

	
 Home

	 Add Document
	 Sign In
	 Create An Account

[image: PDFKUL.COM]

	
 Viewer

	
 Transcript

VOCAL – A Verified OCAml Library Arthur Charguéraud3,4 , Jean-Christophe Filliâtre1,2 , Mário Pereira1,2 , and François Pottier3 1

Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405 2 Inria Saclay–Île-de-France, Orsay, F-91893 3 Inria Paris 4 ICube – CNRS, Université de Strasbourg, France

Libraries are the basic building blocks of any realistic programming project. It is thus of utmost interest for a programmer to build her software on top of bug-free libraries. Even massively used and tested libraries can contain bugs: in 2006 a bug was found in Java’s standard library, after 9 years of undetected presence [3]. One approach to verifying the behavior of such libraries is to employ deductive software verification [11], that is, to reduce the correctness of a program down to a mathematical statement, and to prove that this statement is true. Projects such as CompCert [14] and seL4 [13] show how proof assistants can handle large program verification efforts. In addition, the remarkable progress of SMT solvers makes it possible to apply these tools to the verification of realistic program artifacts. For instance, the Verisoft XT project [2] was verified using VCC [16], which builds on the SMT solver Z3 [10]. Although this may seem surprising, program verification has seldom been applied to libraries of significant size. A remarkable exception is the verification of the EiffelBase2 containers library [15], performed with the AutoProof system [18]. This work presents the first steps towards VOCAL, a mechanically verified library of efficient general-purpose data structures and algorithms, written in the OCaml language. OCaml is the implementation language of systems used worldwide where stability, safety, and correctness are of utmost importance. Examples include the Coq proof assistant [17], the Astrée [8] and Frama-C [9] static analyzers, the Cubicle model-checker [7], and the Alt-Ergo theorem prover [4]. One of the key ingredients of the VOCAL project is the design of a specification language for OCaml, independently of any verification tool. This is similar to what JML is for Java [5], or ACSL for C [1]. Another ingredient of the VOCAL project is the development of the verified library itself, using a combination of three tools: CFML [6], Coq, and Why3 [12]. These tools nicely complement each other: CFML implements a separation logic and targets pointer-based data structures; Coq is a tool of choice for purely applicative programs; and Why3 provides a high degree of automation using off-the-shelf SMT solvers. A consistent collaboration between these tools, keeping the benefits of each one, is one of the challenges we intend to address in this project. In this talk we will present the current state of the specification language, which is still under development, and of the library itself. Using examples of already verified OCaml modules, we will illustrate several verification challenges (modular proofs, absence of arithmetic overflows, proof of complexity bounds, etc.) and how we successfully cope with them. This research was partly supported by the Portuguese Foundation for Sciences and Technology (grant FCTSFRH/BD/99432/2014) and by the French National Research Organization (project VOCAL ANR-15-CE25008).

References 1. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language, version 1.4, 2009. http://frama-c.cea.fr/acsl. html. 2. Bernhard Beckert and Michał Moskal. Deductive verification of system software in the Verisoft XT project. Künstliche Intelligenz, 24(1):57–61, 2010. 3. Joshua Bloch. Nearly all binary searches and mergesorts are broken, 2006. http://googleresearch. blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html. 4. François Bobot, Sylvain Conchon, Évelyne Contejean, Mohamed Iguernelala, Stéphane Lescuyer, and Alain Mebsout. The Alt-Ergo automated theorem prover, 2008. http://alt-ergo.lri.fr/. 5. Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications. International Journal on Software Tools for Technology Transfer (STTT), 7(3):212–232, June 2005. 6. Arthur Charguéraud. Characteristic formulae for the verification of imperative programs. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming (ICFP), pages 418–430, Tokyo, Japan, September 2011. ACM. 7. Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout, and Fatiha Zaïdi. Cubicle: A parallel SMT-based model checker for parameterized systems. In Madhusudan Parthasarathy and Sanjit A. Seshia, editors, CAV 2012: Proceedings of the 24th International Conference on Computer Aided Verification, volume 7358 of Lecture Notes in Computer Science, Berkeley, California, USA, July 2012. Springer. 8. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. The ASTRÉE analyzer. In ESOP, number 3444 in Lecture Notes in Computer Science, pages 21–30, 2005. 9. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. Frama-C: A software analysis perspective. In Proceedings of the 10th International Conference on Software Engineering and Formal Methods, number 7504 in Lecture Notes in Computer Science, pages 233–247. Springer, 2012. 10. Leonardo de Moura and Nikolaj Bjørner. Z3, an efficient SMT solver. In TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008. 11. Jean-Christophe Filliâtre. Deductive software verification. International Journal on Software Tools for Technology Transfer (STTT), 13(5):397–403, August 2011. 12. Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers. In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the 22nd European Symposium on Programming, volume 7792 of Lecture Notes in Computer Science, pages 125–128. Springer, March 2013. 13. Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. Communications of the ACM, 53(6):107–115, June 2010. 14. Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363–446, 2009. 15. Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. A fully verified container library. In Nikolaj Bjørner and Frank D. de Boer, editors, FM 2015: Formal Methods - 20th International Symposium, Oslo, Norway, June 24-26, 2015, Proceedings, volume 9109 of Lecture Notes in Computer Science, pages 414–434. Springer, 2015. 16. Wolfram Schulte, Songtao Xia, Jan Smans, and Frank Piessens. A glimpse of a verifying C compiler. http: //www.cs.ru.nl/~tews/cv07/cv07-smans.pdf. 17. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.6, 2016. http: //coq.inria.fr. 18. Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikarpova. Autoproof: Auto-active functional verification of object-oriented programs. In 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science. Springer, 2015.

2

[image: VOCAL â€“ A Verified OCAml Library - ML Family Workshop]
VOCAL â€“ A Verified OCAml Library - ML Family Workshop

[image: Relational Conversion for OCaml - ML Family Workshop]
Relational Conversion for OCaml - ML Family Workshop

[image: Relational Conversion for OCaml - The ML Family Workshop]
Relational Conversion for OCaml - The ML Family Workshop

[image: Mergeable Types - ML Family Workshop]
Mergeable Types - ML Family Workshop

[image: Arduino programing of ML-style in ATS - ML Family Workshop]
Arduino programing of ML-style in ATS - ML Family Workshop

[image: Tierless Modules - The ML Family Workshop]
Tierless Modules - The ML Family Workshop

[image: Ambiguous pattern variables - The ML Family Workshop]
Ambiguous pattern variables - The ML Family Workshop

[image: Sundials/ML: interfacing with numerical solvers - ML Family Workshop]
Sundials/ML: interfacing with numerical solvers - ML Family Workshop

[image: Sundials/ML: interfacing with numerical solvers - ML Family Workshop]
Sundials/ML: interfacing with numerical solvers - ML Family Workshop

[image: Commons OCaml Library - GitHub]
Commons OCaml Library - GitHub

[image: Typer: An infix statically typed Lisp - The ML Family Workshop]
Typer: An infix statically typed Lisp - The ML Family Workshop

[image: Extracting from F* to C: a progress report - The ML Family Workshop]
Extracting from F* to C: a progress report - The ML Family Workshop

[image: Extracting from F* to C: a progress report - The ML Family Workshop]
Extracting from F* to C: a progress report - The ML Family Workshop

[image: A Simple and Practical Linear Algebra Library Interface with ... - OCaml]
A Simple and Practical Linear Algebra Library Interface with ... - OCaml

[image: Nullable Type Inference - OCaml]
Nullable Type Inference - OCaml

[image: GADTs and exhaustiveness: looking for the impossible - ML Family ...]
GADTs and exhaustiveness: looking for the impossible - ML Family ...

[image: GADTs and exhaustiveness: looking for the impossible - ML Family ...]
GADTs and exhaustiveness: looking for the impossible - ML Family ...

[image: Polymorphism, subtyping and type inference in MLsub - ML Family ...]
Polymorphism, subtyping and type inference in MLsub - ML Family ...

[image: Billerica Public Schools Family Workshop ...]
Billerica Public Schools Family Workshop ...

[image: Nullable Type Inference - OCaml]
Nullable Type Inference - OCaml

[image: Polymorphism, subtyping and type inference in MLsub - ML Family ...]
Polymorphism, subtyping and type inference in MLsub - ML Family ...

[image: Page 1 Z 7654 ML ML LEAL ML ML 8_2m1L _22.13_ _BML _BML ...]
Page 1 Z 7654 ML ML LEAL ML ML 8_2m1L _22.13_ _BML _BML ...

VOCAL â€“ A Verified OCAml Library - ML Family Workshop

OCaml is the implementation language of systems used worldwide where stability, safety, and correctness are of ... An overview of JML tools and applications.

 Download PDF

 180KB Sizes
 0 Downloads
 85 Views

 Report

Recommend Documents

[image: alt]

VOCAL â€“ A Verified OCAml Library - ML Family Workshop

Libraries are the basic building blocks of any realistic programming project. It is thus of utmost verification of object-oriented programs. In 21st International ...

[image: alt]

Relational Conversion for OCaml - ML Family Workshop

preters (Programming Pearl) // Proceedings of the 2012 Work- shop on Scheme and Functional Programming (Scheme '12). [5] Henk Barendregt. Lambda ...

[image: alt]

Relational Conversion for OCaml - The ML Family Workshop

St.Petersburg State University Logic in Computer Science (Vol. 2), 1992. [6] William E. ... Indiana University, Bloomington, IN, September 30, 2009. [7] Dmitry ...

[image: alt]

Mergeable Types - ML Family Workshop

systems with the ability to define and compose distributed ML computations around ... library on a single machine, this implementation behaves as expected.

[image: alt]

Arduino programing of ML-style in ATS - ML Family Workshop

binaries generated from ATS source are very close (in terms of size) to those generated from the C counterpart. 2. ATS programming language. ATS is a programming language equipped with a highly expressive type system rooted in the framework Applied T

[image: alt]

Tierless Modules - The ML Family Workshop

Web, client/server, OCaml, ML, Eliom, functional, module. 1 INTRODUCTION. Traditional Web applications are composed of several dis- tinct tiers: Web pages ...

[image: alt]

Ambiguous pattern variables - The ML Family Workshop

Jul 29, 2016 - Let us define where the Bi,k are binding sets, sets of variables found ... new rows bind to a different position. [Bi,1 ... Bi,l. | K(q1,...,qk) pi,2.

[image: alt]

Sundials/ML: interfacing with numerical solvers - ML Family Workshop

Sep 22, 2016 - 4. REFERENCES. [1] T. Bourke and M. Pouzet. ZÃ©lus: A synchronous language with ODEs. In HSCC, pages 113â€“118. ACM. Press, Apr. 2013.

[image: alt]

Sundials/ML: interfacing with numerical solvers - ML Family Workshop

Sep 22, 2016 - . Jun Inoue. National Institute of Advanced. Industrial Science and. Technology. . Marc Pouzet. Univ. Pierre et Marie Curie. Ã‰cole normale supÃ©rieure,. PSL Research University. Inria Paris.

[image: alt]

Commons OCaml Library - GitHub

Dec 29, 2009 - reverse [x]. = [x].)ig let b = laws "app " (fun (xs,ys) -> reverse (xs++ys) implemented in OCaml, using the standard example of a calculator.".

[image: alt]

Typer: An infix statically typed Lisp - The ML Family Workshop

Oxford, UK, September 2017 (ML'2017), 2 pages. ... the syntax of macro calls is just as exible as that of any other Conference on Functional Programming.

[image: alt]

Extracting from F* to C: a progress report - The ML Family Workshop

raphy (ECC) primitives, and on extracting this code to C. ... verification extract the code back to C. pointers are made up of a block identifier along with an.

[image: alt]

Extracting from F* to C: a progress report - The ML Family Workshop

sub-tree untouched. In short, hyperheaps provide framing guarantees. Each sub-tree is assigned a region-id (rid), and a hyperheap maps an rid to a heap.

[image: alt]

A Simple and Practical Linear Algebra Library Interface with ... - OCaml

and application programs, or tricky type-level programming. We have developed a linear algebra library interface that guarantees consistency (with respect to ...

[image: alt]

Nullable Type Inference - OCaml

Dec 11, 2002 - [1] Apple (2014): Swift, a new programming language for iOS and. OS X. Available at https://developer.apple.com/swift. [2] Facebook (2014): ...

[image: alt]

GADTs and exhaustiveness: looking for the impossible - ML Family ...

... !env expected_ty) expected_ty k else k (mkpat Tpat_any expected_ty). | Ppat_or (sp1, sp2) -> (* or pattern *) if mode = Check then let state = save_state env in try type_pat sp1 expected_ty k with exn ->. 3The code is available through OCaml's Su

[image: alt]

GADTs and exhaustiveness: looking for the impossible - ML Family ...

log's SLD resolution, for which counter-example genera- tion (i.e. construction of a witness term) is known to be only semi-decidable. Another way to see it is that ...

[image: alt]

Polymorphism, subtyping and type inference in MLsub - ML Family ...

Sep 3, 2015 - Polymorphism, subtyping and type inference in. MLsub. Stephen Dolan and Alan Mycroft ... We have two tricks for getting around the difficulties: â€¢ Define types properly. â€¢ Only use half of them. 2 ... Any two types have a greatest c

[image: alt]

Billerica Public Schools Family Workshop ...

Mar 8, 2016 - This workshop is an introduction to Google Apps such as Google Docs, Slides, Calendar, and Gmail ... Parents will learn about how to use Aspen to it's greatest potential by reviewing settings, setting up home by explaining the posi

[image: alt]

Nullable Type Inference - OCaml

Dec 11, 2002 - Imperative programming languages, such as C or Java deriva- tives, make abundant ... In languages using the ML type discipline, the option type type Î± option //docs.hhvm.com/manual/en/hack.nullable.php. [3] Facebook ...

[image: alt]

Polymorphism, subtyping and type inference in MLsub - ML Family ...

Sep 3, 2015 - Polymorphism, subtyping and type inference in. MLsub. Stephen Dolan and Alan Mycroft ... We have two tricks for getting around the difficulties: â€¢ Define types properly. â€¢ Only use half of them. 2 ... Any two types have a greatest c

[image: alt]

Page 1 Z 7654 ML ML LEAL ML ML 8_2m1L _22.13_ _BML _BML ...

S e e e cl S t L_l cl 1 o. TITLE: Ã±rch BLE v1.84. Design: v? 32. 31. 29. 28. || 27. 26. 25. 19. En â€ž3 21. En ai 22. En â€ž5 23. En nÃ¡ 24. 123456789 ...

×
Report VOCAL â€“ A Verified OCAml Library - ML Family Workshop

Your name

Email

Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint

Description

Close
Save changes

×
Sign In

Email

Password

 Remember Password
Forgot Password?

Sign In

Information

	About Us
	Privacy Policy
	Terms and Service
	Copyright
	Contact Us

Follow us

	

 Facebook

	

 Twitter

	

 Google Plus

Newsletter

Copyright © 2024 P.PDFKUL.COM. All rights reserved.

