servers that are already being used and have sufficient resources left; (3) new servers. Let N1, N2, N3 represent the number of extra VMs these three types of servers can hold. Then if VM(A,t) > N1 + N2, the first N1 VMs will be likely to be allocated to different servers, while there is a certain chance that a subset of the next N2 VMs will be on the same server(s), and the final (VM(A,t) − N1 + N2) VMs will be allocated together. Therefore, under the Most VM policy, if the attacker intends to start a large number of VMs, instead of launching them at once, they should start M (M < VM(A,t)) at a time, and repeat this multiple times. Under the Random policy, the server selection process does not follow any specific pattern. Therefore, the way that the attacker starts their VMs has little impact on the number of different servers to which these VMs are assigned. B. Modelling the minimum number of attack VMs In this subsection, we aim to answer the following question: suppose that the attacker starts their VMs in the manner described above, then how many VMs do they have to start before they can achieve co-residence? This provides an indication of the theoretical difficulty of achieving coresidence under different policies.

788

Let pi, 1 ” i ” VMmin, be the probability that the ith VM co-locates with at least one of the T targets. Then the probability that VMmin = n follows a binominal distribution, and is equal to the probability that the first n−1 VMs do not colocate with the targets, and the last VM does: n −1

P (VM min = n) = pn ⋅ ∏ (1 − pi)

(1)

i =1

Let Ni´ be the number of servers to which the ith VM can be assigned, and T´ be the number of servers that host the target T VMs, then pi = T´ » Ni´.

Least VM allocation policy As stated in our previous analysis, all the n VMs will be allocated to different servers one after another, and the ith VM can only be assigned to one of the remaining N − (i−1) servers, i.e., Ni´ = N − (i−1). Hence:

pi =

P (VM min = n) =

T′ N − (i − 1)

(2)

n−2 T′ T′ · § ⋅ ∏ ¨1 − ¸ N − n + 1 i =0 © N − i ¹

(3)

Most VM allocation policy Since M is sufficiently small, all the M VMs are assigned to different servers. In other words, within a single batch, the situation is similar to that under the Least VM policy. However, when the later batches of M VMs are started, there is still a chance that they will be allocated to formerly chosen servers, i.e., Ni´ decreases as i increases within a batch, but resets to N for every new batch, Ni´ = N − (i−1) mod M. Hence, in this case:

pi =

P (VM min = n) =

T′ N − (i − 1) mod M

(4)

n−2 T′ T′ § · ⋅ ∏ ¨1 − ¸ (5) N − (n − 1) mod M i = 0 © N − i mod M ¹

Random allocation policy Under the Random policy, the VM allocation is uniformly random, and hence every new VM has the same probability of co-locating with one of the T targets:

pi =

T′ N

§ T′· P (VM min = n) = ¨1 − ¸ © N¹

(6) n −1

⋅

T′ N

(7)

IEEE ICC 2014 - Communication and Information Systems Security Symposium

C. Modelling the efficiency and coverage rates In this subsection, we further model the attack efficiency and coverage rates under different allocation policies. Let qi, 1 ” i ” VM(A,t) be the probability that the ith VM is assigned to a new server that hosts at least one of the T targets. Then the efficiency of starting VM(A,t) VMs is:

EXPERIMENTAL VERIFICATION

IV.

In this section, we present a comparison between the results predicted by our models, and the results calculated from simulation experiments, for VMmin, Efficiency(VM(A,t)), and Coverage(VM(A,t)).

A. Simulation environment In order to verify the above models of VMmin, Efficienqi ¦ (8) cy(VM(A,t)), and Coverage(VM(A,t)), we conducted our Efficiency (VM (A, t)) = i =1 VM (A, t) simulation experiments on the widely used platform CloudSim [16, 17] with the following settings. Similarly, Let ri, 1 ” i ” VM(A,t) be the probability that Physical servers and virtual machines the ith VM co-locates with a new target. Then the coverage 150 servers and more than 3500 VMs are used in the after starting VM(A,t) VMs is: simulations. Note that we have two sets of configurations VM (A,t) for the servers, and we repeat the experiments on each of ri ¦ i =1 (9) these configurations separately. The difference between Coverage (VM (A, t)) = T these two configurations is the potential bottleneck resource: CPU or RAM capacity. We note that when the attacker starts the ith VM, ™j

•

150

Under the Least VM policy,

T ′ − ¦ j =i q j

150

i −1

qi =

N − (i − 1)

T − ¦ j =i r j

(10)

i −1

ri = •

N − (i − 1)

Under the Most VM policy,

T ′ − ¦ j =i q j i −1

qi =

N − (i − 1) mod M

T − ¦ j =i r j i −1

ri = •

N − (i − 1) mod M

Under the Random policy,

T ′ − ¦ j =i q j i −1

qi =

N T − ¦ j =i r j i −1

ri =

N

2600

16

24576

Servers 2600

12

49152

random

b

2500

1

870

random

b

2000

1

1740

random

b

1000

1

1740

random

b

500

1

613

VMs

a. In CloudSim the CPU speed is measured in MIPS instead of MHz. b. Each VM request randomly decides the type of VM it requires.

(11)

Background workload In our earlier study [22], we measured the number of VMs started and stopped within a fixed time interval (e.g., one or two minutes) in the Amazon EC2 [23] and Windows Azure [24] cloud platforms. Our results show that these two time series follow a power law distribution, and exhibit self(12) similarity. We implement this finding using the program developed in [25] to generate the background workload. Experimental settings In each experiment, the number of VMs started reaches a relatively steady value around the 4800th second. At the th (13) 18000 second, a legal user L starts 20 VMs, and a certain time later (we call this time difference the lag) an attacker A starts VM(A,t) VMs at the tth (t = 18000 + lag) second. VM(A,t) = 1, 5, 10, 15, 20, …, 100, and lag = 1, 5, 10, 20, 30, …, 100. For every VM allocation policy/VM(A,t)/lag combination, we carry out the above experiment 50 times. (14) B. Results on minimum number of attack VMs All the target VMs are started at the same time in our experiments, which means: (1) Under the Least VM policy, these VMs are allocated to different servers because a server will not be selected (15) twice within a short time, i.e., Tƍ = T.

789

IEEE ICC 2014 - Communication and Information Systems Security Symposium

(2) Under the Most VM policy, a subset of the VMs may reside on the same servers. In our simulation experiments, the 20 target VMs are allocated to 16, 4 servers on average under the two sets of server’s configurations, i.e., Tƍ = 0.8·T, and Tƍ = 0.2·T; (3) Under the Random policy, similar to the situation in (2), a number of the target VMs will co-locate with each other. Specifically, Tƍ=™0 ”i”T−1 (1−i » N)=T−T·(T−1) » (2·N). Furthermore, for the Least VM policy, we find that the model only fits the simulation results well when the lag is larger than 10 minutes, and when the lag is small, the estimated values are much higher (this part of the results are excluded). The reason is that under the Least VM policy, the server chosen to host the target VM is unlikely to be selected again within a short period of time. For the other two policies, the model fits the simulation results for all lags.

under the first configuration (where each server has 16 CPU cores, and 24 Gigabytes of RAM), all three policies perform similarly. These two points are due to the oversubscription and background traffic, as we explain below. Effect of the oversubscription Oversubscription is a common practice in cloud computing, which means providers allocate more resources than what they have, assuming that on average the usage does not exceed the actual capacity. In our simulation experiment, the oversubscription of CPU cores is enabled. As a result, under the Most VM policy, even if the attacker starts only a small number of VMs at a time (M is set to 5), still it is possible that a subset of these VMs will be on the same server, i.e., Equations (4), (5), (12) and (13) do not hold. This explains the first point mentioned above, and is also the reason why the Most VM policy performs better than the other policies under the second configuration. However, under the first configuration, although the scheduler tries to allocation more VMs to one server, there is not enough RAM left. In other words, the oversubscription does not take effect. Therefore, the three policies perform almost the same in this situation, even though they allocate VMs using completely different approaches.

C. Efficiency and coverage results The situation is the same as that in the previous subsection, (1) for the Least VM policy, the model only fits the results when lag • 10 minutes, and Tƍ = T; (2) for the Most VM policy, Tƍ is 0.8·T and 0.2·T under the two sets of configurations; and (3) for the Random policy, Tƍ = T−T·(T−1) » (2·N). We can see from Fig. 2 that as VM(A,t) increases, the efficiency stays approximately the same under the Least VM policy, while under the other two policies it decreases gradually. This is consistent with the predictions of our models. As for the coverage rate, it increases faster with VM(A,t) under the Least VM policy than under the other two policies, which is also the same as our models predict. However, the following two points should be noted: (1) for the Most VM policy, under the second configuration (where each server has 12 CPU cores, and 48 Gigabytes of RAM), the difference between the estimated value and the simulation result is larger than in the other cases -- especially for the coverage rate; (2) under the second configuration, the Most VM policy performs better than the other two policies in terms of the defined security metrics. In contrast, 80 60 40 20 0 0

20

40

VM(A,t)

60

80

100

100

80

80

60 40

0 0

100

Estimated value by the model Simulation result PSSF + Most VM policy

20

20

40

VM(A,t)

60

80

P(VMmin ≤ VM(A,t))

Estimated value by the model Simulation result PSSF + Least VM policy

P(VMmin ≤ VM(A,t))

P(VMmin ≤ VM(A,t))

100

Effect of the background traffic Another reason why the three policies perform similarly under the first configuration is the impact of the background traffic. Consider the Most VM policy. When the system initiates, VMs will be allocated to fill up one server after another, which is quite different from the situation under the other two policies. However, after a sufficiently long time, at any moment there will be a number of servers not fully utilised, and newly started VMs will be assigned to these servers first. We have examined the sequence in which the servers are selected during this time period, and it is very similar to that under the other two policies – all of them are nearly random.

60 40

0 0

100

Estimated value by the model Simulation result PSSF + Random policy

20

20

40

VM(A,t)

60

80

100

100

100

80

80

80

60 40

Estimated value by the model Simulation result PSSF + Least VM policy

20 0 0

20

40

VM(A,t)

60

80

100

60 40 Estimated value by the model Simulation result PSSF + Most VM policy

20 0 0

20

40

VM(A,t)

60

80

100

P(VMmin ≤ VM(A,t))

100 P(VMmin ≤ VM(A,t))

P(VMmin ≤ VM(A,t))

(a.1) Least VM policy (lag • 10 minutes) (a.2) Most VM policy (a.3) Random policy (a) Server configuration 1: each server has 16 CPU cores, and 24 Gigabytes of RAM

60 40 Estimated value by the model Simulation result PSSF + Random policy

20 0 0

20

(b.1) Least VM policy (lag • 10 minutes) (b.2) Most VM policy (b) Server configuration 2: each server has 12 CPU cores, and 48 Gigabytes of RAM

40

VM(A,t)

60

80

100

(b.3) Random policy

Figure 2. Compare VMmin between the estimations, the simulation results, and the values under the new policy, in the two sets of configurations

790

IEEE ICC 2014 - Communication and Information Systems Security Symposium

25

Efficiency(%)

15 10

10 5

0 0

0 0

40

VM(A,t)

60

80

100

Estimated value by the model Simulation result PSSF + Random policy

20

15

5

20

25 Estimated value by the model Simulation result PSSF + Most VM policy

20 Efficiency(%)

Estimated value by the model Simulation result PSSF + Least VM policy

20

Efficiency(%)

25

15 10 5

20

40

VM(A,t)

60

80

0 0

100

20

(a.1) Least VM policy (lag • 10 minutes) (a.2) Most VM policy (a) Server configuration 1: each server has 16 CPU cores, and 24 Gigabytes of RAM 15

Efficiency(%)

Efficiency(%)

Estimated value by the model Simulation result PSSF + Least VM policy

20 15 10

VM(A,t)

60

80

100

25 Estimated value by the model Simulation result PSSF + Most VM policy

10

5

Estimated value by the model Simulation result PSSF + Random policy

20 Efficiency(%)

25

40

(a.3) Random policy

5

15 10 5

0 0

20

40

VM(A,t)

60

80

0 0

100

20

40

VM(A,t)

60

80

0 0

100

20

(b.1) Least VM policy (lag • 10 minutes) (b.2) Most VM policy (b) Server configuration 2: each server has 12 CPU cores, and 48 Gigabytes of RAM

40

VM(A,t)

60

80

100

(b.3) Random policy

Figure 3. Compare Efficiency between the estimations, the simulation results, and the values under the new policy, in the two sets of configurations 70 Estimated value by the model Simulation result PSSF + Least VM policy

50

60 Coverage (%)

Coverage (%)

60

40 30 20 10

50

70 Estimated value by the model Simulation result PSSF + Most VM policy

60 Coverage (%)

70

40 30 20 10

0 0

20

40

VM(A,t)

60

80

0 0

100

50

Estimated value by the model Simulation result PSSF + Random policy

40 30 20 10

20

40

VM(A,t)

60

80

0 0

100

20

(a.1) Least VM policy (lag • 10 minutes) (a.2) Most VM policy (a) Server configuration 1: each server has 16 CPU cores, and 24 Gigabytes of RAM 70 Estimated value by the model Simulation result PSSF + Least VM policy

50

60 Coverage(%)

Coverage (%)

60

40 30 20 10

50

60

40 30 20 10

0 0

20

40

VM(A,t)

60

80

100

0 0

VM(A,t)

60

80

100

(a.3) Random policy

70 Estimated value by the model Simulation result PSSF + Most VM policy

Coverage (%)

70

40

50

Estimated value by the model Simulation result PSSF + Random policy

40 30 20 10

20

40

VM(A,t)

60

80

100

0 0

20

40

VM(A,t)

60

80

100

(b.1) Least VM policy (lag • 10 minutes) (b.2) Most VM policy (b.3) Random policy (b) Server configuration 2: each server has 12 CPU cores, and 48 Gigabytes of RAM Figure 4. Compare Coverage between the estimations, the simulation results, and the values under the new policy, in the two sets of configurations

V.

A NEW HEURISTIC VM ALLOCATION POLICY

In this section, we propose a modified VM allocation policy that aims to decrease the probability of attackers colocating with the targets. The basic idea is to limit the number of servers that each account will use, so that the target VMs are less exposed to the attacker. The new policy is called Previously-selected-serversfirst (PSSF), where we combine the three policies (Least VM, Most VM, and Random) with the following modification: when a user L requests to start a VM, the servers that already host the VMs from the user, Servers(™tVM(L,t)), will be considered first. If such servers do not exist, or do not have enough resources left, the allocation process still follows the original policy.

791

Under this policy, the best strategy for the attacker is to use multiple accounts, each of which starts only one VM at a time. We tested our new policy in this worst case scenario. Fig. 2-4 show that the modification works for all three policies, especially when it is combined with the Least VM policy. Consider the following example: the victim user starts ten VMs, five of which are allocated to one server Sr1, while the other five are allocated to another server Sr2 (Fig. 5). It is likely that Sr1 and Sr2 are hosting more VMs than the other servers now, and further VM requests will not be assigned to Sr1 or Sr2 until all other servers also host the same number of VMs. However, for the other two policies, the improvement is not so obvious, especially the coverage rate. Still in the above example, Sr1 and Sr2 are much more likely to be selected again in this two cases, and since the target VMs are

IEEE ICC 2014 - Communication and Information Systems Security Symposium

[4]

allocated together, it is relatively easy for attackers to achieve a high coverage rate. Sr2

No. of VMs

Sr1

[5]

[6]

Servers

Figure 5. Illustrative example of why PSSF+Least VM policy is effective in preventing attackers from co-locating with their targets [7]

One immediate question for this modification is that it is not robust from the users’ point of view, as the failure of one server will impact all the VMs of a user. In practice, we can limit the number of VMs one server can host from the same user. Alternatively, in existing commercial cloud platforms, such as Amazon EC2 and Windows Azure, the system is organised into a number of regions, and each region contains several availability zones/subregions, which can be roughly considered as data centres. Therefore, the users can distribute their VMs across different availability zones/ subregions for greater robustness of their own systems. In summary, limiting the number of servers that one account can use increases the co-location of VMs belonging to the same account. As a result, the victims are less exposed to attackers, and it is also harder for attackers to spread their VMs. Consequently, this strategy is effective in decreasing the probability of attackers achieving co-residence. VI.

[8]

[9]

[10]

[11]

[12]

CONCLUSION

Co-resident attacks are a major threat to data confidentiality in cloud computing. In this paper, we compare three basic VM allocation policies from a security perspective, and model their performance in the presence of this kind of attack. We find that the Most VM policy performs the best when the servers are appropriately configured, and oversubscription is enabled. In addition, we propose a new policy that considerably increases the difficulty for attackers to achieve co-residence. In the future, we will work on the mathematical formulation of the problem, and search for an optimal policy that achieves a balance between minimising the threat of coresident attacks, decreasing the power consumption, and balancing the workload. Furthermore, we will also collect datasets from real cloud platforms to test our policy.

[13]

REFERENCES

[18] [19] [20] [21] [22]

[1]

[2]

[3]

Ristenpart, T., Tromer, E., Shacham, H., and Savage, S.: "Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party Compute Clouds," Proc. 16th ACM Conference on Computer and Communications Security (CCS 2009), 2009, pp. 199-212 Zhang, Y., Juels, A., Reiter, M., and Ristenpart, T.: "Cross-VM Side Channels and Their Use to Extract Private Keys," Proc. 2012 ACM Conference on Computer and Communications Security - CCS '12, 2012, pp. 305-316 Okamura, K., Okamura, K., and Oyama, Y.: "Load-based Covert Channels between Xen Virtual Machines," Proc. 2010 ACM Symposium on Applied Computing - SAC '10, 2010, pp. 173-180

792

[14]

[15]

[16] [17]

[23] [24] [25]

Hlavacs, H., Treutner, T., Gelas, J.-P., Lefevre, L., and Orgerie, A.C.: "Energy Consumption Side-Channel Attack at Virtual Machines in a Cloud," Proc. 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, 2011, pp. 605-612 Wu, J., Ding, L., Wang, Y., and Han, W.: "Identification and Evaluation of Sharing Memory Covert Timing Channel in Xen Virtual Machines," Proc. 2011 IEEE 4th International Conference on Cloud Computing, 2011, pp. 283-291 Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., and Schlichting, R.: "An Exploration of L2 Cache Covert Channels in Virtualized Environments," Proc. 3rd ACM Workshop on Cloud Computing Security - CCSW '11, 2011, pp. 29-39 Kadloor, S., Kadloor, S., Kiyavash, N., and Venkitasubramaniam, P.: "Scheduling with Privacy Constraints," Proc. 2012 IEEE Information Theory Workshop, 2012, pp. 40-44 Xia, Y., Yetian, X., Xiaochao, Z., Lihong, Y., Li, P., and Jianhua, L.: "Constructing the On/Off Covert Channel on Xen," Proc. 2012 Eighth International Conference on Computational Intelligence and Security, 2012, pp. 568-572 Aviram, A., Hu, S., Ford, B., and Gummadi, R.: "Determinating Timing Channels in Compute Clouds," Proc. 2010 ACM Workshop on Cloud Computing Security Workshop - CCSW '10, 2010, pp. 103108 Jin, S., Ahn, J., Cha, S., and Huh, J.: "Architectural Support for Secure Virtualization under a Vulnerable Hypervisor," Proc. 44th Annual IEEE/ACM International Symposium on Microarchitecture MICRO '11, 2011, pp. 272-283 Shi, J., Shi, J., Song, X., Chen, H., and Zang, B.: "Limiting Cachebased Side-channel in Multi-tenant Cloud using Dynamic Page Coloring," Proc. 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-W), 2011, pp. 194-199 Szefer, J., Keller, E., Lee, R., and Rexford, J.: "Eliminating the Hypervisor Attack Surface for a More Secure Cloud," Proc. 18th ACM Conference on Computer and Communications Security - CCS '11, 2011, pp. 401-412 Vattikonda, B., Das, S., and Shacham, H.: "Eliminating Fine Grained Timers in Xen," Proc. 3rd ACM Workshop on Cloud Computing Security Workshop - CCSW '11, 2011, pp. 41-46 Wu, J., Ding, L., Lin, Y., Min Allah, N., and Wang, Y.: "XenPump: A New Method to Mitigate Timing Channel in Cloud Computing," Proc. 2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 678-685 Han, Y., Alpcan, T., Chan, J., and Leckie, C.: "Security Games for Virtual Machine Allocation in Cloud Computing," Proc. the fourth Conference on Decision and Game Theory for Security (GameSec 2013), pp. 99-118, Fort Worth, TX, USA CloudSim, http://www.cloudbus.org/cloudsim/ Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C.A.F., and Buyya, R.: "CloudSim: a Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms," Software, Practice and Experience, 2011, 41, (1), pp. 23-50 OpenStack, http://www.openstack.org/ Eucalyptus, http://www.eucalyptus.com/ OpenNebula, http://opennebula.org/ CloudStack, http://cloudstack.apache.org/ Han, Y., Chan, J., and Leckie, C.: "Analysing Virtual Machine Usage in Cloud Computing," Proc. 2013 IEEE Ninth World Congress on Services (SERVICES), June 28-July 3 2013, pp. 370-377 Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/ Windows Azure: Microsoft's Cloud Platform, http://www.windowsazure.com Synthetic self-similar traffic generation, http://glenkramer.com/ucdavis/trf_research.html

[image: Energy Efficient Virtual Machine Allocation in the Cloud]
Energy Efficient Virtual Machine Allocation in the Cloud

[image: Energy Efficient Virtual Machine Allocation in the Cloud]
Energy Efficient Virtual Machine Allocation in the Cloud

[image: learning distributed power allocation policies in mimo ...]
learning distributed power allocation policies in mimo ...

[image: Power Allocation Policies with Full and Partial Inter ...]
Power Allocation Policies with Full and Partial Inter ...

[image: Reiteration of the Policies on Protection Against Tobacco Industry ...]
Reiteration of the Policies on Protection Against Tobacco Industry ...

[image: Virtual Drug Screening of Candidate Ligands Against Dihydrofolate ...]
Virtual Drug Screening of Candidate Ligands Against Dihydrofolate ...

[image: race against the machine pdf free download]
race against the machine pdf free download

[image: Download PDF/ePub eBook Building Virtual Machine ...]
Download PDF/ePub eBook Building Virtual Machine ...

[image: High Performance Virtual Machine Migration with ...]
High Performance Virtual Machine Migration with ...

[image: Comparing Performance overhead of Virtual Machine ...]
Comparing Performance overhead of Virtual Machine ...

[image: FVD: a High-Performance Virtual Machine Image Format for Cloud]
FVD: a High-Performance Virtual Machine Image Format for Cloud

[image: Accelerating Virtual Machine Storage I/O for Multicore ...]
Accelerating Virtual Machine Storage I/O for Multicore ...

[image: VMMB: Virtual Machine Memory Balancing for ... - Springer Link]
VMMB: Virtual Machine Memory Balancing for ... - Springer Link

Virtual Machine Allocation Policies against Co-resident ...

Abstractâ€”While the services-based model of cloud computing makes more and more ... of co-resident attacks. Keywords-cloud computing security, co-resident attack, vir- cure Virtualization under a Vulnerable Hypervisor," Proc. 44th Annu-.

 Download PDF

 237KB Sizes
 0 Downloads
 156 Views

 Report

Recommend Documents

[image: alt]

Energy Efficient Virtual Machine Allocation in the Cloud

10 vm.Database. 8. 8. 2. 6. 16 virtual machine. From the remaining hosts, it finds the one that would result in using ... mentioned above, the website is hosted entirely on a set of Unsurprisingly, the Watts per Core policy did the best from an

[image: alt]

Energy Efficient Virtual Machine Allocation in the Cloud

Energy Efficient Virtual Machine Allocation in the Cloud. An Analysis of Cloud Allocation Policies. Ryan Jansen. University of Notre Dame. Center for Research ...

[image: alt]

learning distributed power allocation policies in mimo ...

nt . Note that the Kronecker propa- gation model (where the channel matrices are of the form. Hk = R. 1/2 k. ËœÎ˜kT. 1/2 k.) is a special case of the UIU model. The.

[image: alt]

Power Allocation Policies with Full and Partial Inter ...

of diverse wireless systems, the demand for spectrum has increased in recent ... ent multiple wireless systems or operators. Cambridge University Press. 35.

[image: alt]

Reiteration of the Policies on Protection Against Tobacco Industry ...

Page 1 of 50. UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS. International General Certificate of Secondary Education. MARK SCHEME for the May/June 2011 question paper. for the guidance of teachers. 0620 CHEMISTRY. 0620/12 Paper 1 (Multiple Choi

[image: alt]

Virtual Drug Screening of Candidate Ligands Against Dihydrofolate ...

obtained from the literature at the Protein Data Bank (www.rcsb.org/pdb)3. The images were ... blade contains 8 GB of memory and a 6 GB ATA hard disk drive.

[image: alt]

race against the machine pdf free download

Page 1 of 1. File: Race against the machine pdf free. download. Download now. Click here if your download doesn't start automatically. Page 1 of 1. race against the machine pdf free download. race against the machine pdf free download. Open. Extract.

[image: alt]

Download PDF/ePub eBook Building Virtual Machine ...

Building Virtual Machine Labs: A Hands-On Guide. Full PDF ... Defensive Security Handbook: Best Practices for Securing Infrastructure · How to Hack Like a ...

[image: alt]

High Performance Virtual Machine Migration with ...

consolidation, performance isolation and ease of management. Migration is one of the most important features is preferable to explore an intelligent way that minimizes the contention on network bandwidth, while utilizing grants and equipme

[image: alt]

Comparing Performance overhead of Virtual Machine ...

Web server and a DBMS, deployed on a virtual server during a VM live migration process. â€¢ Series of measurements with Xen hypervisor. â€¢ Preliminary statistical analysis (real and virtual). 4. WWW/INTERNET ... was chosen and in almost all results

[image: alt]

FVD: a High-Performance Virtual Machine Image Format for Cloud

on-write image formats, which unnecessarily mixes the function of storage space allocation with the function of dirty-block tracking. The implementation of FVD is ...

[image: alt]

Accelerating Virtual Machine Storage I/O for Multicore ...

the I/O request, a completion notification is delivered to the guest OS by ... due to cache pollution results from executing guest OS and VMM on a single CPU.

[image: alt]

VMMB: Virtual Machine Memory Balancing for ... - Springer Link

Mar 28, 2012 - Springer Science+Business Media B.V. 2012. Abstract Virtualization ... weight solution, the number of total migration in a data center should 1800 memory size (MB) guest swapping (MB) time (sec) actual working set size.

×
Report Virtual Machine Allocation Policies against Co-resident ...

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

